
Porting MURaM (Max Planck University
of Chicago Radiative MHD) to GPUs

Using OpenACC

Rich Loft (Director TDD in CISL, NCAR)
Eric Wright (PhD student) & Sunita Chandrasekaran (Assistant Professor)

University of Delaware
loft@ucar.edu, {efwright, schandra}@udel.edu

Project in collaboration with NCAR, Max Planck for Solar System Research
and University of Delaware

1

March 19, 2019 GTC 2019

mailto:loft@ucar.edu
mailto:schandra%7d@udel.edu

2

Anatomy of the Sun

MURaM (Max Planck University of Chicago Radiative MHD)

• The primary solar model used for simulations of the
upper convection zone, photosphere and corona.

• Jointly developed and used by HAO, the Max Planck
Institute for Solar System Research (MPS) and the
Lockheed Martin Solar and Astrophysics Laboratory
(LMSAL).

• MURaM has contributed substantially to our
understanding of solar phenomena.

• MURaM also plays a key role in interpreting high
resolution solar observations.

3

MURaM simulation of solar granulation

The Daniel K. Inouye Solar Telescope (DKIST), a ~$300M NSF
investment, is expected to advance the resolution of ground based
observational solar physics by an order of magnitude.

High Resolution Simulations of the Solar Photosphere

• Forward modeling of DKIST
observables will require
simulations with grid spacing
of 4 km on a regular basis.

• Requires at least 10-100x
increase in computing power
compared to current baseline.

5

From data inspired to data driven simulations of solar eruptions

• Realistic simulations of the coupled
solar atmosphere are an important
tool to understand and even predict
solar eruptions.

• Current models run about ~100x
slower than real-time

• Data driven simulations of solar
events would allow for analysis and
prediction of ongoing solar events

• Future data assimilation applications
will require ensemble runs (~10x)

6

Comprehensive model of entire life cycle of a solar flare
(Cheung et al 2018)

Realistic Simulations of the Chromosphere

• The chromosphere is a difficult region to observe and model

• New instruments (DKIST 4m telescope and sunrise balloon
observatory) will allow for unprecedented observations

• However, the modeling still must be brought up-to-date to
these observational advancements.

7

Toward Predicting Solar Eruptions

• How do we get MURaM 100x faster? GPU-accelerated RT is the key.
– RT solver speed up on GPUs (~85x) a CPU core via wavefront algorithms (Chandrasekaran et al.)

– RT iteration counts are reduced (~2x) on GPU’s bigger subdomains.

– But, we can rewrite RT solver to do required wavelengths (these are embarrassingly parallel).

– Last two points play to GPU’s strength: data parallelism.

– Estimate 450 GPUs could achieve breakeven (1 simulated hour/hour)

• Thousands of GPUs would be required to do full data assimilation.

– Expensive but not unthinkable (Summit has 27,600!)

• Requirements play to strengths of GPUs, and trend in their design.

8

Planned MURaM Development

• Porting of the MURaM code to GPUs using OpenACC (collaboration
between HAO, CISL, University of Delaware and MPS)

• Implementation of a more sophisticated chromosphere (HAO, MPS)

• Implementation of boundary conditions that allow data driven
simulations of solar events (HAO, CU Boulder, LMSAL)

• New IO modules that allow for data compression during the IO
process and runtime visualization.

10

Time to dive deeper into the computational science side of
things! ☺

11

Roadmap

• Profiling, parallelization, re-profiling

• Optimizing CPU-GPU data transfer/management

• Focusing on the most important loop – Radiation Transport
(RT)

– Long term science goals

• Re-designing Radiation Transport Algorithm

• More profiling info to find & address performance challenges

12

Profiling Tools

14

• Several profiling techniques
were used to obtain an initial,
high-level view of the code

• Function call map

• Arm MAP for generalized
performance metrics and MPI

• NVProf for GPU performance
profiling

Experimental Setup

• NVIDIA PSG Cluster (hardware)

– CPU: Intel Xeon E5-2698 v3 (16-core) and Xeon E5-2690 v2 (10-core)

– GPU: NVIDIA Tesla V100 (4 GPUs per node)

• Software Used

– PGI 18.4 (CUDA 9.1 and 9.2) and PGI 18.10

• Results in this talk use PGI 18.4

– icc 17.0.1/18.0.1

15

Thanks to NVIDIA for giving us access to their PSG system for our experiments!!!

Name Routine Summary:
Broadwell

(v4) core (sec)

TVD Diffusion Update diffusion scheme - using TVD slope + flux limiting. 7.36812

Magnetohydrodynamics Calculate right hand side of MHD equations. 6.26662

Radiation Transport
Calculate radiation field and determine heating term

(Qtot) required in MHD.
5.55416

Equation of State
Calculate primitive variables from conservative variables.

Interpolate the equation of state tables.
2.26398

Time Integration Performs one time integration. 1.47858

DivB Cleaner Clean any errors due to non-zero div(B). 0.279718

Boundary Conditions Update vertical boundary conditions. 0.0855162

Grid Exchange Grid exchanges (only those in Solver) 0.0667914

Alfven Speed Limiter Limit Maximum Alfven Velocity 0.0394724

Synchronize timestep
Pick minimum of the radiation, MHD and diffusive

timesteps.
4.48E-05

Routine Descriptions

16

Save Cons

(int_time)

Runge Kutta Time

Update all stages

Flowchart describes one timestep of the MHD equations: Function Description - (timer name)

Cons to Prim

(eos_time)

Radiation Transport

(rt_time)

Adjust Va Max

(vlim_time)

Optically Thin Losses

(int_time)

Diagnostic, EOS, Slice

and DEM Outputs

(io_time)

Stage 1 SpecialInitialization

MHD Residual

(mhd_time)

Sync Timestep

(sync_time)

Source Integrate

(int_time)

Grid Exchange

(dst_time)

Boundary Conditions

(bnd_time)

TVD diffusion (tvd_time)

DivB Clean (divB_time)

TCheck Limits (int_time)

Integration

Grid Exchange (dst_time)

Timestep Update

Boundary Conditions

(bnd_time)

Output + Analysis (io_time)

If time < Tmax

17

Profile driven parallelization

• Based on information gathered from
profiling, implement simple development
cycle:

– Identify – which loops are currently the most
impactful

– Parallelize – the loop(s) for GPU execution

– Verify – that our test cases pass with the new
change

– Reprofile/Optimize - until happy enough to move
on

18

Analyze

ParallelizeOptimize

19

GPU Profile using nvprof

CUDA Occupancy Report

20

240x160x160 Dataset

Kernel Name Theoretical
Occupancy

Achieved
Occupancy

Runtime % (GPU)

MHD 25% 24.9% 32.4%

TVD 31% 31.2% 31.6%

CONS 25% 24.9% 6.3%

Source_Tcheck 25% 24.9% 5.2%

Radiation Transport

Driver 100% 10.2% 15.2%

Interpol 56% 59.9% 4.9%

Flux 100% 79% 1.5%

What did we learn so far?

• What is MURaM?

• What is the state of the project?

• What are the challenges identified?

• What problems do we still have to overcome?

– Optimizing RTS

– Learning from CUDA Occupancy Report

21

Toward Predicting Solar Eruptions

• How do we get MURaM 100x faster? GPU-accelerated RT is the key.
– RT solver speed up on GPUs (~85x) a CPU core via wavefront algorithms (Chandrasekaran et al.)

– RT iteration counts are reduced (~2x) on GPU’s bigger subdomains.

– But, we can rewrite RT solver to do required wavelengths (these are embarrassingly parallel).

– Last two points play to GPU’s strength: data parallelism.

– Estimate 450 GPUs could achieve breakeven (1 simulated hour/hour)

• Thousands of GPUs would be required to do full data assimilation.

– Expensive but not unthinkable (Summit has 27,600!)

• Requirements play to strengths of GPUs, and trend in their design.

22

Data Dependency Along Rays:

● Data dependency is along a plane for each octant, angle combo.

● Depends on resolution ratio, not known until run-time.

● Number of rays per plane can vary.

Vögler, Alexander, et al. "Simulations of magneto-convection in the solar photosphere-Equations, methods, and results of the MURaM
code." Astronomy & Astrophysics 429.1 (2005): 335-351.

23

Solving RTS Data Dependency

• We can deconstruct the 3D grid into a
series of 2D slices

• The direction of the slices is dependent
on the X,Y,Z direction of the ray

• Parallelize within the slice, but run the
slices themselves serially in
predetermined order

24

More profile driven optimizations

25

More profile driven optimizations

26

independent independent independent

More profile driven optimizations

27

28

More profile driven optimizations

29

More profile driven optimizations

Get inputs from MHD:

(density, temperature

and pressure)

Calculate Radiative

properties (𝜅, S).

Interpolate onto (offset)

RTS Grid.

Ray By Ray

Process:

Interpolate onto Ray:

xyz -> along rays.

Calculate Radiation

coefficients.

Integrate along ray.

Load lower BC’s

Exchange BC’s

Calculate error in I

Converged?

Wrapper Process:
MHD Variable

Calculation:

Write Upper BC’s

Determine number of

rays.

Loop over octant:

(up/down, left/right,

fwd/back)

And angle: (0,N𝜇) Add contribution to J

NoYes

All Rays

Finished?

From J, Calculate

Q.

Send Back to MHD

RT function

30

Get inputs from MHD:

(x,y,z)

Calculate Radiative

properties (𝜅, S).

Interpolate onto (offset)

RTS Grid.

For all planes:Wrapper Process:
MHD Variable

Calculation:

Split problem in 3:

xy,yz,xz planes.

Determine number of

rays per plane.

Interpolate onto Ray:

xyz -> along rays.

Calculate Radiation

coefficients.

Integrate along ray.

Load lower BC’s

Exchange BC’s

Write Upper BC’s

Add contribution to J

Is J

Converged

From J, Calculate

Q

Send Back to MHD

Calculate error in J

Alternative approach:

Less communication=>more parallelism

More computation

RT function

31

What did we learn so far?

• What is MURaM?

• What is the state of the project?

• What are the challenges identified?

• What problems do we still have to overcome?

– Optimizing RTS

• Learning from CUDA Occupancy Report

32

NVIDIA V100 specification

• 64 warps per multiprocessor (32 threads per warp)

• 65536 registers per multiprocessor

• 96 KB shared memory per multiprocessor

• Occupancy = # Used Warps / # Possible Warps

• How many warps we can use is dependent on how many
registers and how much shared memory we use per thread

33

Thanks to NVIDIA for giving us access to their PSG system for our experiments!!!

CUDA Occupancy Report

34

• Using the CUDA
occupancy calculator

• We can see why our
theoretical occupancy for
MHD, TVD, etc is so low

• From this graph, we
know that threads-per-
block is not the problem

CUDA Occupancy Report

35

• We can also see that our
shared memory usage is
much lower than it could
be

• One idea we have is to start
moving some of our data to
shared memory to get
better usage

CUDA Occupancy Report

36

• Finally, we see that our
problem is register usage
per thread

• To get 100% occupancy,
we would need to reduce
register usage to 32
registers per thread

Introduction
• Three dimensional uniform cartesian grid.
• Grid is divided into smaller pieces based on MPI ranks and are

processed independently.
• Halo information is communicated between the MPI ranks at a regular

intervals.
• Large percentage of halo exchange happens in Radiative transfer.

Optimization strategies
• Overlap computation and communication in RTS.
• Perform a GPU to GPU direct communication without involving host.
• Optimize the packing and unpacking of communication data.

37

MURaM: Parallel processing using MPI

38Communication in RTS
for 24 rays

MURaM: MPI profiling using Intel Trace Analyzer

Results

39

Speedup of NVIDIA
Volta V100 over ->

Singlecore Full MPI node (32 cores)

RTS 27x 1.8x

TVD 36x 2x

MHD 18x 0.78x

Overall 15x 0.9x

Currently:
• 40% runtime is GPU
• 40% runtime is still CPU
• 20% is data movement
• As we finish porting the rest

of the code to GPU, and
optimizing the parts
discussed today, we expect
these results to improve
significantly

Summary

• Accelerating the most significant routine – Radiation Transport,
among other routines
– Exploring how to optimize further

• Profiling and re-profiling – a Must

• Using directives enable maintenance of a single source code for
both multicore and accelerators
– Enables *new science*

40

Rich Loft, Eric Wright, Sunita Chandrasekaran
loft@ucar.edu, {efwright, schandra}@udel.edu

mailto:loft@ucar.edu
mailto:schandra%7d@udel.edu

