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What is mixed-precision

• mixed-precision
• FP32 and FP16
• More precision format in the future

• TensorCore

• Matrix-multiply and accumulate units
• FP16 storage/inputs
• FP32/Fp16 accumulator

• Such as:
• Conv
• MatMul
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Why mixed-precision

• Two key points which matter in training/inference:

• Computation

• Tensorcore 8X higher throughput in MP than FP32 (15Tflops v.s. 120Tflops)

• Memory access

• Inputs is FP16

• Memory access is reduced by 2X
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How mixed-precision

• Key Strategies in mixed-precision training

• Issues using FP16 for training and the solutions

• Less bits in fraction: → Precision gap in sum

• Less bits in exponent: → Gradients underflow

• Arithmetic precision design

• Considering both efficiency and performance

5



Issues using FP16 for training

• Less bits in fraction: Precision gap in sum

• A+B, if A/B>210, B will degrade to zero.
• For FP32, the ratio can be up to 223

• Common in weight update：
• W←W+lr*dW

• Less bits in exponent: Gradients underflow

• Gradients smaller that 2-24 will become zero

FP16

FP32
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Precision gap in sum
• variables v.s. gradients

• weight update: W←W+lr*dW ( lr normally in [10-1, 10-4] )

• Solution: Variables stored in FP32, and optimizer computation in FP32

Variables: 2-16 to 2-4 gradients: 2-30 to 2-5

Fig. Variables and gradients histogram in Faster RCNN

7



Gradients underflow in FP16

• Gradients of variables

FP16 FP32

Fig. Histogram for gradients of variables in Faster RCNN, respectively training in mixed-precision and FP32
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Gradients underflow in FP16

• Gradients of activations

FP16 FP32

Fig. Histogram for gradients of variables in Faster RCNN, respectively training in mixed-precision and FP32
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Gradients underflow in FP16

Solution: gradients shift using loss scaling
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Gradients underflow in FP16

• Constant loss scaling
• Scale the loss by a factor S
• Backprop to compute the dW
• Unscale dW by 1/S

• Automatic loss scaling
• Start with a large scaling factor S
• For each training iteration:

• Scale the loss by S
• Backprop to compute the dW
• Unscale dW by 1/S

• If dW contains Inf/NaN, the decrease S by a step factor S/step
• Otherwise, update dW to W

• If there is no Inf/NaN for N updates, the increase S by a step factor S*step
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Arithmetic precision design

• Arithmetic can be categorized into:

1. Compute-bound

• Convolution, Matmul

2. Memory-bound

① Reductions 

• Batch-norm/layer-norm/group-norm

• Softmax / Average pooling

② Element-wise operation

• Add/mul, etc

Take advantage of Tensorcore:
• Inputs: FP16
• Accumulator: FP32
• Outputs: FP32

• Inputs/Ouputs in FP16
• Computation in FP32

• Inputs/Ouputs in FP16
• Computation in FP16

• Computation in FP32
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Arithmetic precision design

• Compute-bound operations:
• Inputs in FP16

• Computation using Tensorcore

• Outputs in FP32

• Memory-bound operations:
• Inputs/outputs in FP16

• Computation in FP32
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How mixed-precision training

Computation: forward and backwardOptimizer related →Can be in MP→should be in FP32
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MP training (var in FP32):
• Convert the computation part to MP

• Remain the optimizer part in FP32

Computation in MPOptimizer related: in FP32
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MP training (var in FP32):

• Loss Scaling strategy (constant scaling)
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MP training (var in FP32):

• Auto Loss Scaling strategy
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MP training tools on PAI-TF

• Graph Optimization + Loss Scaling Training Strategy
• Graph Optimization：AutoMixedPrecision Graph Optimization Pass

• MP Training Strategy: MP optimizer wrapper
• Wrap the standard optimizers to automatically adopt the constant/automatic loss

scaling strategy
• opt = tf.contrib.mixed_precision.MixedPrecisionOptimizer(opt)

• Both constant/automatic loss scaling supported
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FP32 graph_def MP graph_def
Automatically conversion

Standard optimizer

Mixed-precision optimizer



Experimental results

• ResNet50 on ImageNet
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Experimental results

• Faster RCNN (VGG backbone) on PASCAL VOC 07
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Experimental results

• SSD (VGG backbone) on PASCAL VOC 07+12
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Experimental results

• Small NMT on WMT German-English
• Encoder: 2 layers
• Decoder: 2 layers with attention

28



PGAN

• PGAN (Progressive growth of GAN)

Karras, Tero, et al. "Progressive Growing of GANs for Improved Quality." Stability, and Variation. 
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PGAN

• G loss

Karras, Tero, et al. "Progressive Growing of GANs for Improved Quality." Stability, and Variation. 
30



PGAN

• Generation results (cifar10 dataset)

fp32 mp-no-scalingmp-auto-scaling

Exp. fp32 mp-auto-scaling mp-no-scaling

sliced_wasserstein 9.3764 9.1662 7.9601 31



Font Generation

Pyramid Embedded Generative Adversarial Network for Automated Font Generation 
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Font Generation

• G loss

Pyramid Embedded Generative Adversarial Network for Automated Font Generation 
33



Font Generation

• Generation results (金陵刻经体)

fp32 mp-no-scaling mp-auto-scaling
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Wide & Deep Learning

Wide & Deep Learning for Recommender Systems

• Predict the probability that the individual has an annual 
income of over 50,000 dollars
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Wide & Deep Learning

• Loss

Exp fp32 mp-no-scaling

Accuracy 84.31% 84.27%

Wide & Deep Learning for Recommender Systems
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More try: small inputs (for normalization layers)

• Underflow in FP16 gradients
• Design the model to be more adaptive to FP16 representation
• Move the gradient itself into the FP16 representable range

• Especially the activation gradients

• Batch normalization
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Small input

• Derivatives of BN layer

Smaller Inputs and Bigger derivatives

• Reduce the magnitude of the inputs

• Reduce magnitude of the forward
activations, so as to reduce the
overflow in forward propagation when
using FP16

• Improve the magnitude of the
derivatives

• Tips for Network with BN:

• Normalize the layer to have std to be
1/S rather than 1.0
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Small inputs

• ResNet32+CIFAR10
• Activations and the gradients

activations activation gradients
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Small inputs

• ResNet32+CIFAR10
• All without loss scaling
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Small inputs

• SSD on PASCAL VOC 07+12
• Activations and the gradients

activations gradients 41



Small inputs

• SSD on PASCAL VOC 07+12
• Activations and the gradients
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Conclusion

• Mixed-precision tools have been supported on PAI-tensorflow

• More effort is still conducted to explore more in mixed-
precision
• More precision supported
• More training strategy



Thank you


