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Anatomy of the Sun

Prominence
10,000 K

Corona
— 1,000,000 K

Chromosphere
(atmosphere)
10,000 K

Photosphere
(surface)
6,000 K

K: Temperatures in Kelvin
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MURaM (Max Planck University of Chicago Radlatlve IVIHD) “CeNTER

The primary solar model used for simulations of the
upper convectionzone, photosphere and corona.

Jointly developed and used by HAO, the Max Planck
Institute for Solar System Research (MPS) and the
Lockheed Martin Solar and Astrophysics Laboratory
(LMSAL).

MURaM has contributed substantially to our
understanding of solar phenomena.

MURaM also plays a key role in interpreting high
resolution solar observations.

The Daniel K. Inouye Solar Telescope (DKIST), a ~S300M NSF
investment, is expected to advance the resolution of ground based
observational solar physics by an order of magnitude.
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High Resolution Simulations of the Solar Photosphere

* Forward modeling of DKIST
observables will require
simulations with grid spacing
of 4 km on a regular basis.

* Requires at least 10-100x

Increase in computing power
compared to current baseline.
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From data inspired to data driven simulations of solar eruptions

* Realistic simulations of the coupled
solar atmosphere are an important
tool to understand and even predict
solar eruptions.

e Current models run about ~100x
slower than real-time

* Data driven simulations of solar
events would allow for analysis and
prediction of ongoing solar events

e Future data assimilation applications
will require ensemble runs (~10x) M. W, Chong, M. Rempel st ol 2018, Natur Astromomy

» Comprehensive model of entire life cycle of a solar flare
(Cheung et al 2018)

—
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Realistic Simulations of the Chromosphere

 The chromosphere is a difficult region to observe and model

* New instruments (DKIST 4m telescope and sunrise balloon
observatory) will allow for unprecedented observations

 However, the modeling still must be brought up-to-date to
these observational advancements.
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Toward Predicting Solar Eruptions
e How do we get MURaM 100x faster? GPU-accelerated RT is the key.

— RT solver speed up on GPUs (¥85x) a CPU core via wavefront algorithms (Chandrasekaran et al.)

— RT iteration counts are reduced (~2x) on GPU’s bigger subdomains.

— But, we can rewrite RT solver to do required wavelengths (these are embarrassingly parallel).
— Last two points play to GPU’s strength: data parallelism.

— Estimate 450 GPUs could achieve breakeven (1 simulated hour/hour)

* Thousands of GPUs would be required to do full data assimilation.
— Expensive but not unthinkable (Summit has 27,600!)

* Requirements play to strengths of GPUs, and trend in their design.
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Planned MURaM Development

e Porting of the MURaM code to GPUs using OpenACC (collaboration
petween HAO, CISL, University of Delaware and MPS)

* Implementation of a more sophisticated chromosphere (HAO, MPS)

* Implementation of boundary conditions that allow data driven
simulations of solar events (HAO, CU Boulder, LMSAL)

New IO modules that allow for data compression during the IO
process and runtime visualization.

NCAR 9
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Time to dive deeper into the computational science side of
things! ©
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Roadmap

* Profiling, parallelization, re-profiling
* Optimizing CPU-GPU data transfer/management

* Focusing on the most important loop — Radiation Transport
(RT)
— Long term science goals

* Re-designing Radiation Transport Algorithm
* More profiling info to find & address performance challenges
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‘ Using OpenACC allowad 15 to continue
development of our fundamental
algorithms and software capabilities
simultaneously with the GPU-related
work. In the end, we could use the
same code base for SMP, cluster/!
network and GPU paralleiism, PGI's
compilers were essential to the success

of aur afforts. , ,

Eh The CAAR project provided us with
early avcess Lo Summil hardware and
access o PGl compiler experts. Bath
of these were critical to our success.
PGI's OpendCC support temains the
best available and is competitive with
i) e e LIS Ve programming

model approaches.
=
=
. 'y
' h Progiammer
|
"- ) -_ _ | Due to Amdahl’s law, we need to port

== more parts af aur cede to the GPU i were
going to speed it up. But the sheer
number of routines poses 2 challenge.
Dpenacs directives give us a low-cost
approach to getting at least same speed-
up out of these second-tier routmes. In
many cases its completely sufficient
because with the cument algorithms, GIRU
parformance is bandwidth-bound. EE

In an acsdemic environment
malntenance and spaadup of exiating
codes is a fedious task. OpanACC.
provides a great piatform for

10 v

both fasks wihout involving 2 lot of
efforts or manpower In speeding up the
antire computationa’ task.

L

ANSYS FLUENT

B we've effectively used
OpenACC for heterogeneous
computing in ANSYS Fluent
with impressive performance,
We're now applying this work
to more of our models and
new platforms,

S H - Porting cur unstiuctured C++
CFD solver FINE/Open to GPUs
using OpenACC would have
been impossible two or three
years ago, but OpenACC has
developed enough that we're
naw getting some really go% -
results. :

4 Using OpenACC our scientists
were able to achieve the
acceleration needed for
integrated fusion simulation with
a minimum investment of time
and effort in learning to program
GPUs,

L R |

_ | DOEIAGE can prove o be a mandy ool far
W B computational engineers and researchers 1o

obtain fast sokun of non linear dyramcs
protiiem in Immersest boundary Incompresstie
GFD, we himw: ahtaine oeder of magnmade
TEdUtion in computing Lme Ly porirg several
COMponeTts of o lgaty Coos 1o GPU
Espotally I routines bvolving 26t akgarthm
and martx sohvers hawe boen vel-accaloratod 1o
Fproe e sl Skl of fve vocks

SYNOPSYS

' PWscf (Quantum

I B0 For VASP, OpenACC is the way
forward for GPU acoeleation.
Performance is similar and in some
cases better than CUDA C, and
OpenACC dramatically decreases
GPU development and maintenance
efforts. We're excited to collabarate
with NVIDIA and PGI as an carly

adopter of CUDA Unified Memory. L L |

& ki Using OpenACC, we've GPU-
accelerated the Synopsys TCAD
Sentaurus Device EMW simulator
to speed up optical simulations of
image sensors. GPUs are key to
improving simulation throughput
in the design of advanced image
sensors. o

ESPRESSO)

o
calit

{0 | - CUDAFortran gives us the full
pertormance potential of the CUDA
programming model and NVIDIA GPUs.
White: leveraging the polenbal of expicl
data movement, ISCUF KERNELS
diectives give 1s productinily and
source code mamtanabity I's the best
of both wodds

R |

™ OpenACC made it practical to
develop for GPU-based hardware
while retaining a single source for
almost all the COSMO physics
code.

ah Our team has been evaluating
OpenACC as a pathway to
performance portability for the Model
for Prediction (MPAS) atmospheric
model. Using this approach on the
MPAS dynamical core, we have
achieved performance on a single
P100 GPU exuivalent to 2.7 dual
socketed Intel Xeon nodes on our new
Cheyenne supercomputer. m o

GAMERA
2e LT

f

1 | With OpenACC and a compute
node based on NVIDIA's Tesla
P100 GPU, we achieved more
than a 14X speed up over a K
Computer node running our
earthquake disaster simulation
i NN

. Adding OpenACC into MAS has given us

e the ability to migrate medium-sized

simulations from a multi-node CPU

chnter 10 a single multi-GPU server .

The implementation yielded a portable
single-source code for both CPU and

GPU runs. Future work will add

OpenACC to the remaining model
features, enabling GPU-accelerated
realistic solar storm modeling. [ ]
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e Several profiling techniques
were used to obtain an initial,
high-level view of the code

* Function call map

 Arm MAP for generalized
performance metrics and MPI

* NVProf for GPU performance

profiling

Profiling Tools

Profiled: mhd3d.x on 36 processes, 1 node Sampled from: Mon Jun 4 2018 16:25:56 (UTC-06) for 75.7s.

CPU floating-point
208%
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Hide Metrics...

Memory usage
280M8.

98 vlim_time: Wtime ()-clock;
99 1

00

101 clock=MPT_Wtime();

102 1f( (stag 1) or (stage axstage) ) {

1.3 s 03 if (Physics.zt_ext[i_sat_cor]
104 if (Physics.rt_ext[i_ext_cor]
105
06 int_timer=MPI_Wtime ()-clocks
107
108 £ ( stage — 11

Get_Radloss (Run, Grid, Physics);
ELTE_Ox (Run, Grid, Physics) ;

Time spent on line 111 00

Breakdown of the 29.1% time spent on
this line:

Executing instructions 0.0%
Calling other functions  100.0% ——

110 clock=MPI Wtime({);
29.1% il 111 Ot rac-rre-Surapper (7T upd, Grid Fun PRyeicels
12 Tt_time+-MPI_Wtinme{)-clock;
113
114 int needoutput - ({(Run.NeedSOUEPUt())S&(Run.outead==0));
15 1 (needoutput) {
116 Slock=tET Wtire():
2,45 p gy b b o0 b1 o4 og g 117 eos_output (Run, Grid, Physics,rts);
18
119 if (Run.diagnostics){
048 ., ., 4, ., 4 , 4120 diag_output (Run,Grid, Physics,rts) ;
21
122
123 io_time+=MPI_Witime (}-clocky
24 " tRan.rank == 03 {
128 )
Input/Output Project Files _ Functions
Main Thread Stacks 20
Total core time v MPI Function(s) on line Source Position
¥ ¢ main int main(int argc, char** argv) { driver.C:23
‘vComputeSolution(RunData&, GridData&,... ComputeSolution (Run,Grid,Physics,rts); driver.C:49
29.1% |ajiilniadaiil Nkl 327 ) RTS:wrapper(int, GridData&, RunData... dt_rad=rts->wrapper (rt_upd, Grid, Run, Physics); solver.C:111
21.0% gk b it 0-2% »MHD_Residual(RunData const&, Grid dt_mhd = MED Residual (Run,Grid,Physics); solver.C:182
M1%, »ConsToPrim(GridData&, PhysiesData ¢... ConsToPrim(Grid, Physics,Run); solver.C:92
6.0% — | »Source_Integrate_Tcheck(RunData co... Scurce Integrate Tcheck(Run,Grid, Physics,stage); solver.C:192
52% .. SR X 4 (] »_Z13exchange_gridR8GridDataRK11P... exchange grid(Grid, Physics,1); solver.C:196
45% i s} »TVDIimit(RunData const&, GridData&, ... TVDlimit (Run,Grid,Physics,0.5%Run.dt); solver.C:211
anbatrasnd il skl »TVDIlimit(RunData const&, GridData&, ... TvDlimit (Run,Grid,Physics,0.5*Run.dt); solver.C:217
»Clean_divB(RunData const&, GridData... Clean divB(Run,Grid,Physics); solver.C:223
. . »Adjust_Valf_Max(RunData const&, Gri... Adjust_Valf Max (Run,Grid, Physics); solver.C:97
24% | | p g | L d i1 T% »eos_output(RunData const&, GridData ... ecs_output (Run,Grid, Physics, rts) ; solver.C:117
13% 111 1 0.3% »BackuoSolution finlined! BackunSolution (Run.Grid.Phvsics): solver.C:285

Lo a1
Showing data from 36,000 samples taken over 36 processes (1000 per process)

Arm Forge 18.1.3 Connected to: shiquan@cheyenne.ucar.edu ; Main Thread View y
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Experimental Setup

 NVIDIA PSG Cluster (hardware)
— CPU: Intel Xeon E5-2698 v3 (16-core) and Xeon E5-2690 v2 (10-core)
— GPU: NVIDIA Tesla V100 (4 GPUs per node)

e Software Used

— PGl 18.4 (CUDA 9.1 and 9.2) and PGI 18.10
e Results in this talk use PGI 18.4

—icc 17.0.1/18.0.1
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Routine Descriptions
: Broadwell
Name Routine Summary: il G (e
TVD Diffusion Update diffusionscheme - using TVD slope + flux limiting. 7.36812
Magnetohydrodynamics Calculateright hand side of MHD equations. 6.26662
.. Calculate radiationfield and determine heatingterm
Radiation Transport (Qtot) required in MHD. 5.55416
Equation of State Calculate primitive variables fr.om conservative variables. 5 26398
Interpolate the equation of state tables.
Time Integration Performs one time integration. 1.47858
DivB Cleaner Clean anyerrorsdue to non-zero div(B). 0.279718
Boundary Conditions Update vertical boundary conditions. 0.0855162
Grid Exchange Grid exchanges (only those in Solver) 0.0667914
Alfven Speed Limiter Limit Maximum Alfven Velocity 0.0394724
Synchronize timestep Pick minimum ofthe.radlatlon,MHD and diffusive 4.48E-05 y
timesteps.
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Flowchart describes one timestep of the MHD equations: Function Description - (timer name)

Runge Kutta Time

Initialization Unkie £ SEcEs
Save Cons R Cons to Prim
(int_time) (eos_time)

Stage 1 Special

7 N

If time < Tmax

}

Sync Timestep
(sync_time)

\ 4

Source Integrate
(int_time)

v

Grid Exchange
(dst_time)

v

Boundary Conditions

Adjust Va Max
(Viim_time)

Optically Thin Losses
(int_time)

!

Diagnostic, EOS, Slice
and DEM Outputs
(io_time)

-~ T ~

EDYCATION

Integration

ENTER

}

DivB Clean (divB_time)

}

TCheck Limits (int_time)

}

Grid Exchange (dst_time)

}

Boundary Conditions
(bnd_time)

!

Timestep Update

(bnd_time)

!

Output + Analysis (io_time)

17
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— Verify —that our test cases pass with the new
change ~

= Reprofile/Optimize - until happy enough to move

Profile driven parallelization

Analyze

* Based on information gathered from
profiling, implement simple development
cycle:

— ldentify — which loops are currently the most
impactful

— Parallelize — the loop(s) for GPU execution
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= Process "mhd3d.x" (17612)

GPU Profile using nvprof

ras
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105

| Thread 2990784768
OpenACC Il | (. RN 0
] ) | (. 0L L] —
" Driver API (- | NN O REREEE N (N
=| Markers and Ranges | . l | |. - .
& Default Domain . . -j
Profiling Overhead |
= [0] Tesla v100-PCIE-32GB
=/ Context 1 (CUDA)
- ¥ MemCpy (HtoD) ] | | [ NI Wi |
- ¥ MemCpy (DtoH) | PEEE el
- Compute I | FEEDCHE 1 |
T 34.8% MHD_Residu... . |
-7 29.1% TVDlimit_27... i
-
T 6.8% ConsToPrim_1... | | |
T 5.6% Source_Integr... ]

=7 5.3% RTS:interpol_-
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CUDA Occupancy Report

240x160x160 Dataset

Kernel Name Theoretical Achieved Runtime % (GPU)
Occupancy Occupancy

MHD 25% 24.9% 32.4%

TVD 31% 31.2% 31.6%

CONS 25% 24.9% 6.3%

Source_Tcheck 25% 24.9% 5.2%

Driver 100% 10.2% 15.2%
Interpol 56% 59.9% 4.9%
Flux 100% 79% 1.5%

< NVIDIA.

GPU

EDUCATION
CENTER



hIAY ERSITY ¢ * 1 < NVIDIA.

EDUCATION
CENTER

What did we learn so far?

nat is MURaM?
nat is the state of the project?
nat are the challenges identified?

=S ===

nat problems do we still have to overcome?
— Optimizing RTS
— Learning from CUDA Occupancy Report
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Toward Predicting Solar Eruptions
e How do we get MURaM 100x faster? GPU-accelerated RT is the key.

— RT solver speed up on GPUs (¥85x) a CPU core via wavefront algorithms (Chandrasekaran et al.)

— RT iteration counts are reduced (~2x) on GPU’s bigger subdomains.

— But, we can rewrite RT solver to do required wavelengths (these are embarrassingly parallel).
— Last two points play to GPU’s strength: data parallelism.

— Estimate 450 GPUs could achieve breakeven (1 simulated hour/hour)

* Thousands of GPUs would be required to do full data assimilation.
— Expensive but not unthinkable (Summit has 27,600!)

* Requirements play to strengths of GPUs, and trend in their design.
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Data Dependency Along Rays: CENTER

® ) 0 @

VAVAVd

(5) (6
/ /

/: 1 ~4j/2 ) (3
Figure 4.2: The walking order of the Short Characteristics method in a 2D grid
Figure 4.1: The intensity at gridpoint I is obtained by solving the transfer  for a ray direction pointing into the upper right quadrant. Black circles represent
equation along the short characteristic EF. The intensity at the npwind point

£ is interpolated from the (alresdy known) intensity valnes at the surrounding
priclpoints, A o I,

gridpoints on the upwind boundaries, where the intensity values are assumed to
be known.

. Data dependency is along a plane for each octant, angle combo.
. Depends on resolution ratio, not known until run-time.
« Number of rays per plane can vary.

Vogler, Alexander, et al. "Simulations of magneto-convectionin the solar photosphere-Equations, methods, and resultsof the MURaM
code." Astronomy & Astrophysics 429.1 (2005): 335-351.
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Solving RTS Data Dependency

* We can deconstructthe 3D grid into a
series of 2D slices

 The direction of the slices is dependent
on the X,Y,Z direction of the ray

e Parallelize within the slice, but run the
slices themselves serially in
predetermined order

=
o\
W

A

. e
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More profile driven optimizations

130688.8 ms 130688.825 ms m 130688.85 ms 130688.875 ms 130688.9 ms

: dat.. | acc enter . Jace_compu. acc_compu..] acc exit dat.. | acc_enter .| ace_comp.

L acc enq... B acc .. acc
| ..

— acc enqg... Lacc eng... I acc .
p—

Ll I cutaon I JRITE 1l cooon M REIIME 1
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More profile driven optimizations

130688.8 ms 130688.825 ms Wﬁ 130688.85 ms 130688.875 ms 130688.9 ms

g acc enter . acc exit dat, iICC enter acc
5 =  acc_eng...
Wl N e | I I-IIII il I-III |

\
M\ \

N NN
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More profile driven optimizations

130688.8 ms 130688.825 ms m 130688.85 ms 130688.875 ms 130688.9 ms

: dat.. | acc enter . Jace_compu. acc_compu..] acc exit dat.. | acc_enter .| ace_comp.

L acc enq... B acc .. acc
| ..

— acc enqg... Lacc eng... I acc .
p—

Ll I cutaon I JRITE 1l cooon M REIIME 1
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More profile driven optimizations

L85 ms 1059286 ms 1059287 ms 88 ms 10592 89 ms 10592.9 ms 10592.91 ms 10592.92 ms 10592.93 me

acc_comput... Jacc e..| acc ente
acc_enque...

RTS:... RTS:..
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More profile driven optimizations

*driver.nvvp § *gpu_i n2Z.nvvp = 0

9016.995 ms 2016.9975 ms 2017 ms 2017. 2017.005 ms 9017.0075 ms 9017.01 ms

acc compute construct@rt.cc:1242 acc compute construct@rt.cc:1242

acc enqueue launch@rt.cc:1242 acc enqueue launch@rt.cc:1242
( culaunchKernel |

RTS::driver 1242 gpu(double... RTS:driver 1242 gpu(doubl...

RTS::driver_1242 gpu(double... RTS:driver_1242 gpu(doubl...
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Process:

Get inputs from MHD:
(density, temperature
and pressure)

A 4

Interpolate onto (offset)
RTS Grid.

A 4

Calculate Radiative
properties (k, S).

A 4

Determine number of
rays.

A 4

Loop over octant:
(up/down, left/right,
fwd/back)
And angle: (O,N,)

Ray By Ray
Process:

NVIDIA.

Interpolate onto Ray:

Xyz -> along rays.

A

A\ 4

Calculate Radiation
coefficients.

A

y

Load lower BC’s

MHD Variable  PU
Calculation: ATION

From J, Calculate

Q.

All Rays
Finished?

!

A

y

Integrate

along ray.

|

Write Up

per BC’s

A

y

Exchange BC’s

A

y

Calculate

error in |

A

y

y

A

(e -

Converged?

(o]

A

y

v

Add contribution to J

Send Back to MHD

TER

30
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Wrapper Process:

Get inputs from MHD:
(xy,2)

A 4

Interpolate onto (offset)
RTS Grid.

A 4

Calculate Radiative
properties (k, S).

A 4

Split problem in 3:
Xy,yz,xz planes.

A 4

Determine number of
rays per plane.

\4

For all planes:

Interpolate onto Ray:

Xyz -> along rays.

A\ 4

Calculate Radiation
coefficients.

A\ 4

Load lower BC'’s

\ 4

Integrate along ray.

\ 4

Write Upper BC'’s

A 4

Exchange BC’s

!

Add contribution to J

!

Calculate error in J

A

TION

MHD Variable ER
Calculation:

From J, Calculate

Is J
Converged

/]

Send Back to MHD

A

RT function

Alternative approach:
Less communication=>more parallelism
More computation

31
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What did we learn so far?

nat is MURaM?
nat is the state of the project?
nat are the challenges identified?

S ===

nat problems do we still have to overcome?
— Optimizing RTS
e Learning from CUDA Occupancy Report

NCAR
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64 warps per multiprocessor (32 threads per warp)
65536 registers per multiprocessor

96 KB shared memory per multiprocessor
Occupancy = # Used Warps / # Possible Warps

How many warps we can use is dependent on how many
registers and how much shared memory we use per thread

EDUCATION
CENTER
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CUDA Occupancy Report

Impact of Varying Block Size

* Using the CUDA N
occupancy calculator 50
* We can see why our :
theoretical occupancy for ; N
MHD, TVD, etcis so low §z
-z 24
* From this graph, we - L
s et
know that threads-per- s \
DIOCk iS nOt the prObIem DD 64 128 192 256 320 384 448 512 576 640 V04 V68 B832 896 960 1024

Threads Per Block
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® We Can aISO See that Our Impact of Varying Shared Memory Usage Per Block
shared memory usage is )
much lower than it could :
be ; o
* Oneideawe have is to start Si 2
movingsomeof ourdatato |§ LT BTSN SN
8 | |
shared memory to get T i iiggiiiiUciEYoE
better usage

A
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CUDA Occupancy Report

* Finally, we see that our
problem is register usage
per thread

* To get 100% occupancy,
we would need to reduce
register usage to 32
registers per thread

Multiprocessor Warp Occupancy
(# warps)

64

56

48

40

32

24

16

Impact of Varying Register Count Per Thread

ééééééééééééééééé
mmmmmmmmmmmmmm
MMMMMM
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MURaM: Parallel processing using MP|

Introduction

 Threedimensional uniform cartesian grid.

 Gridis divided into smaller pieces based on MPI ranks and are
processed independently.

* Halo informationis communicated between the MPI ranks at a regular
intervals.

* Large percentage of halo exchange happensin Radiative transfer.

Optimization strategies

* Overlap computation and communication in RTS.

* Performa GPU to GPU direct communication withoutinvolving host.
e Optimize the packing and unpacking of communication data.
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MURaM: MPI profiling using Intel Trace Analyzer

4845 4925 5.00s 5.08s 5.16s 524 5325 540s 548 s
5.12 s 520s 5285 536 5.44 s

0 A dl'3\p;.tf\pph A pplication fapplicApplidipplication Appl,w@App\itApplication App\i{\!!!uApp\icAApplication I!Applic’“E.G«pp\ication tApplication Al salaalnad
1 A ‘Apripg ation tApplic wApplidipplication Appl'm '-App\iprpIicatiom Appli,‘!l\\‘ﬂApp\MApplicatiom !Applic‘.‘App\ication Application Eaninla an
2 F . ApA I\U“AlApp\w wz HELE R B .lﬁ FESEEHE B HE ion +Applic -wApplidpplication Appl"” ﬂ ‘Applidpplication Applb":';‘.ﬂApp\iAApp\ication EApplio wApplication 'Application rA‘A AA AL
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Results
Currently:
* 40% runtime is GPU
* 40% runtime is still CPU
Speedup of NVIDIA | Singlecore | Full MPI node (32 cores) o/ :
Volta V100 over > * 20%is c.zla-ta movgment
RTe =0 18 * As we finish porting the rest
. ox s of t_he.c.ode to GPU, and
optimizing the parts
MAD 16X 0-78x discussed today, we expect
Overall 15x 0.9x these results to improve

significantly
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Summary

* Acceleratingthe most significant routine — Radiation Transport,
among other routines

— Exploring how to optimize further
* Profiling and re-profiling—a Must

e Using directives enable maintenance of a single source code for
both multicore and accelerators

— Enables *new science*®
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