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Part One

A brief introduction to



What is SKA?

What does SKA stand for? 

Square Kilometre Array, so called because it 
will have an effective collecting area of a 
square kilometre.

What is SKA?

SKA is a ground based radio telescope that 
will span continents. 

Where will SKA be located? 

SKA will be built in South Africa and 
Australia.
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SKA science

SKA will study a wide range of science cases 
and aims to answer some of the fundamental 
questions mankind has about the universe we 
live in.

• How do galaxies evolve
– What is dark energy?

• Tests of General Relativity
– Was Einstein correct?

• Probing the cosmic dawn 
– How did stars form?

• The cradle of life 
– Are we alone in the Universe?



Part Two

Time domain science



https://commons.wikimedia.org/wiki/File:Planets_and_sun_size_comparison.jpg (Author: Lsmpascal)

Sun

Pulsars – size and scale

Earth

Pulsars are magnetized, rotating neutron 
stars which emit synchrotron radiation from 
their poles (Crab Nebula). They are typically 
1-3 Solar masses in size, have a diameter of 
10-20 Kilometres and a pulse period 
ranging from milliseconds to seconds. 

Their magnetic field is offset from the axis 
of rotation so we observe them as cosmic 
lighthouses.

Pulsar

Amherst College
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Credit: FRB110220 Dan Thornton (Manchester)

SKA time domain science - Fast Radio Bursts

Fast Radio Bursts (FRBs), were first 
discovered in 2005 by Lorimer et al. 

They are observed as extremely 
bright single pulses that are 
extremely dispersed (meaning that 
they are likely to be far away, maybe 
extra galactic).

So far around 15 have been observed 
in survey data. They are of unknown 
origin, but likely to represent some of 
the most extreme physics in our 
Universe.

Hence they are extremely interesting 
objects to study.Time
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Part Three

Computing challenges



SKA time domain - data rates

The SKA will produce vast amounts of data. In the 
case of time-domain science we expect the 
telescope to be able to place ~2000 observing 
beams on the sky at any one time (there are 
trivially parallel to compute).

The telescope will take 20,000 samples per 
second for each of those beams and then it will 
measure power in 4096 frequency channels for 
each time sample. Each of those individual 
samples will comprise of 4x8 bits, although we 
are only really interested in one of the 8 bits of 
information. 

Doing the math tells us that we will need to 
process 160GB/s of relevant data. This is 
approximately equal to analysing 50 hours of HD 
television data per second.  

The most costly computational operations 

in data processing pipeline are

DDTR ~ O(ndms * nbeams * nsamps * nchans )

FDAS ~ O(ndms * nbeams * nsamps * nacc * log(nsamps) * 1/tobs )

Requiring ~2 PetaFLOP of Compute!



SKA time domain - signal processing

The time domain team is an 

international team led by Oxford 

and Manchester. 

It aims to deliver an end-to-end 

signal processing pipeline for 

time domain science performed 

by SKA (see right).

Our work at OeRC has 

focussed on vertical prototyping 

activities. We are interested in 

using many-core technologies, 

such as GPUs to perform the 

processing steps within the 

signal processing pipeline with 

the aim of achieving real-time 

processing for the SKA. Image courtesy of Aris Karastergiou

Time Domain Team 

Search for periodic signals

search for fast radio bursts



Part Four

GPU accelerated signal processing library 

for time-domain radio astronomy. 



AstroAccelerate

AstroAccelerate is a GPU enabled 
software package that focuses on 
achieving real-time processing of 
time-domain radio-astronomy data. It 
uses the CUDA programming 
language for NVIDIA GPUs.

The massive computational power of 
modern day GPUs allows the code to 
perform algorithms such as de-
dispersion, single pulse searching and 
Fourier Domain Acceleration 
Searching in real-time on very large 
data-sets which are comparable to 
those which will be produced by next 
generation radio-telescopes such as 
the SKA. https://github.com/AstroAccelerateOrg/astro-accelerate



AstroAccelerate - Signal Processing

De-dispersion

Periodicity Search

Harmonic Sum
(Deep dive two)

Fourier Domain Acceleration search

Single Pulse Search
(Deep dive one)

Radio Frequency Interference Mitigation



AstroAccelerate - API

• API follows a simple pattern: configure, bind, run.

• Select which pipeline modules to run, configure module plan, then bind plan to the API.

• API calculates the strategy with the optimal configuration for the plan.

• When all strategy objects are ready, the user selected modules are run within a pipeline.

Select 
pipeline
modules Configure 

module
plans

bind plan to 
API

API 
calculates 
optimal 
strategy

Run 
pipeline

Bind input 
data to API

C++ 
/Python

Cees Carels



AstroAccelerate - Code Features

• Usable as a library (.so) and/or standalone executable.

• Examples with instructions on how to compile and link.

• Regular releases (semantic versioning).

• CMake build system.

• Full doxygen documentation and readme.

• Automated CI, unit tests.

Cees Carels



Part Five

Deep dive into recent 

work
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Single Pulse Detection



Single Pulse Search

Single pulse search (SPS) could be done through matched filters these 

are very sensitive but has problem with “quickly”.

Using a Boxcar filter for the single pulse search (SPS):

• Allows us to reuse data

• Independent of pulse shape

• We can trade sensitivity for performance

• Less sensitive by design

Aim is to detect pulses of different shapes and widths at unknown position 

within the signal and do it quickly.



Single Pulse Search: How to detect pulses with boxcars

Position of the boxcar is important

We quantify coverage of the pulses by the 

distance between boxcar filters L.

• Pulse may end up between boxcars

• By decreasing L we cover pulses better

SNR is

• Increased by adding signal 

• Decreased by adding noise

Signal’s strength is measured as signal-to-noise ratio (SNR)

𝑆𝑁𝑅 =
𝑥 − 𝜇

𝜎
,

Where 𝑥 is the sample value, 𝜇 is the mean and 𝜎 is the standard deviation.



Single Pulse Search: How to detect pulses with boxcars

Boxcar which is:

• too short does not cover pulse fully

• too long does add unnecessary noise

We need different boxcar widths W to 

better detect different pulse widths. 

SNR is

• Increased by adding signal 

• Decreased by adding noise

Width of the boxcar filter is also 

important 



Single Pulse Search: What do we need to do?

Summary:
• Position of the boxcar relative to the 

pulse is important. This is expressed by 

the distance between boxcars L.

• Boxcar width W is important for 

detection of pulses with different 

widths.

For ideal detection we need to do:

at every point

Output:
Highest SNR detected at given sample.

• We do not need to keep values of all 

boxcar filters just highest SNR! 



Single Pulse Search: Two algorithms

BoxDIT
• Starts from ideal Boxcar filter

• Top-down – starts with good 

sensitivity but poor performance 

• Easily adjustable

• Can be very sensitive

• Not as fast

IGrid
• Start from decimation in time (DIT)

• Bottom-up – starts with good performance 

but poor sensitivity

• Less flexible 

• Faster

The algorithm must be able to 
• perform very long boxcar filters; for 

SKA this is 8000+ samples

• Adjustable sensitivity

How to adjust sensitivity
… and increase performance:

• By decreasing/increasing distance 

between boxcars L

• By performing more/less boxcars of 

different widths W

• After some point it is pointless to 

decrease L without more widths W



Single Pulse Search: BoxDIT

BoxDIT has two steps:

• Decimation in time - is used to control 

sensitivity

• Ideal boxcar filter (Scan) – is 

calculating boxcar filters.

BoxDIT is reusing previously (time) 

decimated data to build longer boxcar 

widths.

In GPU implementation both steps are 

performed at once and kernel calculates 

boxcar filters as well as decimation for 

next iteration.

BOTTOM: Using combinations of data at 

different decimation levels allows us to 

construct longer width boxcars.

Diagram of the BoxDIT algorithm. 



Single Pulse Search: BoxDIT Scan at every point

Algorithm for scan at every point (applying set of boxcar filters) first calculate small scan 

at every point (here 4). The value of the longest boxcar (here 4) is stored into shared 

memory.

Stored in registers

Stored into shared memory as well



Single Pulse Search: BoxDIT scanpart

Showing algorithm steps only for every 4th

thread. Other threads doing the same thing 

for other points.

Each thread keeps values of boxcar filters in 

registers. These are increased with every 

step of the algorithm.

In each step i, an active thread A, calculates 

a source thread id as Si=A-i*4. The value of 

the longest boxcar calculated at beginning 

is loaded from source thread (from shared 

memory) and used to calculate longer 

boxcars in the active thread. These are kept 

by the active thread.

The highest SNR from the newly calculated 

boxcars is then compared with the SNR of 

the source thread and stored at it’s position 

in shared memory if higher.



Single Pulse Search: BoxDIT performance

When calculating 32 boxcar per iteration 

(1% signal loss, idealised case) code is 

limited by compute with 63% device 

memory bandwidth utilisation. It is 83x 

faster then real-time.

When calculating 16 boxcars per 

iteration (2% signal loss, idealised) code 

is limited by device memory bandwidth 

(86%). It is 170x faster then real time.

Other versions of BoxDIT algorithm



Single Pulse Search: Two algorithms

BoxDIT
• Starts from ideal Boxcar filter

• Top-down – starts with good 

sensitivity but poor 

performance 

• Easily adjustable

• Not as fast

IGrid
• Start from decimation in time (DIT)

• Bottom-up – starts with good 

performance but poor sensitivity

• Less flexible 

• Faster



Single Pulse Search: IGrid

The IGrid algorithm is based on combination of different decimations in time, which are 

shifted in time samples.



Single Pulse Search: IGRID

This algorithm could be interpreted 

also as a binary tree where leaves 

indicate a shift in number of time 

samples. 

The binary tree view suggest what 

could be calculated locally (red area). 

Therefore the only thing shared 

through iterations is the time-series 

with zero shift.

It also offers a way how to calculate 

different boxcar widths, that is by going 

to the root of the tree.



Single Pulse Search: IGRID

To calculate individual IGRID iterations 

is inefficient and very demanding on 

device memory bandwidth.

Thus we calculate multiple IGRID 

iterations per thread-block.

Points represent layers that

must be calculated to get desired 

sensitivity

must be calculated but it will be 

recalculated by the next block

recalculated layer

Is calculated but it is not required

TOP: to calculate individual IGRID 

iterations a lot of layers had to be shared

BOTTOM: Each thread-block calculates 

multiple iterations.



Single Pulse Search: BoxDIT performance

IGrid 1 – Signal loss ~6%

IGrid 2 – Signal loss ~4.5%

IGrid 3 – Signal loss ~2%



Single Pulse Search: Results

Number of DM 

trials/second for SKA-mid 

sized data is about ~6000. 

This means BOXDIT is 

~83x-200x faster then real 

time

IGRID is ~150x-580x 

faster then real time.

Left: Comparison of 

algorithms on average 

signal loss and 

performance (DM trials).



Conclusions

• Quantified source of sensitivity loss

• Adjustable sensitivity

• Two algorithms with different sensitivity/performance 

ratio

• BoxDIT algorithm is in AstroAccelerate and used for 

science output
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Harmonic Sum



Harmonic sum

When searching for pulsars 

using Fourier domain  

methods the power of the 

pulsar is in frequency 

domain spread to multiple 

frequency bins. The 

incoherent harmonic sum 

algorithm is one way to 

correct this.

TOP: time-series containing 

pulsar (dots)

MIDDLE: frequency-domain 

harmonics visible

BOTTOM: result of harmonic 

sum for two diff. algorithms



Harmonic sum

The goal of the harmonic sum is to sum pulsar’s power that was spread into multiple 

harmonics which are integer multiples of the fundamental frequency 𝑓0

h n 𝐻 =෍

𝑖=1

𝐻

𝑃(𝑖𝑓0) ,

Where H is number of harmonics summed and 𝑃 is the power spectrum. 

But we do not know 𝑓0 and we work with discrete indices 

fundamental = 10.33Hz first harmonic = 20.66Hz second harmonic = 31Hz



Harmonic sum

The defacto pulsar processing code, PRESTO, uses the following formula: 

h n 𝐻 =
1

𝐻
෍

𝑖=1

𝐻

𝑃
𝑛𝑖

𝐻

H is number of harmonics summed.

You can approach it from different end. Start with the index position of the fundamental 

frequency n in frequency domain X[n] and add to it higher harmonics, that is X[2n], … 



Harmonic sum – Problems



Harmonic sum – Problems

• Unfavorable access pattern 

• Difficult data reuse

• Apply physical constrains

• h*(starting index)

• Stride in memory access is h 

• Transpose of the data might help

• Simple data reuse is limited

• Cannot increase efficiency by increasing 

number of fundamental freq. bins

• Complicated data reuse is resource and 

bookkeeping heavy

• Decreases frequency range not index 

range which we need to explore.

We aim to provide a selection of algorithm with different ratio of sensitivity/performance



Harmonic sum – Tree view

There are few possibilities how to do harmonic sum 

Create all possible sums (exhaustive search) best 

possible precision



Harmonic sum – Tree view

There are few possibilities how to do harmonic sum 

Create all possible sums (exhaustive search) best 

possible precision

Construct the sum from maxima of each harmonic. 

That is ℎ 𝑛 𝐻 = σ𝑖=1
𝐻 max

1≤𝑗≤𝑖
𝑥 𝑖𝑛 + 𝑗



Harmonic sum – Tree view

There are few possibilities how to do harmonic sum 

Create all possible sums (exhaustive search) best 
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Greedy algorithm which selects highest value
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Harmonic sum – Tree view

There are few possibilities how to do harmonic sum 

Create all possible sums (exhaustive search) best 

possible precision

Construct the sum from maxima of each harmonic. 

That is ℎ 𝑛 𝐻 = σ𝑖=1
𝐻 max

1≤𝑗≤𝑖
𝑥 𝑖𝑛 + 𝑗

Greedy algorithm which selects highest value

ℎ 𝑛 𝐻+1 = ℎ 𝑛 𝐻 +max 𝑥 𝐻𝑛 + 𝑗 , 𝑥(𝐻𝑛 + 𝑗 + 1)

Sum only integer multiples of the fundamental

ℎ 𝑛 𝐻 =෍

𝑖=1

𝐻

𝑥(𝑖𝑛)



Harmonic sum – Simple

• Simple harmonic sum
Data are transposed, which improve 

data access

Device mem. bandwidth limited (77%)

No explicit data reuse caching is poor 

(10% L2 hit rate)

Memory access pattern when threads process 

neighboring fundamental frequency bins.

Memory access pattern when threads process 

same fundamental frequency bin from different 

data.



Harmonic sum – Greedy

• Greedy harmonic sum
For data reuse we really on caches 

(52% L2 hit rate)

– kernel is waiting for data

Device memory Bandwidth utilization 

(66%)

Memory access pattern when threads process 

neighboring fundamental frequency bins.

Memory access pattern when threads process 

same fundamental frequency bin from different 

data.



Harmonic sum – Presto, MaxDIT

Presto harmonic sum
Limited by type conversion (array 

indexing). However fp32 compute 

is still high.

Max harmonic sum
Max harmonic sum is two step

1) Calculate all max decimations -

Limited by compute (Load/Store, 

floating point operations)

2) Calculate partial sums and SNR



Harmonic sum – Improvements



Harmonic sum – Results

As gold standard we have used our 

implementation of presto‘s HRMS.

RIGHT: Sensitivity loss for pulsar 

frequencies which are between 

frequency bins. 50% decrease for 

simple HRMS, only 30% for Greedy 

and PRESTO.

LEFT: average sensitivity  as it 

depends on pulsar’s frequency. 



Harmonic sum – Conclusions

• We have multiple algorithms with different parameters

• We need more sensitivity tests and tests of physical 

correctness (artificial data, real data)

• We thinking about 2D harmonic sum for acceleration 

searches

• We trying to increase performance


