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Anatomy of the Sun



MURaM (Max Planck University of Chicago Radiative MHD)

• The primary solar model used for simulations of the 
upper convection zone, photosphere and corona.

• Jointly developed and used by HAO, the Max Planck 
Institute for Solar System Research (MPS) and the 
Lockheed Martin Solar and Astrophysics Laboratory 
(LMSAL).

• MURaM has contributed substantially to our 
understanding of solar phenomena.

• MURaM also plays a key role in interpreting high 
resolution solar observations.
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MURaM simulation of solar granulation

The Daniel K. Inouye Solar Telescope (DKIST), a ~$300M NSF 
investment, is expected to advance the resolution of ground based 
observational solar physics by an order of magnitude.



High Resolution Simulations of the Solar Photosphere

• Forward modeling of DKIST 
observables will require 
simulations with grid spacing 
of 4 km on a regular basis.

• Requires at least 10-100x 
increase in computing power 
compared to current baseline.
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From data inspired to data driven simulations of solar eruptions

• Realistic simulations of the coupled 
solar atmosphere are an important 
tool to understand and even predict 
solar eruptions.

• Current models run about ~100x 
slower than real-time

• Data driven simulations of solar 
events would allow for analysis and 
prediction of ongoing solar events

• Future data assimilation applications 
will require ensemble runs (~10x)
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Comprehensive model of entire life cycle of a solar flare 
(Cheung et al 2018)



Realistic Simulations of the Chromosphere

• The chromosphere is a difficult region to observe and model

• New instruments (DKIST 4m telescope and sunrise balloon 
observatory) will allow for unprecedented observations

• However, the modeling still must be brought up-to-date to 
these observational advancements.
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Toward Predicting Solar Eruptions

• How do we get MURaM 100x faster? GPU-accelerated RT is the key. 
– RT solver speed up on GPUs (~85x) a CPU core via wavefront algorithms (Chandrasekaran et al.)

– RT iteration counts are reduced (~2x) on GPU’s bigger subdomains. 

– But, we can rewrite RT solver to do required wavelengths (these are embarrassingly parallel).

– Last two points play to GPU’s strength: data parallelism. 

– Estimate 450 GPUs could achieve breakeven (1 simulated hour/hour)

• Thousands of GPUs would be required to do full data assimilation.

– Expensive but not unthinkable (Summit has 27,600!)

• Requirements play to strengths of GPUs, and trend in their design.
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Planned MURaM Development

• Porting of the MURaM code to GPUs using OpenACC (collaboration 
between HAO, CISL, University of Delaware and MPS)

• Implementation of a more sophisticated chromosphere (HAO, MPS)

• Implementation of boundary conditions that allow data driven 
simulations of solar events (HAO, CU Boulder, LMSAL)

• New IO modules that allow for data compression during the IO 
process and runtime visualization.
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Time to dive deeper into the computational science side of 
things! ☺
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Roadmap

• Profiling, parallelization, re-profiling

• Optimizing CPU-GPU data transfer/management

• Focusing on the most important loop – Radiation Transport 
(RT)

– Long term science goals

• Re-designing Radiation Transport Algorithm

• More profiling info to find & address performance challenges
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Profiling Tools
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• Several profiling techniques 
were used to obtain an initial, 
high-level view of the code

• Function call map

• Arm MAP for generalized
performance metrics and MPI

• NVProf for GPU performance
profiling



Experimental Setup

• NVIDIA PSG Cluster (hardware)

– CPU: Intel Xeon E5-2698 v3 (16-core) and Xeon E5-2690 v2 (10-core)

– GPU: NVIDIA Tesla V100 (4 GPUs per node) 

• Software Used

– PGI 18.4 (CUDA 9.1 and 9.2) and PGI 18.10

• Results in this talk use PGI 18.4

– icc 17.0.1/18.0.1
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Thanks to NVIDIA for giving us access to their PSG system for our experiments!!! 



Name Routine Summary:
Broadwell 

(v4) core (sec)

TVD Diffusion Update diffusion scheme - using TVD slope + flux limiting. 7.36812

Magnetohydrodynamics Calculate right hand side of MHD equations. 6.26662

Radiation Transport
Calculate radiation field and determine heating term 

(Qtot) required in MHD.
5.55416

Equation of State
Calculate primitive variables from conservative variables. 

Interpolate the equation of state tables.
2.26398

Time Integration Performs one time integration. 1.47858

DivB Cleaner Clean any errors due to non-zero div(B). 0.279718

Boundary Conditions Update vertical boundary conditions. 0.0855162

Grid Exchange Grid exchanges (only those in Solver) 0.0667914

Alfven Speed Limiter Limit Maximum Alfven Velocity 0.0394724

Synchronize timestep
Pick minimum of the radiation, MHD and diffusive 

timesteps.
4.48E-05

Routine Descriptions
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Save Cons

(int_time) 

Runge Kutta Time 

Update all stages 

Flowchart describes one timestep of the MHD equations: Function Description - (timer name)

Cons to Prim

(eos_time)

Radiation Transport 

(rt_time) 

Adjust Va Max

(vlim_time) 

Optically Thin Losses

(int_time) 

Diagnostic, EOS, Slice 

and DEM Outputs 

(io_time) 

Stage 1 SpecialInitialization

MHD Residual

(mhd_time)

Sync Timestep

(sync_time)

Source Integrate

(int_time)

Grid Exchange

(dst_time)

Boundary Conditions

(bnd_time)

TVD diffusion (tvd_time)

DivB Clean (divB_time)

TCheck Limits (int_time)

Integration

Grid Exchange (dst_time)

Timestep Update

Boundary Conditions

(bnd_time)

Output + Analysis (io_time)

If time < Tmax 
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Profile driven parallelization

• Based on information gathered from 
profiling, implement simple development 
cycle:

– Identify – which loops are currently the most 
impactful

– Parallelize – the loop(s) for GPU execution

– Verify – that our test cases pass with the new 
change

– Reprofile/Optimize - until happy enough to move 
on
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Analyze

ParallelizeOptimize
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GPU Profile using nvprof



CUDA Occupancy Report
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240x160x160 Dataset

Kernel Name Theoretical 
Occupancy

Achieved 
Occupancy

Runtime % (GPU)

MHD 25% 24.9% 32.4%

TVD 31% 31.2% 31.6%

CONS 25% 24.9% 6.3%

Source_Tcheck 25% 24.9% 5.2%

Radiation Transport

Driver 100% 10.2% 15.2%

Interpol 56% 59.9% 4.9%

Flux 100% 79% 1.5%



What did we learn so far?

• What is MURaM?

• What is the state of the project?

• What are the challenges identified? 

• What problems do we still have to overcome? 

– Optimizing RTS 

– Learning from CUDA Occupancy Report 
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Toward Predicting Solar Eruptions

• How do we get MURaM 100x faster? GPU-accelerated RT is the key. 
– RT solver speed up on GPUs (~85x) a CPU core via wavefront algorithms (Chandrasekaran et al.)

– RT iteration counts are reduced (~2x) on GPU’s bigger subdomains. 

– But, we can rewrite RT solver to do required wavelengths (these are embarrassingly parallel).

– Last two points play to GPU’s strength: data parallelism. 

– Estimate 450 GPUs could achieve breakeven (1 simulated hour/hour)

• Thousands of GPUs would be required to do full data assimilation.

– Expensive but not unthinkable (Summit has 27,600!)

• Requirements play to strengths of GPUs, and trend in their design.
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Data Dependency Along Rays:

● Data dependency is along a plane for each octant, angle combo.

● Depends on resolution ratio, not known until run-time.

● Number of rays per plane can vary.

Vögler, Alexander, et al. "Simulations of magneto-convection in the solar photosphere-Equations, methods, and results of the MURaM
code." Astronomy & Astrophysics 429.1 (2005): 335-351.
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Solving RTS Data Dependency

• We can deconstruct the 3D grid into a 
series of 2D slices

• The direction of the slices is dependent 
on the X,Y,Z direction of the ray

• Parallelize within the slice, but run the 
slices themselves serially in 
predetermined order
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More profile driven optimizations
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More profile driven optimizations
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More profile driven optimizations
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More profile driven optimizations
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More profile driven optimizations



Get inputs from MHD: 

(density, temperature 

and pressure)

Calculate Radiative 

properties (𝜅, S).

Interpolate onto (offset) 

RTS Grid.

Ray By Ray 

Process:

Interpolate onto Ray:

xyz -> along rays.

Calculate Radiation 

coefficients.

Integrate along ray.

Load lower BC’s

Exchange BC’s

Calculate error in I

Converged?

Wrapper Process:
MHD Variable 

Calculation:

Write Upper BC’s

Determine number of 

rays.

Loop over octant:

(up/down, left/right, 

fwd/back)

And angle: (0,N𝜇) Add contribution to J

NoYes

All Rays 

Finished?

From J, Calculate 

Q.

Send Back to MHD

RT function

30



Get inputs from MHD: 

(x,y,z)

Calculate Radiative 

properties (𝜅, S).

Interpolate onto (offset) 

RTS Grid.

For all planes:Wrapper Process:
MHD Variable 

Calculation:

Split problem in 3:

xy,yz,xz planes.

Determine number of 

rays per plane.

Interpolate onto Ray:

xyz -> along rays.

Calculate Radiation 

coefficients.

Integrate along ray.

Load lower BC’s

Exchange BC’s

Write Upper BC’s

Add contribution to J

Is J 

Converged

From J, Calculate 

Q

Send Back to MHD

Calculate error in J

Alternative approach:

Less communication=>more parallelism

More computation

RT function
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What did we learn so far?

• What is MURaM?

• What is the state of the project?

• What are the challenges identified? 

• What problems do we still have to overcome? 

– Optimizing RTS 

• Learning from CUDA Occupancy Report 
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NVIDIA V100 specification

• 64 warps per multiprocessor (32 threads per warp)

• 65536 registers per multiprocessor

• 96 KB shared memory per multiprocessor

• Occupancy = # Used Warps / # Possible Warps

• How many warps we can use is dependent on how many 
registers and how much shared memory we use per thread
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Thanks to NVIDIA for giving us access to their PSG system for our experiments!!! 



CUDA Occupancy Report
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• Using the CUDA 
occupancy calculator

• We can see why our 
theoretical occupancy for 
MHD, TVD, etc is so low

• From this graph, we 
know that threads-per-
block is not the problem



CUDA Occupancy Report
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• We can also see that our 
shared memory usage is 
much lower than it could 
be

• One idea we have is to start 
moving some of our data to 
shared memory to get 
better usage



CUDA Occupancy Report
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• Finally, we see that our 
problem is register usage 
per thread

• To get 100% occupancy, 
we would need to reduce 
register usage to 32 
registers per thread



Introduction
• Three dimensional uniform cartesian grid.
• Grid is divided into smaller pieces based on MPI ranks and are 

processed independently.
• Halo information is communicated between the MPI ranks at a regular 

intervals.
• Large percentage of halo exchange happens in Radiative transfer.

Optimization strategies
• Overlap computation and communication in RTS.
• Perform a GPU to GPU direct communication without involving host.
• Optimize the packing and unpacking of communication data.
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MURaM: Parallel processing using MPI



38Communication in RTS 
for 24 rays

MURaM: MPI profiling using Intel Trace Analyzer



Results
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Speedup of NVIDIA 
Volta V100 over ->

Singlecore Full MPI node (32 cores)

RTS 27x 1.8x

TVD 36x 2x

MHD 18x 0.78x

Overall 15x 0.9x

Currently:
• 40% runtime is GPU
• 40% runtime is still CPU
• 20% is data movement
• As we finish porting the rest 

of the code to GPU, and 
optimizing the parts 
discussed today, we expect 
these results to improve 
significantly



Summary 

• Accelerating the most significant routine – Radiation Transport, 
among other routines
– Exploring how to optimize further 

• Profiling and re-profiling – a Must 

• Using directives enable maintenance of a single source code for 
both multicore and accelerators 
– Enables *new science* 
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