### **S9302: Petascale Molecular Dynamics Simulations** on the Summit POWER9/Volta Supercomputer



http://www.ks.uiuc.edu/Research/namd/



**GTC 2019** 



### BLUE WATERS PETASCALE COMPU

### **The Blue Waters Project**

- Comprehensive development, deployment and service phases with co-design etc.
- The Blue Waters system is a top ranked system in all aspects of its capabilities.
- Diverse Science teams are able to make excellent use of those capabilities due to the system's <u>flexibility</u> and emphasis on sustained performance.
- 45% larger than any system Cray has ever built
- 22,640 CPU-only nodes, 4,224 GPU-accelerated nodes
- Ranks in the top systems in the world despite being over six years old
- Very large memory capacity (1.66 PetaBytes)
- Very fast file systems (>1 TB/s)
- Very large nearline tape system (>250 PB)
- Very high external network capability (>420 Gb/s)

### Seven years of science: November 2012 through December 2019















### 2013 HPCwire Editors' Choice Award for Best Use of HPC in Life Sciences



### NAMD: Practical Supercomputing for Biomedical Research

"widest-used application" on NCSA Blue Waters, NSF-specified benchmark for successor machine

"by a very large margin the most used code" at Texas Advanced Computing Center (2<sup>nd</sup> largest)

Early adopters of workstation clusters (1993), Linux clusters (1998), and CUDA (2007).

Application readiness/early science projects on

- Argonne Theta (10 PF Cray KNL, completed)
- Oak Ridge Summit (200 PF Power9/Volta, 2018)
- -Argonne Aurora (200 PF Cray KNH, 2019)
- Argonne Aurora (1 EF Intel Xeon + X<sup>e</sup>, 2021)



*"For outstanding contributions to the* development of widely used parallel software for large biomolecular systems simulation"

### Meeting Emerging Needs of Experimental Structural Biology

- Computational modeling is indispensable to ANY structural biological method to obtain highresolution structures
  - X-ray, NMR
  - Cryo-EM, Cryo-ET, SAXS
  - EPR, FRET, MS, Cross-link data
  - Integrative Modeling
- Fast progression of experimental structural biology and other molecular biophysical techniques towards cellular processes
- Explosion of the data made available by techniques such as cryo-EM and cryo-ET



https://www.emdataresource.org/statistics.html



### Ultimate Goal of Structural Biology Construction of High-Resolution Structural Models



The 3.8 Å resolution cryo-EM structure of Zika virus. Sirohi, et al., *Science* 352: 467, 2016

### Highly Localized Membrane Curvature Induced by Deeply Inserted Envelope Proteins



M. Sevvana et al., Refinement and Analysis of the Mature Zika Virus Cryo-EM Structure at 3.1 Å Resolution, *Structure*, Vol. 26, Issue 9, (2018).

### Full Zika Envelope

**Envelope: 2.5M atoms** Full System ~ 20M atoms Solvent/ions not shown





#### Emad Tajkhorshid Illinois

### Full Zika Envelope



### **Caution with the setup!**



#### Emad Tajkhorshid Illinois

### Microsecond simulations of hepatitis B capsid

- Causes severe liver disease
- Chronic infection in 250 million people
- Vaccine available, but no cure
- Capsid is promising drug target
  - Drives genome delivery to cell nucleus



#### Jodi Hadden, University of Delaware



Hadden, et al. eLife 2018.



### Elucidating the impact of glycans on the A/Shandong/2009 (H1N1) influenza virus

#### 708 Hemagglutinin **120 Neuraminidase**

**11 M2 channels** 48,043 POPC 1,509 glycans

#### ~110 nm diameter ~160 millions atoms

Explicit water (115 nm x 120 nm x 116 nm)



Rommie Amaro Lorenzo Casalino UCSD



| Ω                       |
|-------------------------|
| 7                       |
| 0                       |
|                         |
| Ľ                       |
| Ω                       |
| $\overline{\mathbf{D}}$ |
|                         |
|                         |
| 7                       |
| ิง                      |
| $\overline{\mathbf{c}}$ |
| a                       |
| Ś                       |
| $\smile$                |

# Summit will replace Titan as the OLCF's leadership supercomputer



- Many fewer nodes
- Much more powerful nodes
- Much more memory per node and total system memory
- Faster interconnect
- Much higher bandwidth between CPUs and GPUs
- Much larger and faster file system

#### Feature

**Application Performance** 

Number of Nodes

Node performance

Memory per Node

NV memory per Node

**Total System Memory** 

System Interconnect (no injection bandwidth)

Interconnect Topology

Processors

File System

Peak power consumption

|     | Titan                              | Summit                           |
|-----|------------------------------------|----------------------------------|
| е   | Baseline                           | 5-10x Titan                      |
|     | 18,688                             | ~4,600                           |
|     | 1.4 TF                             | > 40 TF                          |
|     | 32 GB DDR3 + 6 GB GDDR5            | 512 GB DDR4 + HBM                |
|     | 0                                  | 1600 GB                          |
|     | 710 TB                             | >10 PB DDR4 + HBM + Non-vo       |
| ode | Gemini (6.4 GB/s)                  | Dual Rail EDR-IB (23 GB/s)       |
|     | 3D Torus                           | Non-blocking Fat Tree            |
|     | 1 AMD Opteron™<br>1 NVIDIA Kepler™ | 2 IBM POWER9™<br>6 NVIDIA Volta™ |
|     | 32 PB, 1 TB/s, Lustre®             | 250 PB, 2.5 TB/s, GPFS™          |
| on  | 9 MW                               | 15 MW                            |
|     |                                    | Sational Laboratory              |

Presentation name 12



### Summit Early Science: Modeling of a Minimal Cell Envelope



0.4 µm

Protein Components Aquaporin Z Copper Transporter (CopA) F1 ATPase Lipid Flipase (MsbA) Molybdenum transporter (ModBC) Translocon (SecY) Methionine transporter (MetNI) Membrane chaperon (YidC) Energy coupling factor (ECF) Potassium transporter (KtrAB) Glutamate transporter (Glt<sub>Tk</sub>) Cytidine-Diphosphate diacylglycerol (Cds) Membrane-bound protease (PCAT) Folate transporter (FoIT)

3.7 M lipids, 1,400 proteins, 416 M water molecules, 2.4 M ions



### **Multi-Copy NAMD Application 1: Protein Folding**





MaxEnt methods: Dill, Tajkhorshid, Perez, Kihara











#### Fromme



Zook



State B







### **Multi-Copy Application 3: Ion Channels**



#### Manifold-based machine learning + Molecular dynamics

Frank, Singharoy, Ourmazd





#### Summit - friendly







### **Ensemble-refinement and pathway information**



String + Adaptive biasing force



12





### Multi-Copy Application 4: ATP Synthase of Tuberculosis-Causing Bacteria

#### <u>Summit - ESP + INCITE</u>













## GPUs are critical for visualization and analysis



Large memory GPU-accelerated remote visualization must be embedded at supercomputer centers. Available now! See <u>bluewaters.ncsa.illinois.edu/dcv</u> and OLCF Rhea docs.



















## NAMD is based on Charm++

- Parallel C++ with *data driven* objects.
- Asynchronous method invocation.
- Prioritized scheduling of messages/execution.
- Measurement-based load balancing.
- Portable messaging layer.

### **Complete info at charmplusplus.org** and charm.cs.illinois.edu

SERIES IN COMPUTATIONAL PHYSICS Steven A. Gottlieb and Rubin H. Landau, Series Editors

#### Parallel Science and Engineering Applications The Charm++ Approach



Edited by Laxmikant V. Kale Abhinav Bhatele





# NAMD Hybrid Decomposition





Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics Beckman Institute, University of Illinois at Urbana-Champaign - www.ks.uiuc.edu

Kale et al., J. Comp. Phys. 151:283-312, 1999.



- Separate but related work decomposition.
- "Compute objects" facilitate iterative, measurement-based load balancing system.









### Objects are assigned to processors and queued as data arrives.



**GTC 2019** 



### Overlapping GPU and CPU with Communication



#### **One Timestep**





### Phillips et al., SC2008



# Streaming GPU Results to CPU

- Allows incremental results from a single grid to be processed on CPU before grid finishes on GPU
- GPU side:
  - Write results to host-mapped memory (also without streaming)
  - \_\_\_\_\_threadfence\_\_system() and \_\_\_syncthreads()
  - Atomic increment for next output queue location
  - Write result index to output queue
- CPU side:

**GTC 2019** 

Poll end of output queue (int array) in host memory



Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics Beckman Institute, University of Illinois at Urbana-Champaign - www.ks.uiuc.edu

Allows merging and prioritizing of remote and local work



# Non-Streaming Kernel

| 29,:<br>- + + | 829,000<br><del>+   + + + + +</del> | 29,830,000 | 29,831,000 29,832,000 | 29,833,000 29,834,00 | 0 29,835,000 29,836,000<br><del>++++++++++++++++++++++++++++++++++</del> | 29,837,000 29,9<br> |
|---------------|-------------------------------------|------------|-----------------------|----------------------|--------------------------------------------------------------------------|---------------------|
|               |                                     |            |                       |                      |                                                                          |                     |
|               |                                     |            |                       |                      |                                                                          |                     |
|               |                                     |            |                       |                      |                                                                          |                     |
|               |                                     |            |                       |                      |                                                                          |                     |
|               |                                     |            |                       |                      |                                                                          |                     |
|               |                                     |            |                       |                      |                                                                          |                     |
|               |                                     |            |                       |                      |                                                                          |                     |
|               |                                     |            |                       |                      |                                                                          |                     |
|               |                                     |            |                       |                      |                                                                          |                     |
|               |                                     |            |                       |                      |                                                                          |                     |
|               |                                     |            |                       |                      |                                                                          |                     |
|               |                                     |            |                       |                      |                                                                          |                     |

### Charm++ Projections performance-analysis tool



**GTC 2019** 





# Streaming Kernel

| 000  | 28,401,000 | 28,402,000 | 28,403,000    | 28,404,000 | 28,405,000                | 28,405,000  | 28,407,000 | 28,408,000 | 28,409,000 |
|------|------------|------------|---------------|------------|---------------------------|-------------|------------|------------|------------|
|      |            |            |               |            |                           |             |            |            |            |
|      | ی ای و و   | ال الترازي |               |            |                           | الغرف أفراق |            |            |            |
|      |            |            |               |            |                           |             |            |            |            |
| a di |            |            |               |            |                           |             |            |            |            |
|      |            |            |               |            | in <mark>a statute</mark> |             |            |            |            |
|      |            |            |               |            |                           |             |            |            |            |
|      |            |            |               |            |                           |             |            |            |            |
|      |            |            |               |            |                           |             |            |            |            |
|      |            |            |               |            |                           |             |            |            |            |
| -    |            |            |               | 1 1 1111   |                           |             |            |            |            |
|      |            |            |               |            |                           |             |            |            |            |
|      |            |            |               |            | (- <mark></mark> -)       |             |            |            |            |
|      |            |            |               |            |                           |             |            |            |            |
|      |            |            |               |            |                           |             | a a a a    |            |            |
|      |            |            |               |            |                           |             |            |            |            |
|      |            |            |               |            |                           |             |            |            |            |
|      |            |            |               |            |                           |             |            |            |            |
|      |            |            |               |            |                           |             |            |            |            |
|      |            |            |               |            |                           |             |            |            |            |
|      |            |            |               |            |                           |             |            |            |            |
|      |            |            |               |            |                           |             |            |            |            |
|      |            |            |               |            |                           |             |            |            |            |
|      |            | I          | , <b>I</b> 11 |            |                           |             |            | <u> </u>   |            |

### Charm++ Projections performance-analysis tool



GTC 2019





## NAMD 2.13: Bonded force offloading

- GPU offloading for bonds, angles, dihedrals, impropers, exclusions, and crossterms
- Computation in single precision
- Forces are accumulated in 24.40 fixed point
- Virials are accumulated in 34.30 fixed point
- Code path exists for double precision accumulation on Pascal and newer GPUs
- Reduces CPU workload and hence improves performance on GPU-heavy systems

New kernels by Antti-Pekka Hynninen, NVIDIA.



# NAMD 2.13 released Nov 9

- First release since December 2016, many improvements
- All force calculation now done on GPU
- CUDA 9 and Volta compatibility
- IBM PAMI SMP machine layer
- Support for two-billion-atom simulations
- New constant pH, improved QM-MM
- Improved core binding of CUDA CPU threads



**GTC 2019** 

### Improved CUDA error reporting, print hostname on Cray



## GTC18: Summit has a noise problem - now fixed!

|                     | 14,200,000 | 14,240,000                                                                                                      | 14,280,000 | 14,320,000 | 14,360,000 | 14,400,000 | 14,440,000                            | as<br>14,480,000 | 14,520,000 | 14,560,000                            | 14,600,000 | 14.640.000 | 14,680 |
|---------------------|------------|-----------------------------------------------------------------------------------------------------------------|------------|------------|------------|------------|---------------------------------------|------------------|------------|---------------------------------------|------------|------------|--------|
| PE 410              |            | ning <b>a</b> ng binang ing pinang a                                                                            |            |            | 0          |            | n n n n n n n n n n n n n n n n n n n |                  |            |                                       |            | ·          |        |
| (41, 58)<br>PE 412  |            | den bier bier bier bier bier                                                                                    |            |            | in         |            | ubdaubbe in                           |                  |            | in the double to block the big of the | 000        |            | n in   |
| (41,38)<br>PE 618   |            |                                                                                                                 |            |            |            |            |                                       |                  |            |                                       |            |            |        |
| (33,28)<br>PE1014   |            |                                                                                                                 |            |            |            |            |                                       |                  |            |                                       |            |            |        |
| (38, 32)            |            |                                                                                                                 |            |            |            |            |                                       |                  |            |                                       |            |            |        |
| PE 1446<br>(34, 30) |            |                                                                                                                 |            |            | 1          |            |                                       |                  |            |                                       |            |            |        |
| PE 2889<br>(37, 35) |            | a and a state of the part of the second s |            |            | <u>)</u>   |            |                                       |                  |            |                                       | (d)        |            | taita  |
| PE 3588<br>(34-30)  |            |                                                                                                                 |            |            | <u>ii</u>  |            |                                       |                  |            |                                       |            |            |        |
| PE 4074             |            |                                                                                                                 |            |            |            |            |                                       |                  |            |                                       |            |            |        |
| (35, 30)<br>PE 4362 |            |                                                                                                                 |            |            | **         |            |                                       |                  |            |                                       |            |            |        |
| (33, 28)<br>PE 4434 |            |                                                                                                                 |            |            |            |            |                                       |                  |            |                                       |            |            |        |
| (35, 29)            |            |                                                                                                                 |            |            |            |            |                                       |                  |            |                                       |            |            |        |
| (34, 29)            |            |                                                                                                                 |            |            |            |            |                                       |                  |            |                                       |            |            |        |
| PE 5082<br>(34, 29) |            |                                                                                                                 |            |            | 1          |            |                                       |                  |            |                                       |            |            |        |
| PE 5154<br>(34, 29) |            |                                                                                                                 |            |            | <u> </u>   |            |                                       |                  |            |                                       |            |            |        |
| PE 5172             |            |                                                                                                                 |            |            | <u>1</u>   |            |                                       |                  |            |                                       |            |            |        |
| (55, 28)<br>PE 5592 |            |                                                                                                                 |            |            | 1          |            |                                       |                  |            |                                       | i bit      |            | 1011   |
| (43, 39)<br>PE 6918 |            |                                                                                                                 |            |            |            |            | 10410010                              |                  |            |                                       |            |            |        |
| (33, 28)<br>BE 7334 |            |                                                                                                                 |            |            |            |            |                                       |                  |            |                                       |            |            |        |
| (33, 29)            |            |                                                                                                                 |            |            |            |            |                                       |                  |            |                                       |            |            |        |
|                     |            |                                                                                                                 |            |            |            |            |                                       |                  |            |                                       |            |            |        |
|                     |            |                                                                                                                 |            |            |            |            |                                       |                  |            |                                       |            |            |        |
|                     |            |                                                                                                                 |            |            |            |            |                                       | 1 US 1           | 1S         |                                       |            |            |        |



**GTC 2019** 







# GTC18 Charm++/NAMD configuration

- IBM PAMI SMP machine layer
  - Initially developed for Blue Gene series •
  - No dedicated communication thread
- Single GPU per process (6 processes per node, 6 threads per process) • Leaving one core free per resource set seems to reduce noise • One core per socket is reserved by jsrun, so 8 unused cores per node
- With thread to core affinity:
  - 4-27:4,32-55:4,60-83:4,92-115:4,120-143:4,148-171:4
- jsrun -r6 -g1 -c7 namd2 +ignoresharing +ppn 6 +pemap • Or without (expected to run slower, but sometimes faster):
  - jsrun --bind rs -r6 -g1 -c7 namd2 +ignoresharing +ppn 6  $\bullet$



**GTC 2019** 



# GTC19 Charm++/NAMD configuration

- IBM PAMI SMP machine layer
  - Initially developed for Blue Gene series ullet
  - No dedicated communication thread
- Single GPU per process (6 processes per node, 6 7 threads per process)
  - Leaving one core free per resource set seems to reduce noise
  - One core per socket is reserved by jsrun, so 8 2 unused cores per node
- With thread to core affinity (plus resource-set binding for CUDA thread):
  - jsrun --bind rs -a1 -r6 -g1 -c7 namd2 +ignoresharing +ppn 7 +pemap 0-83:4,88-171:4 4-27:4,32-55:4,60-83:4,92-115:4,120-143:4,148-171:4
- Or without (expected to run slower, but sometimes faster):
  - --bind rs -r6 -g1 -c7 namd2 +ignoresharing +ppn 6



**GTC 2019** 





Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics Beckman Institute, University of Illinois at Urbana-Champaign - www.ks.uiuc.edu





"Words of wisdom and comfort on the loss of 90% of your supercomputer performance"

Or

"When bad OS updates happen to good scientific applications"



- DON'T PANIC
- Recompile

- Try MPI instead of PAMI communication layer Report issue to user support Periodically ask for updates Escalate at every opportunity Allow unaffected multi-copy early science to run

**GTC 2019** 

Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics Beckman Institute, University of Illinois at Urbana-Champaign - www.ks.uiuc.edu

## Helpful Activities



- Blame <vendor>
- Curse <vendor>
- Wonder if this is related to your contact leaving
- "Not my circus, not my monkeys."
- "No, I will not fix your supercomputer."
- Update Charm++ to bleeding edge...

**GTC 2019** 

## Neutral Activities

Hope she wasn't the only one who knows the code



# Unhelpful Activities

- Forget you updated Charm++
- Blame instability with new Charm++ on compiler
- Change integrator build flag to -O0 as workaround
- Forget you changed build flag to -O0
- When <vendor> fixes PAMI library, don't check performance until Friday before GTC
- Fantasize about throwing <vendor> under bus



**GTC 2019** 



# Helpful Activities (2)

- Remember -O0 change to integrator
- Realize binary from November works fine now
- Notice compiler from November is still available
- Notice compiler from November doesn't work now
- Realize that Charm++ from November works
- "git log src/archpami-linux-ppc64le"
- "git revert ..."

**GTC 2019** 





## Comparison vs GTC 2018



## Fairer Comparison vs GTC 2018



## Comparison 7 vs 6 Cores per GPU



## Comparison for large benchmarks



## "Fair" comparison for large benchmarks



## Comparison for large benchmarks



## "Fair" comparison for large benchmarks





## "Fix" problems with simpler integrator



## Two billion atoms



### Charm++ Projections tool shows bottlenecks



# **Conclusions and Future Work**

- Summit represents a new era in GPU acceleration
  - The CPU will be the bottleneck for many codes
  - Optimizing/vectorizing/parallelizing on the CPU not enough
  - Offload everything practical to the GPUs
- Worry about optimizing the CUDA code last
  Stage/stream data to reduce CPU/network bottlenecks
- A supercomputer is not just a large cluster
   IBM knows this (Blue Gene series), Summit now scales well
   Change is bad, performance regression tests are good



**GTC 2019** 



## Acknowledgments

Antti-Pekka Hynninen, Ke Li, & Peng Wang, NVIDIA Sameer Kumar & **Bilge Acun, IBM** Tjerk Straatsma, OLCF William Kramer, NCSA Jodi Hadden, Delaware Rommie Amaro, UCSD Lorenzo Casalino, UCSD Abhi Singharoy, ASU



NIH Center for Macromolecular Modeling and Bioinformatics University of Illinois at Urbana-Champaign













# Related talks

- All earlier today but streaming soon:
  - S9503 Using Nsight Tools to Optimize the NAMD **Molecular Dynamics Simulation Program**
  - S9589 Interactive High-Fidelity Biomolecular and **Cellular Visualization with RTX Ray Tracing APIs**
  - S9594 Bringing State-of-the-Art GPU-Accelerated Molecular Modeling Tools to the Research Community



**GTC 2019** 



