Tuesday 19th March, 2019 GPU Technology Conference 2019 San Jose, USA

S9306

Extreme Signal-Processing Performance Using Tensor Cores Astronomical Imaging on GPUs

John Romein and Bram Veenboer

This talk consists of two parts. In the first part, we explain how we use Tensor Cores to obtain extreme signal-processing performance. In the second part of this talk, we explain how we solve the largest computational challenge in the imaging pipeline of modern radio telescopes.

Tensor Cores: Signal Processing at Unprecedented Speeds

John Romein

ASTRON (Netherlands Institute for Radio Astronomy)

Netherlands Organisation for Scientific Research

GTC'19 / Tensor Core Signal Processing

outline

- tensor cores
- complex numbers and matrix multiplications
- signal-processing algorithms
 - correlationsbeam forming
- analyze performance

_ ...

tensor cores

- mixed-precision matrix multiplication hardware
 - Volta, Turing

- V100: peak 112 (!) TFLOPS
- designed for deep learning

how to use tensor cores

- libraries (cuBLAS, cutlass, ...) 🗴
 - insufficient complex numbers support
- WMMA 🗸
 - operates directly on 16x16 matrices (+ few more formats)
 - use in CUDA program

WMMA example

warp performs 16x16 matrix multiplication

```
load_matrix_sync(a_frag, &a[...][...], K);
load_matrix_sync(b_frag, &b[...][...], N);
fill_fragment(c_frag, 0);
mma_sync(d_frag, a_frag, b_frag, c_frag); // d=a*b+c
store_matrix_sync(&d[...][...], d_frag, ...);
```

signal processing: complex numbers

- describes phase & amplitude of signal
- real and imaginary part (a_r, a_i)

• complex multiply-add = 4 real multiply-adds

c += ab $c_r += a_r b_r$ $c_r += -a_i b_i \quad -\text{sign} \rightarrow \text{ no tensor core support}$ $c_i += a_r b_i$ $c_i += a_i b_r$

two complex array/matrix formats

1) split matrix

r _{0,0}	$r_{0,1}$	r _{0,2}	r _{0,3}	i _{0,0}	İ _{0,1}
$r_{1,0}$	$r_{1,1}$	$r_{1,2}$	$r_{1,3}$	$\mathbf{r}_{1,0}$	İ _{1,1}
r _{2,0}	$r_{2,1}$	r _{2,2}	$r_{2,3}$	İ _{2,0}	İ _{2,1}
r _{3,0}	$r_{3,1}$	r _{3,2}	$r_{3,3}$	i _{3,0}	İ _{3,1}

İ _{0,0}	$i_{0,1}$	$\mathbf{i}_{0,2}$	İ _{0,3}
$r_{1,0}$	$i_{1,1}$	$i_{1,2}$	$i_{1,3}$
i _{2,0}	$i_{2,1}$	İ _{2,2}	İ _{2,3}
i _{3,0}	$i_{3,1}$	$i_{3,2}$	İ _{3,3}

2) interleaved

r _{0,0}	İ _{0,0}	$r_{0,1}$	$i_{0,1}$	r _{0,2}	İ _{0,2}	r _{0,3}	İ _{0,3}
$r_{1,0}$	$\mathbf{r}_{1,0}$	$\mathbf{r_{1,1}}$	$i_{1,1}$	$r_{1,2}$	$i_{1,2}$	$r_{1,3}$	$i_{1,3}$
r _{2,0}	İ _{2,0}	$r_{2,1}$	$i_{2,1}$	r _{2,2}	İ _{2,2}	r _{2,3}	$i_{2,3}$
r _{3,0}	İ _{3,0}	$r_{3,1}$	İ _{3,1}	r _{3,2}	İ _{3,2}	r _{3,3}	İ _{3,3}

float real[4][4], imag[4][4];

std::complex<float> matrix[4][4];

1) complex split matrices

$[C] = [A][B] \rightarrow \begin{bmatrix} C_r \end{bmatrix} = [A_r][B_r] + [-A_i][B_i] \\ [C_i] = [A_r][B_i] + [A_i][B_r]$

- maps well to tensor cores
 - negate A_i values

2) interleaved complex matrices

- reorder right matrix for tensor core use
 - duplicate/permute/negate entries

complex formats: split array vs. interleaved

- implemented both
- generally no big performance difference

tensor cores for signal processing

- suitable if
 - input ≤ 16 bit ✓
 - algorithm translates to matrix-matrix multiplication

algorithm 1: correlations

correlations

- combines telescope data
 - each pair: multiply & accumulate
 - ½*r(r*+1) pairs

 $correlation_{recv_1, recv_2} =$

correlator computations

- C \leftarrow A * A^H
- $C = C^H \rightarrow \text{compute \& store triangle}$

work decomposition

- computeSquares()
 - thread block: 64x64 receivers
 - warp: 32x16 receivers
- computeTriangles()
 - redundant computations above diagonal

eceivers

correlator implementation

• cache input: L2 \rightarrow shared mem \rightarrow registers

- fix -sign on the fly

- wmma::store_matrix_sync() cannot write to triangle
 - copy via shared mem, or
 - write accumulation registers directly (hack!)

correlator performance

(measured on Tesla V100)

correlator roofline analysis

correlator energy efficiency

(measured on Titan RTX, not V100)

innovation beyond Moore's law

algorithm 2: beam forming

beam forming

- · increase sensitivity in particular direction
- (weighted) addition of signals

$$bfdata_{time,beam} = \sum_{recv=0}^{nr recv-1} samples_{time,recv} weights_{recv,beam}$$

beam former implementation

• multiple beams: complex matrix-matrix multiplication

beam former performance and roofline analysis

other algorithms

other signal-processing algorithms

- nonuniform Fourier transforms
 - map well to complex matrix-matrix multiplication
 - ≤ 80 TFLOPS
- FIR filter X
 - matrix multiplication \rightarrow many zeros
 - typically memory bandwidth bound
- FFT 🗶
 - not a matrix multiplication
 - memory bandwidth bound

current / future work

- try further optimizations
 - correlator: near diagonal
 - beam forming: cublasLtMatmul() (CUDA 10.1)
- support any number of receivers/beams
- 8 bit, 4 bit

conclusions

- tensor cores for signal processing:
 - correlating
 - multi-beam forming
 - nonuniform Fourier transforms

- matrix-matrix multiplication
- unprecedented performance ($\leq ~75$ TFLOPS, $\leq 6x$)

This work is funded by the European Union under grant no. H2020-FETHPC-754304 (DEEP-EST).

Tuesday 19th March, 2019 GPU Technology Conference 2019 San Jose, USA

Astronomical Imaging on GPUs

Bram Veenboer

Outline

- Introduction:
 - Interferometry
 - The Image-Domain Gridding algorithm
 - Performance analysis
- Analysis and optimization:
 - Gridder kernel
 - Imaging application
- Performance and energy-efficiency comparison
- Results in context of Square Kilometre Array
- Summary

Introduction to radio astronomy

- Observe the sky at radio wavelengths \longrightarrow map of radio sources
- Dish-based telescopes: VLA, ALMA, MeerKAT, SKA-1 Mid
- Size of the telescope is proportional to the wavelength
- Use array of antennas for low frequencies: (LOFAR, MWA, SKA-1 Low)

Radio telescope: astronomical interferometer

- Interferometer: array of seperate telescopes
- Interferometry: combine the signals from seperate radio telescopes
 - Resolution similar to one very large dish

Interferometry theory

- Sampling of the 'uv-plane': 'visibilities'
- Earth-rotation synthesis

Interferometry theory

- Sampling of the 'uv-plane': 'visibilities'
- Earth-rotation synthesis

Interferometry theory

- Sampling of the 'uv-plane': 'visibilities'
- Earth-rotation synthesis

- Visibilities \xrightarrow{DFT} image
- Visibilities $\stackrel{gridding}{\longrightarrow}$ grid $\stackrel{FFT}{\longrightarrow}$ image

Square Kilometre Array

SKA1 Low, Australia

SKA1 Mid, Africa

• Data rates up to $\approx 10.000.000$ visibilities/second

Sky-image creation using Image-Domain gridding

W-projection gridding and Image-Domain gridding

See "Image Domain Gridding: a fast method for convolutional resampling of visibilities, S. van der Tol et al., A&A 2018" and "Image-Domain Gridding on Graphics Processors, B. Veenboer et al., IPDPS 2017" for details.

Image-Domain Gridding algorithm

1 f	for $s = 1 \dots S$ do	<pre>// subgrids mapped to thread blocks</pre>	
2	$complex < float > subgrid[P][N \times N];$		
3	for $i = 1 \dots N \times N$ do	<pre>// pixels mapped to threads</pre>	
4	float offset = compute_offset(s, i);	1 11	
5	for $t = 1 \dots T$ do		
6	float index = compute_index(s, i, t);		
7	for $c = 1 \dots C$ do		
8	float scale = scales[c];		
9	float phase = offset - (index \times scal	le); // 1 fma	
10	$complex < float > phasor = {cos(phasor)}$	ase), sin(phase)}: // 1 cis	
11	for $p = 1 \dots P$ do	// 4 polarizations	
12	complex <float> visibility = visibility</float>	pilities $[t][c][p]$: //load 8 bytes	
13	subgrid[p][i] += cmul(phasor, vis	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	
14	end	,,, = ====	
15	end		
16	end		
17	end		
18	apply corrections(subgrid);	// aterm. taper. iFFT	
10	store(subgrid):	,, aborm, bapor, 1111	
20 C	and		
20 0		AST(RO	N

Roofline analysis

• Operational intensity gives upper bound on performance

Kernel v1 (reference) 1/2

• Throughput: 70 Mvis/s (number of visibilities processed per second)

Kernel v1 (reference) 2/2

- High compute utilization
- Low memory utilization
- $\longrightarrow \mathsf{compute} \ \mathsf{bound}$

- High FPU utilization
- Low performance?
- What instructions are executed?

Image-Domain Gridding algorithm

1 f	for $s = 1 \dots S$ do	<pre>// subgrids mapped to thread blocks</pre>	
2	$complex < float > subgrid[P][N \times N];$		
3	for $i = 1 \dots N \times N$ do	<pre>// pixels mapped to threads</pre>	
4	float offset = compute_offset(s, i);	1 11	
5	for $t = 1 \dots T$ do		
6	float index = compute_index(s, i, t);		
7	for $c = 1 \dots C$ do		
8	float scale = scales[c];		
9	float phase = offset - (index \times scal	le); // 1 fma	
10	$complex < float > phasor = {cos(phasor)}$	ase), sin(phase)}: // 1 cis	
11	for $p = 1 \dots P$ do	// 4 polarizations	
12	complex <float> visibility = visibility</float>	pilities $[t][c][p]$: //load 8 bytes	
13	subgrid[p][i] += cmul(phasor, vis	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	
14	end	,,, = ====	
15	end		
16	end		
17	end		
18	apply corrections(subgrid);	// aterm. taper. iFFT	
10	store(subgrid):	,, aborm, bapor, 1111	
20 C	and		
20 0		AST(RO	N

Special Function Units (SFUs) to evaluate sine/cosine

Compile using $-use_fast_math$, or specify explicitely: b.x = cos(a.x) \rightarrow asm(cos.approx.f32 %0, %1; : =f(b.x) : f(a.x)); b.y = sin(a.x) \rightarrow asm(sin.approx.f32 %0, %1; : =f(b.y) : f(a.x));

Peformance for instruction mix $\mathsf{FMA} + \mathsf{sine}/\mathsf{cosine}$

AST(RON

• Using SFUs, FMAs and sine/cosine are computed simultaneously

Kernel v2 (sfu) 1/2

• $2.5 \times$ performance increase, but still below the peak (180 MVis/s)

Kernel v2 (sfu) 2/2

• Many memory operations

• Memory utilization medium?

$\longrightarrow \text{optimize memory} \\ \text{acces pattern}$

Unified C	lache
-----------	-------

Local Loads	0	0 B/s					
Local Stores	0	0 B/s					
Global Loads	35040092162	3,176.086 GB/s					
Global Stores	28508160	5.66 GB/s					
Texture Reads	8760023040	1,739.156 GB/s					
Unified Total	43828623362	4,920.901 GB/s	Idle Low	Me	dium	High	Max

- Many cache hits

Kernel v3 (cache) 1/3

• Getting close to peak (70%, 250 MVis/s)

Kernel v3 (cache) 2/3

- Memory utilization texture \rightarrow shared
- Memory operation overhead reduced from 20% to 10%

Shared Memory

Shared Loads	4789370880	4,457.865 GB/s					
Shared Stores	118514880	110.312 GB/s					
Shared Total	4907885760	4,568.176 GB/s	Idle	Low	Medium	High	Max

• High shared memory bandwidth

 \rightarrow more analyis is needed...

Roofline analysis

• Add additional roof for shared memory

Kernel v3 (cache) 3/3

- Close to (measured) shared memory roof
- Increase operational intensity: every thread computes multiple pixels

Kernel v4 (unroll) 1/3

• The new kernel is not bound by shared memory bandwidth

Kernel v4 (unroll) 2/3

• The kernel is very close to the theoretical peak (90%, 300 Mvis/s)

Kernel v4 (unroll) 3/3

- Very high FPU utilization
- Low memory utilization

- FPU usage max
- \longrightarrow gridder done!

Kernel optimization summary

General optimization steps:

- ① Measure (floating-point) performance and memory bandwidth
- Apply roofline model to assess potential gains
- **③** Find optimization opportunities by profiling
- Apply optimizations accordingly

Kernel optimization summary

General optimization steps:

- ① Measure (floating-point) performance and memory bandwidth
- Apply roofline model to assess potential gains
- Find optimization opportunities by profiling
- Apply optimizations accordingly

In case of the gridder kernel:

- Reference: 70 MVis/s
- Use Special Function Units: 180 MVis/s (2.6×)
- Use shared memory cache: 250 MVis/s (1.4 \times)
- Increase operational intensity: 300 MVis/s $(1.2\times)$

I/O optimization

- Kernel throughput \neq application throughput
- Data transfers can not be ignored:

🖃 [0] TITAN X (Pascal)								
Context 1 (CUDA)								
- 🍸 MemCpy (HtoD)	Memcp	Memcp	Memcp	Memcp	Memcp	Memcp	Memcp	Memo
- 🍸 MemCpy (DtoH)								
🗈 Compute	kernel_gr	keri	nel_g	kernel_g	kernel_g	kernel_g	kernel_g	kernel_g
Streams								
L Stream 14	Memcp kernel_gr	Memcp keri	nel_g Memcp	kernel_g Memcp	kernel_g Memcp	kernel_g Memcp	kernel_g Memcp	kernel_g Memo

I/O optimization

- Kernel throughput \neq application throughput
- Data transfers can not be ignored:

🖃 [0] TITAN X (Pascal)									
Context 1 (CUDA)									
- 🍸 MemCpy (HtoD)	Memcp	Memcp	Memcp	Memcp	Memo	p	Memcp	Memcp	Memo
- 🍸 MemCpy (DtoH)									
🗄 Compute	kernel_gr	kernel_g.	kernel_g		kernel_g	kernel_g	kernel_g		kernel_g
Streams									
L Stream 14	Memcp kernel_gr	Memcp kernel_g.	Memcp kernel_g	Memcp	kernel_g Memc	p kernel_g	Memcp kernel_g	Memcp	kernel_g Memc

• Overlap PCIe transfers and compute:

😑 [0] TITAN X (Pascal)								
Context 1 (CUDA)								
└ 🍸 MemCpy (HtoD)	Memcpy Hto	Memcpy Hto	Memcpy Hto	Memcpy Hto	Memcpy Hto	Memcpy Hto	Memcpy Hto	Memcpy Hto
- 🍸 MemCpy (DtoH)								
🗄 Compute		kernel_gridder	kernel_gridder	kernel_gridder	kernel_gridder	kernel_gridder	kernel_gridder	kernel_gridder
Streams								
Stream 14		kernel_gridder	kernel_gridder	kernel_gridder	kernel_gridder	kernel_gridder	kernel_gridder	kernel_gridder
Stream 15	Memcpy Hto	Memcpy Hto	Memcpy Hto	Memcpy Hto	Memcpy Hto	Memcpy Hto	Memcpy Hto	Memcpy Hto

Creating large images: using CPU+GPU

- Subgrids are added onto a larger grid
- The grid might not fit in GPU memory (e.g. $40k \times 40k \approx 48$ GB)

Creating large images: using CPU+GPU

- Subgrids are added onto a larger grid
- The grid might not fit in GPU memory (e.g. $40k \times 40k \approx 48$ GB)
- Perform addition on the host:

Creating large images: using Unified Memory

• Allocate memory:

 $\texttt{malloc(size)} \rightarrow \texttt{cuMemAllocManaged(ptr, size, CU_MEM_ATTACH_GLOBAL)}$

• Apply tiling to keep pixels close in memory: grid[G_y][G_x] \rightarrow grid[N_y][N_x][T_y][T_x] ($N_y \times T_y = G_y$ and $N_x \times T_x = G_x$)

E [0] TITAN X (Pascal)						
Context 1 (CUDA)						
- 🀨 MemCpy (HtoD)	Memcpy HtoD (async)		Memcpy HtoD [async]	Me	emcpy HtoD [async]	Memcpy HtoD [async]
- 🐨 MemCpy (DtoH)						
1 Compute	kernel_gridder	kernet_a	kernel_gridder		kernel_gridder	kernel_gridder
🗄 Streams						
Unified Memory						
- 🍸 GPU Page Faults						
- 🐨 Data Migration (DtoH)						
Tota Migration (HtoD)						

GPU Page Fault groups		Data Migration (DtoH)		Data Migration (HtoD)	
Start	17.37 s (17,370,168,609 ns)	Start	53.121 s (53,121,339,457 ns)	Start	17.516 s (17,515,710,433 ns)
End	17.371 s (17,370,880,705 ns)	End	53.121 s (53,121,340,737 ns)	End	17.516 s (17,515,748,097 ns)
Duration	712.096 µs	Duration	1.28 µs	Duration	37.664 µs
Memory Acccess Type	Atomic	Size	4.096 kB	Size	442.368 kB
Virtual Address	0x2aba6fa00000	Migration Cause	Coherence	Migration Cause	Prefetch
GPU Page Faults	4	Throughput	3.2 GB/s	Throughput	11.745 GB/s
Process	13154	Virtual Address	0x2ac3d8000000	Virtual Address	0x2aba4fb14000
		Process	13154	Process	13154

Performance and energy-efficiency comparison

• 2x Xeon E5-2697v3, Xeon Phi 7210X, NVIDIA GTX Titan X (Pascal) and AMD Vega FE:

• PASCAL is the fastest and most energy-efficient device

Image-Domain Gridding for the Square Kilometre Array

- SKA-1 Low visibility rate: 9.5 GVis/s \longrightarrow imaging data rate: **95 GVis/s**
- Compute: 50 PFlop/s (DP, total)
- Power cap: \approx 5 MW (per site)

Image-Domain Gridding for the Square Kilometre Array

- SKA-1 Low visibility rate: 9.5 GVis/s \longrightarrow imaging data rate: **95 GVis/s**
- Compute: 50 PFlop/s (DP, total)
- Power cap: \approx 5 MW (per site)
- Imaging 'budget' $\approx 60\%$:
 - 15.3 PFlop/s (DP, per site)
 - 2887 Tesla P100 GPUs
 - 588.5 kW
- IDG on one Tesla P100: $\approx 0.10~\text{GVis/s}$

Image-Domain Gridding for the Square Kilometre Array

- SKA-1 Low visibility rate: 9.5 GVis/s \longrightarrow imaging data rate: **95 GVis/s**
- Compute: 50 PFlop/s (DP, total)
- Power cap: \approx 5 MW (per site)
- Imaging 'budget' \approx 60%:
 - 15.3 PFlop/s (DP, per site)
 - 2887 Tesla P100 GPUs
 - 588.5 kW
- IDG on one Tesla P100: $\approx 0.10~\text{GVis/s}$
- IDG meets SKA-1 Low requirements!
 - 950 P100s required: 33%
 - Power consumption: 171 kW, 29%

• High performance astronomical imaging on GPUs with Image-Domain Gridding

- Compute bound (unlike other imaging algorithms)
- A-term correction at neglible cost
- Very lage images (Unified Memory)

- High performance astronomical imaging on GPUs with Image-Domain Gridding
 - Compute bound (unlike other imaging algorithms)
 - A-term correction at neglible cost
 - Very lage images (Unified Memory)
- GPUs much faster and more (energy)-efficient than CPUs and Xeon Phi

- High performance astronomical imaging on GPUs with Image-Domain Gridding
 - Compute bound (unlike other imaging algorithms)
 - A-term correction at neglible cost
 - Very lage images (Unified Memory)
- GPUs much faster and more (energy)-efficient than CPUs and Xeon Phi
- Most challenging sub-parts of imaging for SKA is solved!

- High performance astronomical imaging on GPUs with Image-Domain Gridding
 - Compute bound (unlike other imaging algorithms)
 - A-term correction at neglible cost
 - Very lage images (Unified Memory)
- GPUs much faster and more (energy)-efficient than CPUs and Xeon Phi
- Most challenging sub-parts of imaging for SKA is solved!

More details:

"Image Domain Gridding: a fast method for convolutional resampling of visibilities, S. van der Tol et al., A&A 2018" and Image-Domain Gridding on Graphics Processors, B. Veenboer et al., IPDPS 2017

> Source available at: https://gitlab.com/astron-idg/idg