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Xu, et al. Nature (2018)



Proteins are central to biology, physiology and pathology

proteinDNA mRNA

DNA replication

transcription translation

information action

transport motor … and much more

Hadden, et al. eLife (2018)

Only 20 unique amino 
acids... 

Function arises from 
structure

encapsulation



Hierarchy of protein structure
Primary structure: sequence of amino acids 

Phe Ala Met Leu Gln Trp Glu . . . 

Sequence is organized into secondary structure 

Secondary structure causes chain to fold into 

tertiary structure

Quaternary structure complexes multiple, 

folded chains



Structure is essential to function

https://pdb101.rcsb org/motm/72
Medical Research Council: Mitochondrial Biology Unit
(Creative commons attribution license)

Determining a protein’s native structure is 

critical

Tools of structure determination:

- X-Ray crystallography
- Electron microscopy 

- Nuclear Magnetic Resonance (NMR)

NMR studies proteins with minimal 
tampering (i.e., freezing or crystallization)

https://pdb101.rcsb.org/motm/72
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?

Data collection (days/weeks) Chemical shift assignment (months/years)

Correlation assignment (months/years) Structural ensemble

What does an NMR experiment look like?

❑ Validation
❑ Positional restraints
❑ Partial occupancies
❑ ...
❑ Deposition of structure

Completion

(repeat for remaining 
atom types) … then
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Semi-empirical chemical shift prediction: PPM_One

Treats chemical shift as a sum of differentiable functions which depend on internal coordinates

Higher dimensional data (3D cartesian) maps to lower dimensional internal coordinates

(α) 𝑎1𝑥+𝑏1𝑦 + 𝑐1𝑧+ 𝑑1 = 0

(β) 𝑎2𝑥+𝑏2𝑦 + 𝑐2𝑧 + 𝑑2 = 0

cosΨ =
𝒏1 ∙ 𝒏2
𝒏1 𝒏2

e.g., dihedral angle:

More familiar challenges:
NBody

Dense linear algebra

Unstructured grid (?)
Dawei Li, Rafael Bruschweiler J.Biomol.NMR (2012)
Dawei Li, Rafael Bruschweiler J.Biomol.NMR (2015)
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Takeaway: theoretical biophysics is compute and data 
intensive

Large systems necessitate high-

performance codes and systems

64 million atomistic simulation of HIV-1 virion

Perilla, et al. Nature (2016)



Project Motivation

● Nuclear Magnetic Resonance (NMR) is a vital tool in 
structural biology and biochemistry

● Chemical shift gives insight into the physical structure of 
the protein

● Predicting chemical shift has important uses in scientific 
areas such as drug discovery

Our goal:

● To enable execution of multiple chemical shift 
predictions repeatedly

● To allow chemical shift predictions for larger scale 
structures

12



Introduction to the PPM_One code

• Parametrize a new empirical knowledge-based 

chemical shift predictor of protein backbone 

atoms
• Accepts a single static 3D protein structure 

(PDB format) as input

• Emulates local protein dynamics

• Outputs chemical shift prediction with high 

accuracy
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PPM_One: a static protein structure based chemical shift predictor
Dawei Li, Rafael Brüschweiler, Journal of Biomolecular NMR. July 2015, Volume 62, Issue 3, pp 403–409

https://link.springer.com/journal/10858
https://link.springer.com/journal/10858/62/3/page/1


Profile Driven Development
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Profile Driven Development

• Tackling a large and unfamiliar code is daunting

• Advantages of profiling:

– High-level view of the code

– Baseline performance metrics

– Sanity check during the development process
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Serial Code Profile (Main Function)
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Main Function % Runtime

main() 100%

predict_bb_static_ann(void) 81.226%

predict_proton_static_new(void) 16.276%

load(string) 1.921%



Serial Profile Visual
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get_contact
35%

getselect
23%

gethbond
5%

getani
14%

getring
4%

Other
19%

Other Contains:
● File I/O
● PDB 

Structure 
Initialization

● Data error 
correction

• Profiled code using PGPROF
– Without any 

optimizations
• Gave a baseline snapshot of 

the code
– Identified hotspots 

within the code
– Identified functions that 

are potential 
bottlenecks

• Obtained large overview 
without needing to read 
thousands of lines of code



Optimization in steps
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getselect
23%

• getselect()

• Looking into optimizing 

the serial code prior to 

parallelizing it



Serial Optimization (getselect)

Reusing the same flags 
results in the function 
returning the same set 
of atoms

22

// Pseudocode for getselect function

for( ... )   // Large loop
{

c2=pdb->getselect(":1-%@allheavy");
traj->get_contact(c1,c2,&result);

}



Serial Optimization (getselect)
getselect originally 
accounted for 25% of 
the codes runtime. 
After optimization, it 
takes less than 1%.
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// Pseudocode for getselect function

for( ... )   // Large loop
{

c2=pdb->getselect(":1-%@allheavy");
traj->get_contact(c1,c2,&result);

}
// Pseudocode for getselect function

c2=pdb->getselect(":1-%@allheavy");
for( ... )   // Large loop
{

traj->get_contact(c1,c2,&result);
}



Serial Optimizations (other smaller optimizations)

• Filtering functions:

– Filter objects from a large list

– Written in an inefficient C++ style way

– Runtime for filtering functions went from 5+min to 1 second for some 
datasets

• Replace C++ stl vectors:

– All data is stored within stl vectors

– There are a few ways to work around this for GPUs

– We chose to just replace them with pointers when possible

24
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get_contact
44%

gethbond
14%

getani
18%

getring
12%

Other
12%

get_contact
35%

getselect
23%

gethbond
5%

getani
14%

getring
4%

Other
19%

Serial Profile After Optimization
Before After



Porting PPM to GPUs
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Our Weapon of Choice
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Applications

Libraries
Compiler 
Directives

Programming 
Languages

• High Performance
• Limited Uses

• Portable
• Performance based 

on compiler

• High Performance
• Most Difficult



Introduction to OpenACC

• OpenACC is a directive based parallel 
programming model used to accelerate 
code on heterogenous systems.

• Implemented by PGI, GCC, and Cray 
(until 2.0)

• PGI community editions are freely 
available:

https://www.pgroup.com/products/community.htm
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Introduction to OpenACC

Benefits:

• Portable without sacrificing 
performance

• Simple, based on directives

• Ease of code porting (no large 
code rewrites)
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#pragma acc parallel loop
for(int i = 0; i < N; ++i)

a[i] = a[i]*b[i] + c[i];



Most compute intensive
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get_contact
44%



Accelerating get_contact

• get_contact is called many times 
in the code

• The “pos” vector actually only 
contains 3 values; x, y, z 
coordinates

• The “used” vector contains all of 
the atoms in the structure

• GPU focused, we collapsed the 
outer loop

• Now we compute 3 contacts 
simultaneously

• We also combined all calls to 
get_contact into one large 
function called get_all_contacts

31

for(i=1;i<index_size-1;i++)
{

...
traj->get_contact(c1,c2,&result);
...

}



Accelerating get_contact

• get_contact is called many times 
in the code

• The “pos” vector actually only 
contains 3 values; x, y, z 
coordinates

• The “used” vector contains all of 
the atoms in the structure

• GPU focused, we collapsed the 
outer loop

• Now we compute 3 contacts 
simultaneously

• We also combined all calls to 
get_contact into one large 
function called get_all_contacts
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// For x,y,z coordinate
for(i=0;i<(int)pos.size();i++)
{

...
// For every atom
for(j=0;j<(int)used.size();j++)
{

// Calculate contact
...

}
result->push_back(contact);

}

Inside of the get_contact function



Accelerating get_contact

● Large outer-loop 
covers all individual 
get_contact calls

● Inner-loop still 
iterates over all 
atoms

● Now calculating 3 
different contacts 
simultaneously

● Writing contacts to 
one large results 
array to be used later
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#pragma acc parallel loop private(...) \
present(..., results[0:results_size]) copyin(...)

for(i=1;i<index_size-1;i++)
{

...

#pragma acc loop reduction(+:contact1, +:contact2, \
+:contact3) private(...)

for(j=0;j<c2_size;j++)
{

// Calculate contact1, contact2, contact3
}
...
results[((i-1)*3)+0]=contact1;
results[((i-1)*3)+1]=contact2;
results[((i-1)*3)+2]=contact3;

}



Next most compute intensive
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get_hbond



Acceleration of gethbond
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#pragma acc parallel loop gang
for(i=0;i<_hbond_size;i++)
{

#pragma acc loop vector
for(j=0;j<hbond_size;j++)
{

...
#pragma acc loop seq
for(k=0;k<nframe;k++)
{

...
}

}
}

Gang and vector directives 
allow us to implement 
multiple levels of loop 
parallelism.

The innermost loop is 
typically very small, and 
would provide no benefit in 
parallelizing, so we mark it 
as “sequential”
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#pragma acc parallel loop gang
for(i=0;i<_hbond_size;i++)
{

#pragma acc loop vector
for(j=0;j<hbond_size;j++)
{

...
#pragma acc loop seq
for(k=0;k<nframe;k++)
{

...
}

}
}

Acceleration of gethbond



#pragma acc parallel loop gang
for(i=0;i<_hbond_size;i++)
{

#pragma acc loop vector
for(j=0;j<hbond_size;j++)
{

...
#pragma acc loop seq
for(k=0;k<nframe;k++)
{

...
}

}
}
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if(hbond[i].type==1){
#pragma acc atomic update
effect_arr[nid].n_length+=d;
#pragma acc atomic update
effect_arr[nid].n_phi+=phi;
#pragma acc atomic update
effect_arr[nid].n_psi+=psi

}
if(hbond[j].type==1){

#pragma acc atomic update
effect_arr[cid].c_lengh+=d;
#pragma acc atomic update
effect_arr[cid].c_phi+=phi;
#pragma acc atomic update
effect_arr[cid].c_psi+=psi;

}

Acceleration of gethbond



And the next most…and so on 
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get_contact
44%

getani
18%

getring
12%



Data Movement
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CPU 
Memory

GPU  Memory

Shared Cache

$ $ $ $ $ $

$ $ $ $ $ $

CPU

Shared Cache

$ $ $ $ $ $ $ $

GPU

IO Bus

• CPU and GPU memory is 
separate in a heterogenous 
system

• Connected via an IO Bus (PCI-
E or NVLink)

• Programmer must explicitly 
manage two separate 
memory pools



Data Movement

• Allocate memory on 
host first (main 
memory)

• Create copy of our 
data on the device 
(GPU memory)

• Ensure that the 
correct data is on 
the GPU when we 
need it
– And vice versa
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// Initialize X, Y, Z on host

...

#pragma acc enter data copyin(x_arr[0:x_size], \
y_arr[0:y_size], \
z_arr[0:z_size])



Parallel Profile

41



42

Parallel Profile
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Parallel Profile



Results

Was it worth it?
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Experimental Datasets
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Experimental Datasets
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Experimental Datasets



Experimental Setup
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Machine CPU GPU Machine CPU

NVIDIA PSG (V100) Intel Xeon E5-2698
(16 cores)

NVIDIA Tesla V100 
(16GB HBM2)

NVIDIA PSG 
(V100)

Intel Xeon E5-2698
(16 cores)

NVIDIA PSG (P100) Intel Xeon E5-2698
(16 cores)

NVIDIA Tesla P100 
(16GB HBM2)

NVIDIA PSG 
(P100)

Intel Xeon E5-2698
(16 cores)

University of 
Delaware Vader

Intel i7 990x 
(12 cores)

NVIDIA Volta Titan 
V 
(12GB HBM2)

University of 
Delaware Vader

Intel i7 990x 
(12 cores)

University of 
Delaware Savina

Intel Xeon E5-2603 
(8 cores)

NVIDIA Maxwell 
Titan X 
(12GB GDDR5)

University of 
Delaware Savina

Intel Xeon E5-2603 
(8 cores)



Performance Results
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Very Small
(100K) Atoms​

Medium
(2.1M) Atoms​

Large ​
(6.8M) Atoms​

Very Large
(13.3M) Atoms​

Serial 
(Unoptimized)​

167.11s​ 3547.07​
(1 hour)​

7 hours​
approx.​

14 hours​
approx.​

Intel Xeon E5-2698 (32 cores)
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Performance Results
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Performance Results
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Performance Results
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Very Small
(100K) Atoms​

Medium
(2.1M) Atoms​

Large ​
(6.8M) Atoms​

Very Large
(13.3M) Atoms​

Serial 
(Unoptimized)​

167.11s​ 3547.07​
(1 hour)​

7 hours​
approx.​

14 hours​
approx.​

Serial​
(Optimized)​

32s​ 2209.64s​
(37 min)​

2939s​
(48 min)​

9035s​
(2.5 hours)​

Multicore​
(32 cores)​

2.93s​ 109s​ 172s​ 427s​

NVIDIA PASCAL 
P100 GPU​

1.72s​ 36s​ 69s​ 170s​

NVIDIA VOLTA 
V100 GPU​

1.68s​ 29s​ 56s​ 134s​

Intel Xeon E5-2698 (32 cores)

21x

~3.4x
67x



Performance Results
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Speedup Compared to Unaccelerated 
Performance



Performance Results (per function)
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Function 
Name

Serial

get_contact 2505s

gethbond 337s

getani 29s

getring 19s



Performance Results (per function)
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Function 
Name

Serial Multicore Speedup
(Multicore vs Serial)

get_contact 2505s 100s 25x

gethbond 337s 19s 17x

getani 29s 1.5s 19x

getring 19s 0.84s 22x



Performance Results (per function)
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Function 
Name

Serial Multicore Speedup
(Multicore vs Serial)

V100 GPU Speedup 
(V100 vs Serial)

get_contact 2505s 100s 25x 15s 167x

gethbond 337s 19s 17x 1.24s 271x

getani 29s 1.5s 19x 0.09s 322x

getring 19s 0.84s 22x 0.09s 211x



Performance Results (per function)
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Function 
Name

Serial Multicore Speedup
(Multicore vs Serial)

V100 GPU Speedup 
(V100 vs Serial)

Speedup 
(V100 vs Multicore)

get_contact 2505s 100s 25x 15s 167x 7x

gethbond 337s 19s 17x 1.24s 271x 15x

getani 29s 1.5s 19x 0.09s 322x 17x

getring 19s 0.84s 22x 0.09s 211x 9x
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3D 
printed



Conclusions

• Achieved ~67x performance (in our best case) using a directive 
based programming model on GPUs

• Created a portable code that can run on single core, multicore, 
and GPU

• Allowed chemical shift to be estimated for large structures in a 
much more realistic amount of time

• Maintain the same accuracy (10e-3) as the base code
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