
Alan Gray and Jon Vincent, GTC 2019

BRINGING GROMACS UP-TO-SPEED
ON MODERN MULTI-GPU SYSTEMS

2

ACKNOWLEDGEMENTS
• We are very grateful to the core Gromacs development team in Stockholm for the

ongoing collaboration, in particular:

• Erik Lindahl, Stockholm University/SciLifeLab/KTH

• Mark Abraham, SciLifeLab/KTH

• Szilard Pall, KTH/PDC

• Berk Hess, SciLifeLab/KTH

• Artem Zhmurov, KTH/PDC

• The EU BioExcel Center of Excellence for Biomolecular Research supports this
collaboration.

• The results presented here involve NVIDIA’s prototype developments. We are now
working with the above team to integrate these into the main Gromacs branch,
including further improvements.

3

AGENDA

• Introduction

• A high-level overview of developments

• Performance results

• Development details

• Attacking small problem sizes with CUDA Graphs

mini-presentation:
“Getting Started With CUDA Graphs”

4

INTRODUCTION

5

INTRODUCTION

• Gromacs, a simulation package for biomolecular systems, is one of the most highly
used HPC applications globally.

• It evolves systems of particles using the Newtonian equations of motion:

• Forces between particles dictate their movement (e.g. two positively
charged ions will repel).

• Calculating forces is most expensive part of simulation - all pairs of particles in
the simulation can potentially interact. Forces get weaker with distance, but long-
range forces still must be accounted for.

6

INTRODUCTION
• Force calcs typically fall into three classes in Gromacs:

• Non-bonded forces: (short range) - particles within a certain cutoff range interact directly

• PME: long-range forces accounted for through a “Particle Mesh Ewald” scheme, where Fourier
transforms are used to perform calculations in Fourier space, which is much cheaper than
calculating all interactions directly in real space

• Bonded forces: required due to specific behaviour of bonds between particles, e.g. the harmonic
potential when two covalently bonded atoms are stretched

• These are all now accelerated, most recently the addition of GPU bonded forces in Gromacs
2019 (evolved through prototype work by NVIDIA). But we still have a problem….

• …force calcs are now so fast on modern GPUs that other parts are now very significant, especially
when we wish to utilize multiple GPUs.

• We will describe work to port all significant remaining computational kernels to the GPU, and
to perform the required Inter-GPU communications using peer-to-peer memory copies, such
that the GPU is exploited throughout and repeated PCIe transfers are avoided.

7

A HIGH LEVEL OVERVIEW
OF DEVELOPMENTS

8

GROMACS ON OLD KEPLER ARCHITECTURE

• On old architectures such as Kepler, force calculations are very
dominant and other overheads are dwarfed.

• ~400K atom “Cellulose” case.

• : GPU Idle time

9

VOLTA VS KEPLER

• But on new architectures such as Volta, force kernels are so fast
that other overheads are very significant.

• The timescales are aligned in the above profiles

Kepler

Volta

10

NB

Bonded

PME

Update&ConstraitsBO BOH2D D2H

CPU

GPU

PCIe

THE PROBLEM
Single GPU

BO = Buffer Ops

NEW

11

NB

Bonded

PME

Up&ConBO BO

CPU

GPU

PCIe

THE SOLUTION
Single GPU

BO = Buffer Ops

12

SINGLE GPU: NEW DEVELOPMENT

GMX 2019

NVdev

• Aligned timescales

13

NB

Bonded

PME

Update&ConstraitsHMPI BO

HMPI

BOHMPI

HMPID2HH2D

H2D D2H

PME

PP

PP

PP

As above

As above

CPU

GPU

PCIe

BO = Buffer Ops
HMPI = Host MPI

THE PROBLEM
Multi (4X) GPU

14

NB

Bonded

PME

Up&ConDMPI BO

DMPI

BODMPI

DMPIPME

PP

PP

PP

As above

As above

GPU

NVLink

BO = Buffer Ops
DMPI = Device MPI

THE SOLUTION
Multi (4X) GPU

15

MULTI-GPU

• For our multi-GPU experiments we use 4 x V100 SXM2 GPUs fully-
connected with NVLink, plus 2xCPU.

NVLink

NVLink

N
V
L
in

k

N
V
L
in

k

P
C
Ie

CPU CPU

GPU GPU

GPU GPU

16

GMX 2019

• Aligned timescales. STMV (~1M atom) case.

NVDev

PME GPU:

PME GPU:

PP GPU (1 of 3):

PP GPU (1 of 3):

17

DEVELOPMENT WORKFLOW

1. Develop a prototype branch of Gromacs

• Aim to support most commonly used simulation scenarios

• Demonstrate performance benefits for real test case

• Sandbox branch of Gromacs gerrit repo: sandbox-puregpu

• Not designed as a fork suitable for production work

2. Upstream developments into main Gromacs master branch

• In collaboration with core Gromacs developers

• Major effort required to refactor and integrate in a robust manner

• Further performance improvements

• Bonded forces are already upstreamed and available in Gromacs 2019. Upstreaming of all
other components in progress.

18

PERFORMANCE RESULTS

19

BENCHMARKS

ADH Dodec
~100K atoms

Cellulose
~400K atoms

STMV
~1M atoms

• Performance results are dependent on system size. We strive to aim our

benchmarking and optimization to cover the range of typical sizes in use. We

welcome any feedback on further cases to include.

20

MULTI-GPU: PROTOTYPE VS GMX 2019.1

21

PROTOTYPE ON GPU VS 2019.1 ON CPU

22

SINGLE-GPU: PROTOTYPE VS GMX 2019.1

23

DEVELOPMENT DETAILS

24

NVIDIA DEVELOPMENTS

• Reminder: Upstreaming of developments is in collaboration with
core Gromacs developers.

• GPU Bonded: 8 new kernels corresponding to bonded force types

• already integrated in Gromacs 2019

• GPU Buffer Ops: transformations between different data formats
used in gromacs, and force reduction operations. 2 new kernels and
restructuring.

• Several patches to gromacs master branch in progress.

25

NVIDIA DEVELOPMENTS
• GPU Update and Constraints

• 11 new kernels related to the “update”, “lincs” and “settle”
operations to update and constrain atom positions from forces.

• Device MPI: PME/PP Gather and Scatter

• Use of CUDA-aware MPI to exchange data directly between GPUs

• More details coming up

• Device MPI: PP halo exchanges

• New functionality to pack device-buffers and exchange directly
between GPUs using CUDA-aware MPI

• More details coming up

• Patches to master branch in progress for all the above

26

PP TO PME COMMUNICATION

Data H2D

Data MPI

Data D2H

Data MPI

PP task PME task

Original GROMACS

New development

Data MPI Data MPI

GPU GPU

GPU GPU

CPU CPU

CPU CPU

27

PP TO PP HALO EXCHANGE COMMUNICATION

Data H2D

Data MPI

Data D2H

Buffer Packing

PP task PP task

Original GROMACS

New development

Data MPI Data MPI

GPU GPU

GPU GPU

CPU CPU

Small&infrequent

CPU

Data MPI

Buffer Packing

Build index map

Index map D2H
Build index map

Index map D2H

Buffer Packing

Data D2H

Buffer Packing

Data H2D

CPU

Small&infrequent

28

NEXT STEPS
• As described, integrate new developments into master branch

• Such that they become available for GMX 2020 Beta release in Autumn 2019

• Further developments

• Small case optimization:

• Performance benefits currently more profound for larger cases.

• Smaller cases are more sensitive to overheads associated with short GPU
activities (e.g. kernel launch latency).

• We can leverage new CUDA features such as CUDA Graphs to improve.

• Also other improvements such as fusing kernels.

• PME decomposition: enablement of multi-GPU for PME could improve load
balance, and also potentially allow scaling to higher numbers of GPUs.

29

ATTACKING SMALL PROBLEM
SIZES WITH CUDA GRAPHS

30

GETTING STARTED WITH CUDA GRAPHS

Pattern occurring in real apps (including Gromacs)

• Loop over timesteps/iterations

…

shortKernel1

shortKernel2

…

shortKernelN

…

By way of simple example

Section of timestep involving execution of
multiple short kernels

31

GETTING STARTED WITH CUDA GRAPHS

• Simple kernel devised to represent a real short-lasting kernel

• Can use profiler to measure execution time: 2.9μs on V100 (CUDA 10.1, 512 threads per block)

• Can call repeatedly to mimic patterns found in real apps

#define N 500000 // tuned such that kernel takes a few microseconds

__global__ void shortKernel(float * out_d, float * in_d){

int idx = blockIdx.x * blockDim.x + threadIdx.x;

if(idx < N){

out_d[idx] = 1.23 * in_d[idx];

}

return;

}

By way of simple example

32

GETTING STARTED WITH CUDA GRAPHS

• Call kernel 20 times, each of 1000 iterations.

• Time taken per kernel inc overheads: 9.6 μs (vs 2.9μs execution time).

• But note that with above code, each kernel is not launched until previous completes

• No overlap of launch overhead with computation

#define NSTEP 1000

#define NKRNL 20

// start wallclock timer

for(int step=0; step<NSTEP; step++){

for(int krnl=0; krnl<NKRNL; krnl++){

shortKernel<<<blocks, threads, 0, stream>>>(out_d, in_d);

cudaStreamSynchronize(stream);

}

}

//end wallclock timer

By way of simple example

33

GETTING STARTED WITH CUDA GRAPHS

• Launch overheads are fully exposed

• NB: profiler adds some overhead on this timescale

34

GETTING STARTED WITH CUDA GRAPHS

• Move sync out of inner loop: allow overlap of launch overhead with computation.

• Time taken per kernel inc overheads: 3.8 μs (vs 2.9μs execution time).

• Better, but still overheads associated with multiple launches.

// start wallclock timer

for(int step=0; step<NSTEP; step++){

for(int krnl=0; krnl<NKRNL; krnl++){

shortKernel<<<blocks, threads, 0, stream>>>(out_d, in_d);

}

cudaStreamSynchronize(stream);

}

//end wallclock timer

By way of simple example

35

GETTING STARTED WITH CUDA GRAPHS

• Launch overheads are partially hidden, but overheads remain. Instead, can use Graphs to
launch all the kernels (within an iteration) in a single operation.

• NB: profiler adds some overhead on this timescale

36

bool graphCreated=false;

cudaGraph_t graph;

cudaGraphExec_t instance;

for(int step=0; step<NSTEP; step++){

if(!graphCreated){

cudaStreamBeginCapture(stream,cudaStreamCaptureModeGlobal);

for(int krnl=0; krnl<NKRNL; krnl++){

shortKernel<<<blocks, threads, 0, stream>>>(out_d, in_d);

}

cudaStreamEndCapture(stream,&graph);

cudaGraphInstantiate(&instance,graph,NULL,NULL,0);

graphCreated=true;

}

cudaGraphLaunch(instance, stream);

cudaStreamSynchronize(stream);

}

GETTING STARTED WITH CUDA GRAPHS

• Time taken per kernel inc overheads: 3.4 μs (vs 2.9μs execution time).

• Future work in CUDA will aim to further improve overheads.

By way of simple example

Stream capture into
graph, only on first

iteration

Launch graph in a single operation

37

CUDA GRAPHS

• In this very simple case, most of the overhead was already being hidden -
use of CUDA Graphs able to further decrease the overhead.

• More complex cases provide more opportunities for savings.

• Multiple interacting streams with different types of GPU operations.

• Graphs may span multiple GPUs

• Can define using stream capture or directly using API.

• S9240: CUDA – New Features and Beyond, Stephen Jones (NVIDIA)

• Programming Guide:

• https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#cuda-
graphs

• CUDA sample: samples/0_Simple/simpleCudaGraphs

A

B X

C D

E Y

End

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#cuda-graphs

38

SUMMARY

• Modern GPUs are so fast in performing Gromacs force calculations that the other
parts of the simulation timestep are becoming a bottleneck.

• We showed results from accelerating the other computational parts and enabling
peer-to-peer communication directly between GPUs.

• Our prototype shows large performance increases over the released version of
Gromacs.

• We are now working with the core Gromacs developers to integrate these into the
main branch, and perform further improvements.

• For small cases, approaches are required which minimize overheads associated
with short operations. We gave a demonstration of how CUDA Graphs can be used
for this sort of problem.

