
S9277 - OpenACC-Based GPU
Acceleration of Chemical Shift

Prediction

Eric Wright and Alex Bryer
Sunita Chandrasekaran and Juan Perilla

{efwright, abryer, schandra, jperilla} @udel.edu
Collaborative project from Depts of CIS and Chemistry

University of Delaware
GTC March 19, 2019

1

2

Xu, et al. Nature (2018)

Proteins are central to biology, physiology and pathology

proteinDNA mRNA

DNA replication

transcription translation

information action

transport motor … and much more

Hadden, et al. eLife (2018)

Only 20 unique amino
acids...

Function arises from
structure

encapsulation

Hierarchy of protein structure
Primary structure: sequence of amino acids

Phe Ala Met Leu Gln Trp Glu . . .

Sequence is organized into secondary structure

Secondary structure causes chain to fold into

tertiary structure

Quaternary structure complexes multiple,

folded chains

Structure is essential to function

https://pdb101.rcsb org/motm/72
Medical Research Council: Mitochondrial Biology Unit
(Creative commons attribution license)

Determining a protein’s native structure is

critical

Tools of structure determination:

- X-Ray crystallography
- Electron microscopy

- Nuclear Magnetic Resonance (NMR)

NMR studies proteins with minimal
tampering (i.e., freezing or crystallization)

https://pdb101.rcsb.org/motm/72

6

?

Data collection (days/weeks) Chemical shift assignment (months/years)

Correlation assignment (months/years) Structural ensemble

What does an NMR experiment look like?

❑ Validation
❑ Positional restraints
❑ Partial occupancies
❑ ...
❑ Deposition of structure

Completion

(repeat for remaining
atom types) … then

7

?

Data collection (days/weeks) Chemical shift assignment (months/years)

Correlation assignment (months/years) Structural ensemble

What does an NMR experiment look like?

❑ Validation
❑ Positional restraints
❑ Partial occupancies
❑ ...
❑ Deposition of structure

Completion

(repeat for remaining
atom types) … then

Semi-empirical chemical shift prediction: PPM_One

Treats chemical shift as a sum of differentiable functions which depend on internal coordinates

Higher dimensional data (3D cartesian) maps to lower dimensional internal coordinates

(α) 𝑎1𝑥+𝑏1𝑦 + 𝑐1𝑧+ 𝑑1 = 0

(β) 𝑎2𝑥+𝑏2𝑦 + 𝑐2𝑧 + 𝑑2 = 0

cosΨ =
𝒏1 ∙ 𝒏2
𝒏1 𝒏2

e.g., dihedral angle:

More familiar challenges:
NBody

Dense linear algebra

Unstructured grid (?)
Dawei Li, Rafael Bruschweiler J.Biomol.NMR (2012)
Dawei Li, Rafael Bruschweiler J.Biomol.NMR (2015)

11

Takeaway: theoretical biophysics is compute and data
intensive

Large systems necessitate high-

performance codes and systems

64 million atomistic simulation of HIV-1 virion

Perilla, et al. Nature (2016)

Project Motivation

● Nuclear Magnetic Resonance (NMR) is a vital tool in
structural biology and biochemistry

● Chemical shift gives insight into the physical structure of
the protein

● Predicting chemical shift has important uses in scientific
areas such as drug discovery

Our goal:

● To enable execution of multiple chemical shift
predictions repeatedly

● To allow chemical shift predictions for larger scale
structures

12

Introduction to the PPM_One code

• Parametrize a new empirical knowledge-based

chemical shift predictor of protein backbone

atoms
• Accepts a single static 3D protein structure

(PDB format) as input

• Emulates local protein dynamics

• Outputs chemical shift prediction with high

accuracy

13

PPM_One: a static protein structure based chemical shift predictor
Dawei Li, Rafael Brüschweiler, Journal of Biomolecular NMR. July 2015, Volume 62, Issue 3, pp 403–409

https://link.springer.com/journal/10858
https://link.springer.com/journal/10858/62/3/page/1

Profile Driven Development

14

Profile Driven Development

• Tackling a large and unfamiliar code is daunting

• Advantages of profiling:

– High-level view of the code

– Baseline performance metrics

– Sanity check during the development process

15

Serial Code Profile (Main Function)

16

Main Function % Runtime

main() 100%

predict_bb_static_ann(void) 81.226%

predict_proton_static_new(void) 16.276%

load(string) 1.921%

Serial Profile Visual

17

get_contact
35%

getselect
23%

gethbond
5%

getani
14%

getring
4%

Other
19%

Other Contains:
● File I/O
● PDB

Structure
Initialization

● Data error
correction

• Profiled code using PGPROF
– Without any

optimizations
• Gave a baseline snapshot of

the code
– Identified hotspots

within the code
– Identified functions that

are potential
bottlenecks

• Obtained large overview
without needing to read
thousands of lines of code

Optimization in steps

21

getselect
23%

• getselect()

• Looking into optimizing

the serial code prior to

parallelizing it

Serial Optimization (getselect)

Reusing the same flags
results in the function
returning the same set
of atoms

22

// Pseudocode for getselect function

for(...) // Large loop
{

c2=pdb->getselect(":1-%@allheavy");
traj->get_contact(c1,c2,&result);

}

Serial Optimization (getselect)
getselect originally
accounted for 25% of
the codes runtime.
After optimization, it
takes less than 1%.

23

// Pseudocode for getselect function

for(...) // Large loop
{

c2=pdb->getselect(":1-%@allheavy");
traj->get_contact(c1,c2,&result);

}
// Pseudocode for getselect function

c2=pdb->getselect(":1-%@allheavy");
for(...) // Large loop
{

traj->get_contact(c1,c2,&result);
}

Serial Optimizations (other smaller optimizations)

• Filtering functions:

– Filter objects from a large list

– Written in an inefficient C++ style way

– Runtime for filtering functions went from 5+min to 1 second for some
datasets

• Replace C++ stl vectors:

– All data is stored within stl vectors

– There are a few ways to work around this for GPUs

– We chose to just replace them with pointers when possible

24

25

get_contact
44%

gethbond
14%

getani
18%

getring
12%

Other
12%

get_contact
35%

getselect
23%

gethbond
5%

getani
14%

getring
4%

Other
19%

Serial Profile After Optimization
Before After

Porting PPM to GPUs

26

Our Weapon of Choice

27

Applications

Libraries
Compiler
Directives

Programming
Languages

• High Performance
• Limited Uses

• Portable
• Performance based

on compiler

• High Performance
• Most Difficult

Introduction to OpenACC

• OpenACC is a directive based parallel
programming model used to accelerate
code on heterogenous systems.

• Implemented by PGI, GCC, and Cray
(until 2.0)

• PGI community editions are freely
available:

https://www.pgroup.com/products/community.htm

28

Introduction to OpenACC

Benefits:

• Portable without sacrificing
performance

• Simple, based on directives

• Ease of code porting (no large
code rewrites)

29

#pragma acc parallel loop
for(int i = 0; i < N; ++i)

a[i] = a[i]*b[i] + c[i];

Most compute intensive
30

get_contact
44%

Accelerating get_contact

• get_contact is called many times
in the code

• The “pos” vector actually only
contains 3 values; x, y, z
coordinates

• The “used” vector contains all of
the atoms in the structure

• GPU focused, we collapsed the
outer loop

• Now we compute 3 contacts
simultaneously

• We also combined all calls to
get_contact into one large
function called get_all_contacts

31

for(i=1;i<index_size-1;i++)
{

...
traj->get_contact(c1,c2,&result);
...

}

Accelerating get_contact

• get_contact is called many times
in the code

• The “pos” vector actually only
contains 3 values; x, y, z
coordinates

• The “used” vector contains all of
the atoms in the structure

• GPU focused, we collapsed the
outer loop

• Now we compute 3 contacts
simultaneously

• We also combined all calls to
get_contact into one large
function called get_all_contacts

32

// For x,y,z coordinate
for(i=0;i<(int)pos.size();i++)
{

...
// For every atom
for(j=0;j<(int)used.size();j++)
{

// Calculate contact
...

}
result->push_back(contact);

}

Inside of the get_contact function

Accelerating get_contact

● Large outer-loop
covers all individual
get_contact calls

● Inner-loop still
iterates over all
atoms

● Now calculating 3
different contacts
simultaneously

● Writing contacts to
one large results
array to be used later

33

#pragma acc parallel loop private(...) \
present(..., results[0:results_size]) copyin(...)

for(i=1;i<index_size-1;i++)
{

...

#pragma acc loop reduction(+:contact1, +:contact2, \
+:contact3) private(...)

for(j=0;j<c2_size;j++)
{

// Calculate contact1, contact2, contact3
}
...
results[((i-1)*3)+0]=contact1;
results[((i-1)*3)+1]=contact2;
results[((i-1)*3)+2]=contact3;

}

Next most compute intensive
34

get_hbond

Acceleration of gethbond

35

#pragma acc parallel loop gang
for(i=0;i<_hbond_size;i++)
{

#pragma acc loop vector
for(j=0;j<hbond_size;j++)
{

...
#pragma acc loop seq
for(k=0;k<nframe;k++)
{

...
}

}
}

Gang and vector directives
allow us to implement
multiple levels of loop
parallelism.

The innermost loop is
typically very small, and
would provide no benefit in
parallelizing, so we mark it
as “sequential”

36

#pragma acc parallel loop gang
for(i=0;i<_hbond_size;i++)
{

#pragma acc loop vector
for(j=0;j<hbond_size;j++)
{

...
#pragma acc loop seq
for(k=0;k<nframe;k++)
{

...
}

}
}

Acceleration of gethbond

#pragma acc parallel loop gang
for(i=0;i<_hbond_size;i++)
{

#pragma acc loop vector
for(j=0;j<hbond_size;j++)
{

...
#pragma acc loop seq
for(k=0;k<nframe;k++)
{

...
}

}
}

37

if(hbond[i].type==1){
#pragma acc atomic update
effect_arr[nid].n_length+=d;
#pragma acc atomic update
effect_arr[nid].n_phi+=phi;
#pragma acc atomic update
effect_arr[nid].n_psi+=psi

}
if(hbond[j].type==1){

#pragma acc atomic update
effect_arr[cid].c_lengh+=d;
#pragma acc atomic update
effect_arr[cid].c_phi+=phi;
#pragma acc atomic update
effect_arr[cid].c_psi+=psi;

}

Acceleration of gethbond

And the next most…and so on

38

get_contact
44%

getani
18%

getring
12%

Data Movement

39

CPU
Memory

GPU Memory

Shared Cache

$ $ $ $ $ $

$ $ $ $ $ $

CPU

Shared Cache

$ $ $ $ $ $ $ $

GPU

IO Bus

• CPU and GPU memory is
separate in a heterogenous
system

• Connected via an IO Bus (PCI-
E or NVLink)

• Programmer must explicitly
manage two separate
memory pools

Data Movement

• Allocate memory on
host first (main
memory)

• Create copy of our
data on the device
(GPU memory)

• Ensure that the
correct data is on
the GPU when we
need it
– And vice versa

40

// Initialize X, Y, Z on host

...

#pragma acc enter data copyin(x_arr[0:x_size], \
y_arr[0:y_size], \
z_arr[0:z_size])

Parallel Profile

41

42

Parallel Profile

43

Parallel Profile

Results

Was it worth it?

44

Experimental Datasets

45

46

Experimental Datasets

47

Experimental Datasets

Experimental Setup

48

Machine CPU GPU Machine CPU

NVIDIA PSG (V100) Intel Xeon E5-2698
(16 cores)

NVIDIA Tesla V100
(16GB HBM2)

NVIDIA PSG
(V100)

Intel Xeon E5-2698
(16 cores)

NVIDIA PSG (P100) Intel Xeon E5-2698
(16 cores)

NVIDIA Tesla P100
(16GB HBM2)

NVIDIA PSG
(P100)

Intel Xeon E5-2698
(16 cores)

University of
Delaware Vader

Intel i7 990x
(12 cores)

NVIDIA Volta Titan
V
(12GB HBM2)

University of
Delaware Vader

Intel i7 990x
(12 cores)

University of
Delaware Savina

Intel Xeon E5-2603
(8 cores)

NVIDIA Maxwell
Titan X
(12GB GDDR5)

University of
Delaware Savina

Intel Xeon E5-2603
(8 cores)

Performance Results

49

Very Small
(100K) Atoms​

Medium
(2.1M) Atoms​

Large ​
(6.8M) Atoms​

Very Large
(13.3M) Atoms​

Serial
(Unoptimized)​

167.11s​ 3547.07​
(1 hour)​

7 hours​
approx.​

14 hours​
approx.​

Intel Xeon E5-2698 (32 cores)

Performance Results

50

Very Small
(100K) Atoms​

Medium
(2.1M) Atoms​

Large ​
(6.8M) Atoms​

Very Large
(13.3M) Atoms​

Serial
(Unoptimized)​

167.11s​ 3547.07​
(1 hour)​

7 hours​
approx.​

14 hours​
approx.​

Serial​
(Optimized)​

32s​ 2209.64s​
(37 min)​

2939s​
(48 min)​

9035s​
(2.5 hours)​

Intel Xeon E5-2698 (32 cores)

Performance Results

51

Very Small
(100K) Atoms​

Medium
(2.1M) Atoms​

Large ​
(6.8M) Atoms​

Very Large
(13.3M) Atoms​

Serial
(Unoptimized)​

167.11s​ 3547.07​
(1 hour)​

7 hours​
approx.​

14 hours​
approx.​

Serial​
(Optimized)​

32s​ 2209.64s​
(37 min)​

2939s​
(48 min)​

9035s​
(2.5 hours)​

Multicore​
(32 cores)​

2.93s​ 109s​ 172s​ 427s​

Intel Xeon E5-2698 (32 cores)

Performance Results

52

Very Small
(100K) Atoms​

Medium
(2.1M) Atoms​

Large ​
(6.8M) Atoms​

Very Large
(13.3M) Atoms​

Serial
(Unoptimized)​

167.11s​ 3547.07​
(1 hour)​

7 hours​
approx.​

14 hours​
approx.​

Serial​
(Optimized)​

32s​ 2209.64s​
(37 min)​

2939s​
(48 min)​

9035s​
(2.5 hours)​

Multicore​
(32 cores)​

2.93s​ 109s​ 172s​ 427s​

NVIDIA PASCAL

P100 GPU​

1.72s​ 36s​ 69s​ 170s​

Intel Xeon E5-2698 (32 cores)

Performance Results

53

Very Small
(100K) Atoms​

Medium
(2.1M) Atoms​

Large ​
(6.8M) Atoms​

Very Large
(13.3M) Atoms​

Serial
(Unoptimized)​

167.11s​ 3547.07​
(1 hour)​

7 hours​
approx.​

14 hours​
approx.​

Serial​
(Optimized)​

32s​ 2209.64s​
(37 min)​

2939s​
(48 min)​

9035s​
(2.5 hours)​

Multicore​
(32 cores)​

2.93s​ 109s​ 172s​ 427s​

NVIDIA PASCAL
P100 GPU​

1.72s​ 36s​ 69s​ 170s​

NVIDIA VOLTA
V100 GPU​

1.68s​ 29s​ 56s​ 134s​

Intel Xeon E5-2698 (32 cores)

21x

~3.4x
67x

Performance Results

54

Speedup Compared to Unaccelerated
Performance

Performance Results (per function)

55

Function
Name

Serial

get_contact 2505s

gethbond 337s

getani 29s

getring 19s

Performance Results (per function)

56

Function
Name

Serial Multicore Speedup
(Multicore vs Serial)

get_contact 2505s 100s 25x

gethbond 337s 19s 17x

getani 29s 1.5s 19x

getring 19s 0.84s 22x

Performance Results (per function)

57

Function
Name

Serial Multicore Speedup
(Multicore vs Serial)

V100 GPU Speedup
(V100 vs Serial)

get_contact 2505s 100s 25x 15s 167x

gethbond 337s 19s 17x 1.24s 271x

getani 29s 1.5s 19x 0.09s 322x

getring 19s 0.84s 22x 0.09s 211x

Performance Results (per function)

58

Function
Name

Serial Multicore Speedup
(Multicore vs Serial)

V100 GPU Speedup
(V100 vs Serial)

Speedup
(V100 vs Multicore)

get_contact 2505s 100s 25x 15s 167x 7x

gethbond 337s 19s 17x 1.24s 271x 15x

getani 29s 1.5s 19x 0.09s 322x 17x

getring 19s 0.84s 22x 0.09s 211x 9x

60

3D
printed

Conclusions

• Achieved ~67x performance (in our best case) using a directive
based programming model on GPUs

• Created a portable code that can run on single core, multicore,
and GPU

• Allowed chemical shift to be estimated for large structures in a
much more realistic amount of time

• Maintain the same accuracy (10e-3) as the base code

61

