
www.oerc.ox.ac.uk

AstroAccelerate

GPU accelerated signal processing on the path to the
Square Kilometre Array

Wes Armour, Karel Adamek,

Sofia Dimoudi, Jan Novotny, Nassim Ouannough, Cees Carels

Oxford e-Research Centre,

Department of Engineering Science

University of Oxford

20th March 2019

Part One

A brief introduction to

What is SKA?

What does SKA stand for?

Square Kilometre Array, so called because it
will have an effective collecting area of a
square kilometre.

What is SKA?

SKA is a ground based radio telescope that
will span continents.

Where will SKA be located?

SKA will be built in South Africa and
Australia.

Core

Station

Graphic courtesy of Anne Trefethen

Example of

proposed SKA

configuration

SKA science

SKA will study a wide range of science cases
and aims to answer some of the fundamental
questions mankind has about the universe we
live in.

• How do galaxies evolve
– What is dark energy?

• Tests of General Relativity
– Was Einstein correct?

• Probing the cosmic dawn
– How did stars form?

• The cradle of life
– Are we alone in the Universe?

Part Two

Time domain science

https://commons.wikimedia.org/wiki/File:Planets_and_sun_size_comparison.jpg (Author: Lsmpascal)

Sun

Pulsars – size and scale

Earth

Pulsars are magnetized, rotating neutron
stars which emit synchrotron radiation from
their poles (Crab Nebula). They are typically
1-3 Solar masses in size, have a diameter of
10-20 Kilometres and a pulse period
ranging from milliseconds to seconds.

Their magnetic field is offset from the axis
of rotation so we observe them as cosmic
lighthouses.

Pulsar

Amherst College

H
e
s
te

r e
t. a

l.

https://commons.wikimedia.org/wiki/File:Planets_and_sun_size_comparison.jpg
https://commons.wikimedia.org/wiki/User:Lsmpascal

Credit: FRB110220 Dan Thornton (Manchester)

SKA time domain science - Fast Radio Bursts

Fast Radio Bursts (FRBs), were first
discovered in 2005 by Lorimer et al.

They are observed as extremely
bright single pulses that are
extremely dispersed (meaning that
they are likely to be far away, maybe
extra galactic).

So far around 15 have been observed
in survey data. They are of unknown
origin, but likely to represent some of
the most extreme physics in our
Universe.

Hence they are extremely interesting
objects to study.Time

F
re

q
u

e
n

c
y

Part Three

Computing challenges

SKA time domain - data rates

The SKA will produce vast amounts of data. In the
case of time-domain science we expect the
telescope to be able to place ~2000 observing
beams on the sky at any one time (there are
trivially parallel to compute).

The telescope will take 20,000 samples per
second for each of those beams and then it will
measure power in 4096 frequency channels for
each time sample. Each of those individual
samples will comprise of 4x8 bits, although we
are only really interested in one of the 8 bits of
information.

Doing the math tells us that we will need to
process 160GB/s of relevant data. This is
approximately equal to analysing 50 hours of HD
television data per second.

The most costly computational operations

in data processing pipeline are

DDTR ~ O(ndms * nbeams * nsamps * nchans)

FDAS ~ O(ndms * nbeams * nsamps * nacc * log(nsamps) * 1/tobs)

Requiring ~2 PetaFLOP of Compute!

SKA time domain - signal processing

The time domain team is an

international team led by Oxford

and Manchester.

It aims to deliver an end-to-end

signal processing pipeline for

time domain science performed

by SKA (see right).

Our work at OeRC has

focussed on vertical prototyping

activities. We are interested in

using many-core technologies,

such as GPUs to perform the

processing steps within the

signal processing pipeline with

the aim of achieving real-time

processing for the SKA. Image courtesy of Aris Karastergiou

Time Domain Team

Search for periodic signals

search for fast radio bursts

Part Four

GPU accelerated signal processing library

for time-domain radio astronomy.

AstroAccelerate

AstroAccelerate is a GPU enabled
software package that focuses on
achieving real-time processing of
time-domain radio-astronomy data. It
uses the CUDA programming
language for NVIDIA GPUs.

The massive computational power of
modern day GPUs allows the code to
perform algorithms such as de-
dispersion, single pulse searching and
Fourier Domain Acceleration
Searching in real-time on very large
data-sets which are comparable to
those which will be produced by next
generation radio-telescopes such as
the SKA. https://github.com/AstroAccelerateOrg/astro-accelerate

AstroAccelerate - Signal Processing

De-dispersion

Periodicity Search

Harmonic Sum
(Deep dive two)

Fourier Domain Acceleration search

Single Pulse Search
(Deep dive one)

Radio Frequency Interference Mitigation

AstroAccelerate - API

• API follows a simple pattern: configure, bind, run.

• Select which pipeline modules to run, configure module plan, then bind plan to the API.

• API calculates the strategy with the optimal configuration for the plan.

• When all strategy objects are ready, the user selected modules are run within a pipeline.

Select
pipeline
modules Configure

module
plans

bind plan to
API

API
calculates
optimal
strategy

Run
pipeline

Bind input
data to API

C++
/Python

Cees Carels

AstroAccelerate - Code Features

• Usable as a library (.so) and/or standalone executable.

• Examples with instructions on how to compile and link.

• Regular releases (semantic versioning).

• CMake build system.

• Full doxygen documentation and readme.

• Automated CI, unit tests.

Cees Carels

Part Five

Deep dive into recent

work

www.oerc.ox.ac.uk

Karel Adámek, Wes Armour

Single Pulse Detection

Single Pulse Search

Single pulse search (SPS) could be done through matched filters these

are very sensitive but has problem with “quickly”.

Using a Boxcar filter for the single pulse search (SPS):

• Allows us to reuse data

• Independent of pulse shape

• We can trade sensitivity for performance

• Less sensitive by design

Aim is to detect pulses of different shapes and widths at unknown position

within the signal and do it quickly.

Single Pulse Search: How to detect pulses with boxcars

Position of the boxcar is important

We quantify coverage of the pulses by the

distance between boxcar filters L.

• Pulse may end up between boxcars

• By decreasing L we cover pulses better

SNR is

• Increased by adding signal

• Decreased by adding noise

Signal’s strength is measured as signal-to-noise ratio (SNR)

𝑆𝑁𝑅 =
𝑥 − 𝜇

𝜎
,

Where 𝑥 is the sample value, 𝜇 is the mean and 𝜎 is the standard deviation.

Single Pulse Search: How to detect pulses with boxcars

Boxcar which is:

• too short does not cover pulse fully

• too long does add unnecessary noise

We need different boxcar widths W to

better detect different pulse widths.

SNR is

• Increased by adding signal

• Decreased by adding noise

Width of the boxcar filter is also

important

Single Pulse Search: What do we need to do?

Summary:
• Position of the boxcar relative to the

pulse is important. This is expressed by

the distance between boxcars L.

• Boxcar width W is important for

detection of pulses with different

widths.

For ideal detection we need to do:

at every point

Output:
Highest SNR detected at given sample.

• We do not need to keep values of all

boxcar filters just highest SNR!

Single Pulse Search: Two algorithms

BoxDIT
• Starts from ideal Boxcar filter

• Top-down – starts with good

sensitivity but poor performance

• Easily adjustable

• Can be very sensitive

• Not as fast

IGrid
• Start from decimation in time (DIT)

• Bottom-up – starts with good performance

but poor sensitivity

• Less flexible

• Faster

The algorithm must be able to
• perform very long boxcar filters; for

SKA this is 8000+ samples

• Adjustable sensitivity

How to adjust sensitivity
… and increase performance:

• By decreasing/increasing distance

between boxcars L

• By performing more/less boxcars of

different widths W

• After some point it is pointless to

decrease L without more widths W

Single Pulse Search: BoxDIT

BoxDIT has two steps:

• Decimation in time - is used to control

sensitivity

• Ideal boxcar filter (Scan) – is

calculating boxcar filters.

BoxDIT is reusing previously (time)

decimated data to build longer boxcar

widths.

In GPU implementation both steps are

performed at once and kernel calculates

boxcar filters as well as decimation for

next iteration.

BOTTOM: Using combinations of data at

different decimation levels allows us to

construct longer width boxcars.

Diagram of the BoxDIT algorithm.

Single Pulse Search: BoxDIT Scan at every point

Algorithm for scan at every point (applying set of boxcar filters) first calculate small scan

at every point (here 4). The value of the longest boxcar (here 4) is stored into shared

memory.

Stored in registers

Stored into shared memory as well

Single Pulse Search: BoxDIT scanpart

Showing algorithm steps only for every 4th

thread. Other threads doing the same thing

for other points.

Each thread keeps values of boxcar filters in

registers. These are increased with every

step of the algorithm.

In each step i, an active thread A, calculates

a source thread id as Si=A-i*4. The value of

the longest boxcar calculated at beginning

is loaded from source thread (from shared

memory) and used to calculate longer

boxcars in the active thread. These are kept

by the active thread.

The highest SNR from the newly calculated

boxcars is then compared with the SNR of

the source thread and stored at it’s position

in shared memory if higher.

Single Pulse Search: BoxDIT performance

When calculating 32 boxcar per iteration

(1% signal loss, idealised case) code is

limited by compute with 63% device

memory bandwidth utilisation. It is 83x

faster then real-time.

When calculating 16 boxcars per

iteration (2% signal loss, idealised) code

is limited by device memory bandwidth

(86%). It is 170x faster then real time.

Other versions of BoxDIT algorithm

Single Pulse Search: Two algorithms

BoxDIT
• Starts from ideal Boxcar filter

• Top-down – starts with good

sensitivity but poor

performance

• Easily adjustable

• Not as fast

IGrid
• Start from decimation in time (DIT)

• Bottom-up – starts with good

performance but poor sensitivity

• Less flexible

• Faster

Single Pulse Search: IGrid

The IGrid algorithm is based on combination of different decimations in time, which are

shifted in time samples.

Single Pulse Search: IGRID

This algorithm could be interpreted

also as a binary tree where leaves

indicate a shift in number of time

samples.

The binary tree view suggest what

could be calculated locally (red area).

Therefore the only thing shared

through iterations is the time-series

with zero shift.

It also offers a way how to calculate

different boxcar widths, that is by going

to the root of the tree.

Single Pulse Search: IGRID

To calculate individual IGRID iterations

is inefficient and very demanding on

device memory bandwidth.

Thus we calculate multiple IGRID

iterations per thread-block.

Points represent layers that

must be calculated to get desired

sensitivity

must be calculated but it will be

recalculated by the next block

recalculated layer

Is calculated but it is not required

TOP: to calculate individual IGRID

iterations a lot of layers had to be shared

BOTTOM: Each thread-block calculates

multiple iterations.

Single Pulse Search: BoxDIT performance

IGrid 1 – Signal loss ~6%

IGrid 2 – Signal loss ~4.5%

IGrid 3 – Signal loss ~2%

Single Pulse Search: Results

Number of DM

trials/second for SKA-mid

sized data is about ~6000.

This means BOXDIT is

~83x-200x faster then real

time

IGRID is ~150x-580x

faster then real time.

Left: Comparison of

algorithms on average

signal loss and

performance (DM trials).

Conclusions

• Quantified source of sensitivity loss

• Adjustable sensitivity

• Two algorithms with different sensitivity/performance

ratio

• BoxDIT algorithm is in AstroAccelerate and used for

science output

www.oerc.ox.ac.uk

Karel Adámek, Jan Novotný, Wes Armour

Harmonic Sum

Harmonic sum

When searching for pulsars

using Fourier domain

methods the power of the

pulsar is in frequency

domain spread to multiple

frequency bins. The

incoherent harmonic sum

algorithm is one way to

correct this.

TOP: time-series containing

pulsar (dots)

MIDDLE: frequency-domain

harmonics visible

BOTTOM: result of harmonic

sum for two diff. algorithms

Harmonic sum

The goal of the harmonic sum is to sum pulsar’s power that was spread into multiple

harmonics which are integer multiples of the fundamental frequency 𝑓0

h n 𝐻 =

𝑖=1

𝐻

𝑃(𝑖𝑓0) ,

Where H is number of harmonics summed and 𝑃 is the power spectrum.

But we do not know 𝑓0 and we work with discrete indices

fundamental = 10.33Hz first harmonic = 20.66Hz second harmonic = 31Hz

Harmonic sum

The defacto pulsar processing code, PRESTO, uses the following formula:

h n 𝐻 =
1

𝐻

𝑖=1

𝐻

𝑃
𝑛𝑖

𝐻

H is number of harmonics summed.

You can approach it from different end. Start with the index position of the fundamental

frequency n in frequency domain X[n] and add to it higher harmonics, that is X[2n], …

Harmonic sum – Problems

Harmonic sum – Problems

• Unfavorable access pattern

• Difficult data reuse

• Apply physical constrains

• h*(starting index)

• Stride in memory access is h

• Transpose of the data might help

• Simple data reuse is limited

• Cannot increase efficiency by increasing

number of fundamental freq. bins

• Complicated data reuse is resource and

bookkeeping heavy

• Decreases frequency range not index

range which we need to explore.

We aim to provide a selection of algorithm with different ratio of sensitivity/performance

Harmonic sum – Tree view

There are few possibilities how to do harmonic sum

Create all possible sums (exhaustive search) best

possible precision

Harmonic sum – Tree view

There are few possibilities how to do harmonic sum

Create all possible sums (exhaustive search) best

possible precision

Construct the sum from maxima of each harmonic.

That is ℎ 𝑛 𝐻 = σ𝑖=1
𝐻 max

1≤𝑗≤𝑖
𝑥 𝑖𝑛 + 𝑗

Harmonic sum – Tree view

There are few possibilities how to do harmonic sum

Create all possible sums (exhaustive search) best

possible precision

Construct the sum from maxima of each harmonic.

That is ℎ 𝑛 𝐻 = σ𝑖=1
𝐻 max

1≤𝑗≤𝑖
𝑥 𝑖𝑛 + 𝑗

Greedy algorithm which selects highest value

ℎ 𝑛 𝐻+1 = ℎ 𝑛 𝐻 +max 𝑥 𝐻𝑛 + 𝑗 , 𝑥(𝐻𝑛 + 𝑗 + 1)

Harmonic sum – Tree view

There are few possibilities how to do harmonic sum

Create all possible sums (exhaustive search) best

possible precision

Construct the sum from maxima of each harmonic.

That is ℎ 𝑛 𝐻 = σ𝑖=1
𝐻 max

1≤𝑗≤𝑖
𝑥 𝑖𝑛 + 𝑗

Greedy algorithm which selects highest value

ℎ 𝑛 𝐻+1 = ℎ 𝑛 𝐻 +max 𝑥 𝐻𝑛 + 𝑗 , 𝑥(𝐻𝑛 + 𝑗 + 1)

Harmonic sum – Tree view

There are few possibilities how to do harmonic sum

Create all possible sums (exhaustive search) best

possible precision

Construct the sum from maxima of each harmonic.

That is ℎ 𝑛 𝐻 = σ𝑖=1
𝐻 max

1≤𝑗≤𝑖
𝑥 𝑖𝑛 + 𝑗

Greedy algorithm which selects highest value

ℎ 𝑛 𝐻+1 = ℎ 𝑛 𝐻 +max 𝑥 𝐻𝑛 + 𝑗 , 𝑥(𝐻𝑛 + 𝑗 + 1)

Sum only integer multiples of the fundamental

ℎ 𝑛 𝐻 =

𝑖=1

𝐻

𝑥(𝑖𝑛)

Harmonic sum – Simple

• Simple harmonic sum
Data are transposed, which improve

data access

Device mem. bandwidth limited (77%)

No explicit data reuse caching is poor

(10% L2 hit rate)

Memory access pattern when threads process

neighboring fundamental frequency bins.

Memory access pattern when threads process

same fundamental frequency bin from different

data.

Harmonic sum – Greedy

• Greedy harmonic sum
For data reuse we really on caches

(52% L2 hit rate)

– kernel is waiting for data

Device memory Bandwidth utilization

(66%)

Memory access pattern when threads process

neighboring fundamental frequency bins.

Memory access pattern when threads process

same fundamental frequency bin from different

data.

Harmonic sum – Presto, MaxDIT

Presto harmonic sum
Limited by type conversion (array

indexing). However fp32 compute

is still high.

Max harmonic sum
Max harmonic sum is two step

1) Calculate all max decimations -

Limited by compute (Load/Store,

floating point operations)

2) Calculate partial sums and SNR

Harmonic sum – Improvements

Harmonic sum – Results

As gold standard we have used our

implementation of presto‘s HRMS.

RIGHT: Sensitivity loss for pulsar

frequencies which are between

frequency bins. 50% decrease for

simple HRMS, only 30% for Greedy

and PRESTO.

LEFT: average sensitivity as it

depends on pulsar’s frequency.

Harmonic sum – Conclusions

• We have multiple algorithms with different parameters

• We need more sensitivity tests and tests of physical

correctness (artificial data, real data)

• We thinking about 2D harmonic sum for acceleration

searches

• We trying to increase performance

