How To Build Efficient ML Pipelines

From the Startup Perspective

Jaeman An <jaeman@aitrics.com>

—
GPU Technology Conference, 2019 ‘ AI TRICS

I What you can get from this talk

Machine Learning Pipelines
~ Challenges that many fast-growing startups face
~ Solutions we came up with

= Several tools and tips that may be useful for you : kubernetes, polyaxon,
kubeflow, terraform, ...

~ Way to build your own training farm by step by step

- How to deploy & manage trained model by step by step

(AlJTRICS

01 Why we built a ML pipeline
02 Brief introduction to kubernetes

03 Model building & training phase

- Building training farm from zero (step by step)
- Terraform, Polyaxon

04 Model deployment & production phase

- Building inference farm from zero (step by step)
- Several ways to make microservices
- Kubeflow

05 Conclusion

06 What's next?

(AlJTRICS

Why we built a ML pipeline

I Very simple way to start machine learning startup

< Buy GPU machines

Data refining

© Build (Explore) your own models

Model building

~ Train models

~ Freeze and deploy as as service Training

< Conduct fitting and re-training
Deploying

©~ Earn money and exit

Fitting, re-training

[AlJTRICS

I Very simple way to start machine learning startup

Data refining

© Build (Explore) your own models

Model building

~ Train models

~ Freeze and deploy as as service Training

< Conduct fitting and re-training
Deploying

Fitting, re-training

[AlJTRICS

I What's going on in data refining phase

< Mostly time-consuming job

Data refining

© Sometimes we need to do large-scale data processing

< Use Apache Spark!

(This won'’t be covered in this talk) o
Model building

© We've not handle real-time data *yet”*

~ Kafka Streams is feasible solution
(This won't be covered in this talk)

Training
© Have to manage several data versions
< due to sampling policies and operational definitions (labeling)

< Can use Git-like solutions Deploying

< It'll be great to import data easily in the training phase like

o ./train --data=images_vl

Fitting, re-training

~ Permission Control

[AlJTRICS

I What's going on in model building phase

© Referring tons of precedent research

Data refining

© Pick a simple model for baseline with small set of data

<~ Check minimal accuracy and debug our model

o (it data matters) refining data more precisely

o (if model matters) iteratively improve our model Training

<~ Mostly only need GPU instance or notebook and small
datasets; don't want to care about other stuffs! Deploying

o ./run-notebook tf-vlZ2-gpu --gpu=4 --

data=1mages_v1l
Fitting, re-training

o ./ssh tf-vl2-gpu --gpu=2 --data=1mages_vl

[AlJTRICS

I What's going on in training phase

© Training on large datasets

Data refining

< Researchers have to "hunt" idle GPU resources by
accessing 10+ servers one by one

Model building

< Scalability: Sometimes there’s no idle GPU resources
(depends on product timeline / paper deadline)

~ Access Control: Sometimes all resources are
occupied by outside collaborators

< Data accessibility: Fetching / moving training data
servers to servers is very painful!

Deploying

< Monitoring: Want to know how our experiments are
going and what's going on our resources Fitting, re-training

[Al]TRICS

I What's going on in deploying phase

< In the middle of machine learning
engineering and software engineering

<~ Want to manage model independently for
the product

©~ Build micro-services that inference test data
synchronously / asynchronously

< Have to consider high availability on
production usage

Data refining

Model building

Training

Deploying

Fitting, re-training

[Al]TRICS

I What's going on to us in fitting phase

© Data distribution always changes; therefore, have to
keep fitting the model with the real data

Data refining

~ Want to easily change the model code interactively
Model building

< Try to build online-learning model or re-training model
in certain schedule
Training
© Sometimes need to create real time data flow with
Kafka

Deploying

© Have to manage several model versions
©~ As new models are developed

< Asthe usage varies

[AlJTRICS

I Problems and requirements

~ Model building & training phase:

- We need to know the status of resources without access to our
physical servers one by one.

~ We want to use easily idle GPU with proper training datasets
~ We have to control permissions of our resources and datasets

~ We only want to mainly focus on our research: developing innovative
models, conducting experiments and such, ... not infrastructures

(AlJTRICS

I Problems and requirements

~ Model deploying & updating phase:

< It's hard to control because it is in the middle of machine learning
engineering and software engineering

<~ We want to create simple micro-services that don't need much management

~ There are many models with different purposes;
- some models need real-time inference
- some models do not require real-time, but they need inference in the
certain time range

~ We have to consider high availability configuration
~ Models must be fitted and re-trained easily

~ We have to manage several versions of models

(AlJTRICS

I How to solve

~ Managing resources over multiple servers, deploying microservices,
permission controls, ...

~ These can be solved with orchestration solutions.
~ We are going to build training farm using kubernetes.

~ Before that, what is kubernetes?

(AlJTRICS

Kubernetes in 5 minutes

I Kubernetes

< Kubernetes (k8s) is an open-source
system for automating deployment,
scaling, and management of
containerized applications.

Storages Storages

< It orchestrates computing, networking,
and storage infrastructure on behalf of
user workloads.

k8s
Minion

k8s
Minion

Service

~ NVIDIA GPU also can be orchestrated
through NVIDIA's k8s device plugin

[Al]TRICS

Kubernetes

Storages Storages

k8s
Master

k8s
Minion

K8s
Minion

Service

- Attach

NodePort

<~ Give me 4 CPU, 1 Memory, 1 GPU

< I’'m Jaeman An, and I’'m in team A
namespace

< With 4 External Port
© With abcd.aitrics.com hostname
< With latest gpu tensorflow image

<~ With 100GB writable volumes and data
from readable source

< OK, Hereyou are
< No, you have no permission

< No, you've already use resources
that you can

<~ No, there's no idle resources, please wait

[Al]TRICS

Kubernetes

Storages Storages

Workload & Services

Pod
Service
Ingress
k8s Deployment
Master ., Attach Replication Controller

Storage Class

: Namespace
PersistentVolume le & Authorizati
- o : PersistentVolumeClaim Role uthorization
s s L]
Minion Minion Resource Quota

Workload Controllers

......... Job
Service CronJob
ReplicaSet
RepliactionController
DaemonSet

<Objects> <Meta & Policies>

[Al]TRICS

Kubernetes

Workload & Services
Pod
Service
Ingress

Storage Class
PersistentVolume
PersistentVolumeClaim

Workload Controllers
Job

A iIs the basic building block of Kubernetes -
the smallest and simplest unit in the Kubernetes
object model that you create or deploy. A Pod
represents a running process on your cluster.

kind: Pod
metadata:
name: gpu-pod
spec:
containers:
- name: cuda-container

image: nvidia/cuda:9.0-base

resources:
limits:
nvidia.com/gpu: 1 # requesting 1 GPU
command: ["nvidia-smi"]

Ref: https://kubernetes.io/docs/concepts/workloads/pods/pod-overview/

(AlJTRICS

Kubernetes

Workload & Services
Pod
Service
Ingress

Storage Class
PersistentVolume
PersistentVolumeClaim

Workload Controllers
Job

A IS an abstraction which defines a logical
set of Pods and a policy by which to access them -
sometimes called a micro-service.

kind: Service
apiVersion: vl
metadata:

name: my-service
spec:

selector:

app: MyApp
ports:
- protocol: TCP
port: 80
targetPort: 9376

Ref: https://kubernetes.io/docs/concepts/services-networking/service/

(AlJTRICS

Kubernetes

Workload & Services
Pod
Service
Ingress

Storage Class
PersistentVolume
PersistentVolumeClaim

Workload Controllers
Job

exposes HTTP and HTTPS routes from
outside the cluster to services within the cluster.
Traffic routing is controlled by rules defined on
the Ingress resource.

kind: Ingress
metadata:

name: test-ingress
spec:

rules:

- host: foo.bar.com

- http:
paths:
- backend:
serviceName: MyService
servicePort: 80

Ref: https://kubernetes.io/docs/concepts/services-networking/ingress/

(AlJTRICS

Kubernetes

Workload & Services
Pod
Service
Ingress

Storage Class
PersistentVolume
PersistentVolumeClaim

Workload Controllers
Job

A (PV) is a piece of storage in
the cluster that has been provisioned by an
administrator. It is a resource in the cluster just
like a node is a cluster resource.

kind: PersistentVolume
metadata:
name: pvO0d3
spec:
capacity:
storage: 5G1i

volumeMode: Filesystem
accessModes:

- ReadWriteOnce
nfs:

path: /tmp

server: 172.17.0.2

Ref: https://kubernetes.io/docs/concepts/storage/persistent-volumes/

(AlJTRICS

Kubernetes

Workload & Services A (PVC) is a request for
Pod : e
Service storage by a user. Claims can request specific size
Ingress and access modes (e.g., can be mounted once

read/write or many times read-only).

kind: PersistentVolumeClaim
apiVersion: vl
metadata:
name: myclaim
spec:
accessModes:

Storage Class
PersistentVolume
PersistentVolumeClaim

- ReadWriteOnce
Job volumeMode: Filesystem
resources:
requests:
storage: 8Gi

Workload Controllers

Ref: https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims

(AlJTRICS

Kubernetes

Workload & Services
Pod
Service
Ingress

Storage Class
PersistentVolume
PersistentVolumeClaim

Workload Controllers
Job

A creates one or more Pods and ensures that
a specified number of them successfully
terminate. As pods successfully complete,

the Job tracks the successful completions.

kind: Job
metadata:
name: pi
spec:
template:
spec:

containers:

- hame: pi
image: perl
command: ["perl", "-Mbignum=bpi", "-
wle", "print bpi(2000)"]

Ref: https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims

(AlJTRICS

Kubernetes

Policies & Others
Namespace
Resource Quota
Role & Authorization

Kubernetes supports multiple virtual clusters backed by
the same physical cluster. These virtual clusters are
called namespaces. Those are intended for use in
environments with many users spread across multiple
teams, or projects.

kubectl get namespaces

NAME STATUS
default Active
kube-system Active
kube-public Active

Ref: https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/

(AlJTRICS

Kubernetes

Policies & Others
Namespace
Resource Quota
Role & Authorization

A , defined by a ResourceQuota
object, provides constraints that limit aggregate
resource consumption per namespace.

kind: ResourceQuota
metadata:
name: compute-resources
spec:
hard:
requests.nvidia.com/gpu: 1

Ref: https://kubernetes.io/docs/concepts/policy/resource-quotas/

(AlJTRICS

I Kubernetes

Policies & Others In Kubernetes, you must be authenticated

N _ |
Resca)Lnrizp(;Szta (logged in) before your request can be authorized

Role & Authorization (granted permission to access).

Kubernetes uses client certificates, bearer tokens,
an authenticating proxy, or HTTP basic auth to
authenticate APl requests through authentication

plugins.

Ref: https://kubernetes.io/docs/reference/access-authn-authz/authentication/

(AlJTRICS

Kubernetes

Policies & Others
Namespace
Resource Quota
Role & Authorization

is a method of
regulating access to computer or network
resources based on the roles of individual users
within an enterprise.

kind: Role
metadata:
namespace: default
name: pod-reader
rules:
- apiGroups: [""]

group:
resources: ["pods"]
verbs: ["get", "watch", "list"]

Ref: https://kubernetes.io/docs/reference/access-authn-authz/rbac/

(AlJTRICS

Kubernetes

Policies & Others
Namespace
Resource Quota
Role & Authorization

is a method of

regulating access to computer or network
resources based on the roles of individual users
within an enterprise.

kind: RoleBinding
apiVersion: rbac.authorization.k8s.10/v1l
metadata:
name: read-pods
namespace: default
subjects:
- kind: User

name: jane

apiGroup: rbac.authorization.k8s.10
roleRef:

kind: Role

name: pod-reader

ap1Group: rbac.authorization.k8s.10

Ref: https://kubernetes.io/docs/reference/access-authn-authz/rbac/

(AlJTRICS

Model building & training phase

- Building training farm from zero (step by step)
- Polyaxon
- Terraform

I RECAP: Our requirements

> We need to know GPU resource status without accessing our physical
servers one by one.

- We want to easily use idle GPU with proper training datasets
- We have to control permissions of our resources and datasets

- We only want to focus on our research: building models, doing the
experiments, ... not infrastructures!

~ ./run-notebook tf-vl2-gpu --gpu=4 --data=1mages_vl
o ./train tf-vl2-gpu model.py --gpu=4 --data=1mages_vl

o ./ssh tf-vl2-gpu --gpu=4 --data=1mages_v1l --exposes-
port=4

(AlJTRICS

Blueprint

Experiments

Quotas

Monitor

UA_ICML 2019 > Instances

Instance ID Name
u-1036579 exp-s10
u-7325277 exp-s9
u-1751311 test
Description

ID u-1036579

Name exp-s10

Image tf-latest-gpu

Port 33718, 33719, 33720, 33721

CPU 1

Memory 4GB

GPU 2 (Tesla K80)

Image

tf-latest-gpu
mxnet

mxnet

SSH key

Port
4 expose
2 expose

2 expose

SSH command

Volume

attachment

Started at

Jaeman Outside colaborator

Size
g2.large

g2.small

g2.small

Download

Copy

MNUST_1901 (ro)
CIFAR_1901 (ro)

2019-01-05 19:04:01

Started

2019 - ...

2019 - ...

2019 - ...

Logout

+ New

State

@® running
@® running

® terminated

Hide

(AlJTRICS

Blueprint

New Instance

Size

g2.small (1CPU, 4GB, 1Titan)

Image

tf-latest-gpu (charlie)

Input volumes

Select

Output volumes

Select

Cancel

[Al]TRICS

I Instructions

= Step 1. Install Kubernetes master on AWS

~ Step 2. Install Kubernetes as nodes in physical servers

= Step 3. Run hello world training containers

~ Step 4. RBAC Authorization & resource quota

= Step 5. Expand GPU servers on demand with AWS

~ Step 6. Attach training data

~ Step 7. Web dashboard or cli tools to run training container

= Step 8. With other tools (Polyaxon)

(AlJTRICS

I Step 1. Install Kubernetes master on AWS

~ There are several ways to install kubernetes

~ Use kubeadm in this session.

~ Other options: conjure-up, kops

~ Network option: flannel (https://github.com/coreos/flannel)

o Server configuration that I've used in k8s master:
- AWS t3.large: 2 vCPUs, 8GB Memory

~ Ubuntu 18.04, docker version 18.09

Ref: https://kubernetes.io/docs/setup/independent/create-cluster-kubeadm/

(AlJTRICS

https://github.com/coreos/flannel

Step 1. Install Kubernetes master on AWS

Install kubeadm
https://kubernetes.io0/docs/setup/independent/install-kubeadm/

curl -s https://packages.cloud.google.com/apt/doc/apt-key.gpg \
apt-key add -

cat <<EOF > /etc/apt/sources.list.d/kubernetes.list
deb https://apt.kubernetes.i0/ kubernetes-xenial main
EOF

apt-get install -y kubelet kubeadm kubectl

Ref: https://kubernetes.io/docs/setup/independent/install-kubeadm/

(AlJTRICS

Step 1. Install Kubernetes master on AWS

Initialize with Flannel (https://github.com/coreos/flannel)

kubeadm init --pod-network-cidr=10.244.0.0/16

Ref: https://kubernetes.io/docs/setup/independent/create-cluster-kubeadm/

(AlJTRICS

Step 1. Install Kubernetes master on AWS

Initialize with Flannel (https://github.com/coreos/flannel)
kubeadm init --pod-network-cidr=10.244.0.0/16
Your kubernetes master has initialized successfully!

To start using your cluster, you need to run the following as a regular user:

mkdir -p $HOME/.kube
sudo cp -1 /etc/kubernetes/admin.conf $HOME/.kube/config
sudo chown $(id -u):$(id -g) $HOME/.kube/config

You can now join any number of machines by running the following on each node
as root:

kubeadm join 172.31.30.194:6443 --token *** --discovery-token-ca-cert-hash ***

Ref: https://kubernetes.io/docs/setup/independent/create-cluster-kubeadm/

(AlJTRICS

Step 1. Install Kubernetes master on AWS

Initialize with Flannel (https://github.com/coreos/flannel)
kubectl -n kube-system apply -f https://raw.githubusercontent.com/

coreos/flannel/62e44c867a2846fefb68bd5f178daf4da3@95cchb/
Documentation/kube-flannel.yml

Ref: https://kubernetes.io/docs/setup/independent/create-cluster-kubeadm/

(AlJTRICS

Step 1. Install Kubernetes master on AWS

Install NVIDIA k8s-device-plugin
https://github.com/NVIDIA/k8s-device-plugin

kubectl create -f https://raw.githubusercontent.com/NVIDIA/k8s-
device-plugin/vl.11/nvidia-device-plugin.yml

Ref: https://github.com/NVIDIA/k8s-device-plugin

(AlJTRICS

http://wiki.aitrics.com/pages/.githubusercontent.com

I Step 2. Install kubernetes as nodes in physical servers

< In this step,
~install nvidia-docker
~join to kubernetes master
~ use kubeadm join command
~install NVIDIA's k8s-device-plugin

o create kubernetes dashboard to check resources

~ Server configuration that I've used in k8s node:
~ 32 CPU core, 128GB Memory
~4 GPU (Titan Xp), Driver version: 396.44

- Ubuntu 16.04, docker version 18.09

(AlJTRICS

Step 2. Install kubernetes as nodes in physical servers

Install nvidia-docker Chttps://github.com/NVIDIA/nvidia-docker)

curl -s -L https://nvidia.github.1o/nvidia-docker/gpgkey | apt-key

add -
curl -s -L https://nvidia.github.1o/nvidia-docker/ubuntul8.04/nvidia-

docker.list | tee /etc/apt/sources.list.d/nvidia-docker.list

apt-get update
apt-get install -y nvidia-docker?2

Ref: https://github.com/NVIDIA/nvidia-docker

(AlJTRICS

Step 2. Install kubernetes as nodes in physical servers

change docker default runtime to nvidia-docker

vl /etc/docker/daemon. json

{

"default-runtime": "nvidia",
"runtimes": {
"nvidia": {
"path": “nvidia-container-runtime",
"runtimeArgs": []

systemctl restart docker

Ref: https://github.com/NVIDIA/nvidia-docker

(AlJTRICS

Step 2. Install kubernetes as nodes in physical servers

test nvidia-docker 1s successfully installed

docker run --rm -1t nvidia/cuda nvidia-smi

Ref: https://github.com/NVIDIA/nvidia-docker

(AlJTRICS

Step 2. Install kubernetes as nodes in physical servers

test nvidia-docker 1s successfully installed

docker run --rm -1t nvidia/cuda nvidia-smi

Driver Version: 3960.44 CUDA Version: 10.0

| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Capl Memory-Usage | GPU-Util Compute M. |
| ====mmmmmmm e e e e e e e e e |
| @ Titan Xp | 00 :00:1E.0 Off |

Ref: https://github.com/NVIDIA/nvidia-docker

(AlJTRICS

Step 2. Install kubernetes as nodes in physical servers

joln to kubernetes master with kubeadm

kubeadm join 172.31.30.194:6443 --token *** --discovery-token-ca-
cert-hash ***

(AlJTRICS

Step 2. Install kubernetes as nodes in physical servers

joln to kubernetes master with kubeadm

kubeadm join 172.31.30.194:6443 --token *** --discovery-token-ca-
cert-hash ***

This node has joined the cluster.

* Certificate signing request was sent to apiserver and a response was
received

* The Kubelet was informed of the new secure connection details

Run 'kubectl get nodes' on the master to see this node join the
cluster.

(AlJTRICS

Step 2. Install kubernetes as nodes in physical servers

check the node join the cluster
run this on the master

kubectl get nodes

(AlJTRICS

Step 2. Install kubernetes as nodes in physical servers

check 1f the node (named as 'stark') join the cluster
run this command on the master

kubectl get nodes

NAME STATUS ROLES AGE VERSION
1p-172-31-99-9 Ready master 99d v1.12.2
stark Ready <none> 99d v1.12.2

(AlJTRICS

Step 2. Install kubernetes as nodes in physical servers

create kubernetes dashboard

kubectl apply -f https://raw.githubusercontent.com/kubernetes/
dashboard/v1.10.1/src/deploy/recommended/kubernetes-dashboard.yaml

kubectl proxy

Ref: https://github.com/kubernetes/dashboard

(AlJTRICS

< - C

kubernetes

Cluster

Namespaces
Nodes

Persistent Volumes
Roles

Storage Classes

Namespace

kube-system ¥

Overview

Workloads

Cron Jobs

Daemon Sets
Deployments

Jobs

Pods

Replica Sets
Replication Controllers

Stateful Sets

Discovery and Load Balancing

Ingresses

Services

Config and Storage

Q. Search

Workloads

Workloads Statuses

@ https://localhost:8001/api/v1/namespaces/kube-system/services/https:kubernetes-dashboard:/proxy/#!/overview?namespace=kube-system

-+ CREATE

3
S/

Daemon Sets Deployments Pods Replica Sets
Daemon Sets =
Name Labels Pods Age = Images
Q nvidia-device-plugin-dae... name: nvidia-device-plugi.. 1/1 3 months nvidia/k8s-device-plugin:... = .
app: flannel i flannelv0.. _— .
Q kube-flannel-ds-arm 0/0 3 months quay !o/coreos/ annetv L :
tier: node quay.io/coreos/flannel:v0...
app: flannel i .
Q kube-flannel-ds-arm64 0/0 3 months quay.!o/coreos/ﬂannel.vo... — .
tier: node quay.io/coreos/flannel:v0...
app: flannel i -vO... L .
Q kube-flannel-ds-ppcé4le 0/0 3 months quay.!o/coreos/ﬂannel.vo — .
tier: node quay.io/coreos/flannel:v0...
app: flannel i flannelv0.. — .
Q kube-flannel-ds-s390x 0/0 3 months quay !o/coreos/ annewy = e
s i quay.io/coreos/flannel:v0...
app: flannel i flannel:v0.. _— .
0 kube-flannel-ds-amd64 2/2 3 months quay !o/coreos/ anney = e
tier: node quay.io/coreos/flannel:v0...
Q kube-proxy k8s-app: kube-proxy 2.2 3 months k8s.gcr.io/kube-proxy:v1.... = :

I Step 3. Run hello-world container

< Write pod definition
© Run nvidia-smi with cuda image

~ Train MNIST with tensorflow and save model in S3

(Al]TRICS

Example: nvidia-smi

run nvidia-smi 1n container
pod.yml

apiVersion: vl
kind: Pod
metadata:
name: gpu-pod
spec:
containers:
- name: cuda-container
image: nvidia/cuda:9.0-devel
resources:
limits:
nvidia.com/gpu: 1 # requesting 1 GPU
command: ["nvidia-smi"]

(AlJTRICS

Example: nvidia-smi

create pod from definition

kubectl create -f pod.yml

(AlJTRICS

Example: nvidia-smi

create pod from definition
kubectl create -f pod.yml

pod/gpu-pod created

(AlJTRICS

Example: nvidia-smi

create pod from definition

kubectl logs gpu-pod

Driver Version: 3960.44 CUDA Version: 10.0

| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Capl Memory-Usage | GPU-Util Compute M. |
| ====mmmmmmm e e e e e e e e e |
| @ Titan Xp | 00 :00:1E.0 Off |

(AlJTRICS

Example: MNIST

train_mnist.py

import tensorflow as tf

def main(args):
mnist = tf.keras.datasets.mnist

(x_train, y_train),(x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(512, activation=tf.nn.relu),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10, activation=tf.nn.softmax)
1)
model.compile(optimizer="adam',
loss="sparse_categorical_crossentropy',
metrics=["accuracy'])

fit(x_train, y_train, epochs=args.epoch)
evaluate(x_test, y_test)

model_path = tf.contrib.saved_model.save_keras_model(model, args.save_dir)

(AlJTRICS

Example: MNIST

Dockerfile
FROM tensorflow/tensorflow:latest-gpu-py3

WORKDIR /train_demo/
COPY . /train_demo/

RUN pip --no-cache-dir install --upgrade awscli

ENTRYPOINT ["/train_demo/run.sh"]

run.sh

python train_mnist.py --epoch 1
aws s3 sync saved_models/ $MODEL_S3_PATH

(AlJTRICS

Example: MNIST

pod definition

apiVersion: vl
kind: Pod
metadata:
name: gpu-pod
spec:
containers:
- name: cuda-container
image: aitrics/train-mnist:1.0
resources:
limits:
nvidia.com/gpu: 1 # requesting 1 GPU
env:
- name: MODEL_S3_PATH
value: "s3://aitrics-model-bucket/saved_model™

(AlJTRICS

Example: MNIST

create pod from definition
kubectl create -f pod.yml

pod/gpu-pod created

(AlJTRICS

I Example: MNIST

It works!

Name =
% assets
% variables

[saved_model.pb

[Al]TRICS

I Summary

~ Now we have,
~ Minimally working proof of concept

-~ Researchers can train on kubernetes with kubectl

~ We have to do,

~ RBAC (Role based access control) between researchers, engineers, and outside
collaborators.

~ Training data & output volume attachment

~ Researchers don't want to know what kubernetes is. They only need
~ ainstance which are accessible via SSH (with frameworks and training data)
~ or nice webview and jupyter notebook

~ or automatic hyperparameter searching...

(AlJTRICS

I Step 4. Role Based Access Control & Resource Quota

< Instructions:
~ Create user (team) namespace
© Create user credentials with cluster CA key
~ default CA key location: /etc/kubernetes/pki
~ Create role and role binding with proper permissions

< Create resource quota per namespace

_~ References:

~ https://docs.bitnami.com/kubernetes/how-to/configure-rbac-in-your-kubernetes-
cluster/

© https://kubernetes.io/docs/reference/access-authn-authz/rbac/

(AlJTRICS

Step 4. Role Based Access Control & Resource Quota

create user (team) namespace

kubectl create namespace team-a

(AlJTRICS

Step 4. Role Based Access Control & Resource Quota

create user (team) namespace

kubectl get namespaces

NAME STATUS AGE
default Active 99d
team-a Active 4s
kube-public Active 99d
kube-system Active 99d

(AlJTRICS

Step 4. Role Based Access Control & Resource Quota

create user credentials

openssl genrsa -out jaeman.key 2048

openssl req -new -key jaeman.key -out user.csr -subj "/CN=jaeman/
O=aitrics”

openssl x509 -req -in jaeman.csr -CA CA_LOCATION/ca.crt -CAkey
CA_LOCATION/ca.key -CAcreateserial -out jaeman.crt -days 500

Ref: https://kubernetes.io/docs/reference/access-authn-authz/authentication/

(AlJTRICS

Step 4. Role Based Access Control & Resource Quota

create Role definition

kind: Role
apiVersion: rbac.authorization.k8s.10/v1
metadata:
namespace: team-a
name: software-engineer-role
rules:
- apiGroups: ["", "extensions", "apps"]
resources: ["deployments"”, "replicasets", "pods", "configmaps"]

verbs: ["get", "list", "watch", "create", "update", "patch",
"delete"] # You can also use ["*"]

Ref: https://kubernetes.io/docs/reference/access-authn-authz/authentication/

(AlJTRICS

Step 4. Role Based Access Control & Resource Quota

create ClusterRoleBinding definition

kind: RoleBinding
apiVersion: rbac.authorization.k8s.10/v1
metadata:

namespace: team-a

name: jaeman-software-engineer-role-binding
subjects:
- kind: User

name: jaeman

api1Group: rbac.authorization.k8s.10
roleRef:

kind: Role

name: software-engineer-role

api1Group: rbac.authorization.k8s.10

Ref: https://kubernetes.io/docs/reference/access-authn-authz/authentication/

(AlJTRICS

Step 4. Role Based Access Control & Resource Quota

create resource quota

apiVersion: vl
kind: ResourceQuota
metadata:
name: compute-resources
spec:
hard:
requests.nvidia.com/gpu:

(AlJTRICS

I Step 5. Expand GPU servers on AWS

~ Store kubeadm join scriptin S3

~ Write userdata (instance bootstrap script)
o install kubeadm, nvidia-docker
~join

~ Add AutoScaling Group

(Al]TRICS

Step 5. Expand GPU servers on AWS

save master join command in AWS S3
s3://k8s-training-cluster/join.sh

kubeadm join 172.31.75.62:6443 --token *** --discovery-token-ca-cert-
hash ***

(AlJTRICS

Step 5. Expand GPU servers on AWS

userdata script file
RECAP: 1install kubernetes as a node to join master (step 2)

install kubernetes
apt-get install -y kubelet kubeadm kubectl

install nvidia-docker
apt-get install -y nvidia-dockerZ2

$Caws s3 cp s3://k8s-training-cluster/join.sh -)

(AlJTRICS

Step 5. Expand GPU servers on AWS

Create launch configuration Create Auto Scaling group Copy to launch template = Actions v

Filter: Q Filter launch configurations... X
Name - AMIID ~ Instance Type - Spot Price ~ Creation Time
@ k8s-training-cluster-node-2019030... ami-Occ8a10d... p2.xlarge March 4, 2019 at 7:48:16 PM

Launch Configuration: k8s-training-cluster-node-20190304104807895900000002

Create Auto Scaling group JF-Ya (] Ee

Filter: Q Filter Auto Scaling groups... X
Name v Launch Configuration / Template v Instances ~ Desired + Min ~ Max -~
@ k8s-training-cluster-node k8s-training-cluster-node-2019030410480... 1 1 1 10

[Al]TRICS

Step 5. Expand GPU servers on AWS

User data

#!/bin/bash
set -ex

install kubernetes

apt-get update && apt-get install -y apt-transport-https curl

curl -s https://packages.cloud.google.com/apt/doc/apt-key.gpg | apt-key add -
cat <<EOF >/etc/apt/sources.list.d/kubernetes.list

[Al]TRICS

Step 5. Expand GPU servers on AWS

check bootstrapping log

tail -f /var/log/cloud-init-output.log

(AlJTRICS

Step 5. Expand GPU servers on AWS

check bootstrapping log

tail -f /var/log/cloud-init-output.log

++ aws s3 cp s3://k8s-training-cluster/join.sh -

+ kubeadm join 172.31.75.62:06443 --token *** --discovery-token-ca-cert-
hash ***

preflight] Running pre-flight checks

discovery] Trying to connect to API Server "172.31.75.62:6443"

discovery] Created cluster-info discovery client, requesting info from
"https://172.31.75.62:6443"

[discovery] Requesting info from "https://172.31.75.62:6443" again to
validate TLS against the pinned public key

(AlJTRICS

I Step 6. Training data attachment

< Initially store training data in S3 (with encryption)
< Option 1: Download training data when pod starts
< training data is usually big
~ same training data are often used, so it would be very inefficient
~ caching to host machine volumes --> occupied easily
~ use storage server and mount volumes that!
~ Option 2: Create NFS on AWS EC2 or storage server (e.g. NAS)
< Sync all data with S3
~ Mount as Persistent Volume with ReadOnlyMany / ReadWriteMany
~ Option 3: shared storage with s3fs

< https://icicimov.github.io/blog/virtualization/Kubernetes-shared-storage-with-S3-backend/

(AlJTRICS

Step 6. Training data attachment

make nfs server on ECZ2 (or physical storage server)
https://www.digitalocean.com/community/tutorials/how-to-set-up-an-
nfs-mount-on-ubuntu-16-04

apt-get update
apt-get install nfs-kernel-server

mkdir /var/nfs -p

cat <<EOF > /etc/exports

/var/nfs 172.31.75.62(rw,sync,no_subtree_check)
EOF

systemctl restart nfs-kernel-server

(AlJTRICS

Step 6. Training data attachment

define persistent volume

apiVersion: vl
kind: PersistentVolume
metadata:
name: nfs
spec:
capacity:
storage: 3Gi
accessModes:
- ReadWriteMany
nfs:
server: <server 1ip>
path: "/var/nfs"

(AlJTRICS

Step 6. Training data attachment

define persistent volume claim

apiVersion: vl
kind: PersistentVolumeClaim
metadata:

name: nfs-pvc
spec:

accessModes:

- ReadWriteMany
storageClassName:
resources:

requests:

storage: 3Gi

(AlJTRICS

Step 6. Training data attachment

mount volume 1in pod

apiVersion: vl
kind: Pod
metadata:
name: pvpod
spec:
volumes:
- hame: testpv
persistentVolumeClaim:
claimName: nfs-pvc
containers:
- hame: test
image: python:3.7.2
volumeMounts:
- hame: testpv
mountPath: /data/test

(AlJTRICS

I Step 7. Web dashboard or cli tools to run training container

- Make script like

© ./kono ssh --image tensorflow/tensorflow --expose-
ports 4

o ./kono train --image tensorflow/tensorflow --
entrypoint main.py .

- Create web dashboard

(Al]TRICS

Step 7. Web dashboard or cli tools to run training container

cli tool to use our cluster

kono login

(AlJTRICS

Step 7. Web dashboard or cli tools to run training container

cli tool to use our cluster
kono login

Username: jaeman
Password: [hidden]

(AlJTRICS

Step 7. Web dashboard or cli tools to run training container

cli tool to use our cluster

kono train \
--image tensorflow/tensorflow:latest-gpu \
--gpu 1 \
--script train.py \
--1nput-data /var/project-a-data/:/opt/project-a-data/ \
--output-dir /opt/outputs/:./outputs/ \
-- \
--epoch=1 --checkpoint=/opt/outputs/ckpts/

(AlJTRICS

Step 7. Web dashboard or cli tools to run training container

cli tool to use our cluster

kono train \
--image tensorflow/tensorflow:latest-gpu \
--gpu 1 \
--script train.py \
--1nput-data /var/project-a-data/:/opt/project-a-data/ \
--output-dir /opt/outputs/:./outputs/ \
-- \
--epoch=1 --checkpoint=/opt/outputs/ckpts/

training completed!

Sending output directory to s3... [>>>>>>>>>>>>>>>>>>>>>>>1 100%
Pulling output directory to local... [>>>>>>>>>>>>>>>>>>>>>>>] 100%
Check your directory ./outputs/

(AlJTRICS

Step 7. Web dashboard or cli tools to run training container

cli tool to use our cluster

kono ssh \

--image tensorflow/tensorflow:latest-gpu \
--gpu 1 \
--expose-ports 4 \

--1nput-data /var/project-a-data/:/opt/project-a-data/

(AlJTRICS

Step 7. Web dashboard or cli tools to run training container

cli tool to use our cluster

kono ssh \

--image tensorflow/tensorflow:latest-gpu \
--gpu 1 \
--expose-ports 4 \

--1nput-data /var/project-a-data/:/opt/project-a-data/

Your container 1is ready!
ssh ubuntu@k8s.aitrics.com -p 31546

(AlJTRICS

Step 7. Web dashboard or cli tools to run training container

cli tool to use our cluster

kono terminate-all --force

(AlJTRICS

Step 7. Web dashboard or cli tools to run training container

cli tool to use our cluster
kono terminate-all --force

terminate all your containers? [Y/n]: Y

(AlJTRICS

Step 7. Web dashboard or cli tools to run training container

cli tool to use our cluster
kono terminate-all --force

terminate all your containers? [Y/n]: Y

Success!

(AlJTRICS

I Step 7. Web dashboard or cli tools to run training container

New Instance

g2.small (1CPU, 4GB, 1Titan)

Image

tf-latest-gpu (charlie)

Port

4

Cancel

[Al]TRICS

I Step 7. Web dashboard or cli tools to run training container

~ We are still working on it
< Check our improvements or contribute to us

< https://github.com/AITRICS/kono

(Al]TRICS

Step 8. Use other tools (polyaxon)

~ A platform for reproducing and managing the whole life cycle of
machine learning and deep learning applications.

< https://polyaxon.com

= Most feasible tools
to our training cluster

Overview Experiments Experiment groups Jobs Builds Activity logs

Instructions

‘D Searchesw | group.id: ~4|5, metric.loss: <0.3 v Q < Sort by: started_at
[]
\/ (:a I l b e I I l Sta l le d O I l param: activation X param: num_epochs X metric: accuracy X metric: loss % + Add column
Params Metrics
L]
k u b e rI I ete S e a S I ly Status Name Info Run activation num_epochs accuracy loss Actions

T SUZT:;ELCk-gaCT;ted' 2daysago @ Last updated: 3 minutes ago O
! succeeded | : LR pEtecs g & Build:3 O Finished: 2 days ago 0.9833999872207642 0.05261116474866867
----------- J important X Total run: 1m 6s

. O Started: 2 days ago

gum"_t'q”fk‘s@tac’tzf 24 © Last updatedi 24 A Build:3 O Finished: 2 days ago 0.9868999719619751 0.0408339723944664
ser: roo reated: 2 days ago ast updated: 2 days ago X Total run: 495
,,,,,,,,,,,,) O Started: 2 days ago
i | X - 3. G :3
| succeeded | gur°°fq”fk g"’c’t e © Lot unctec 2 fBu:‘l):z © Finished: 2 days ago relu 1 0.9865000247955322 0.044056959450244904
AAAAAAAAAAA ! ser: roo reated: 2 days ago ast updated: 2 days ago : X Total run: 2m 15s
____________ X O Started: 2 days ago
i | X - .3.. G :3
| succeeded | gur°°Fq”L°k Sotac't 3(2‘2‘2 h © Loct udated 2 f’auﬁ:-'l © Finished: 2 days ago relu 1 0.9430999755859375 0.2095562368631363
Lo] ser: roo reated: 2 days ago ast updated: 2 days ago : X Total run: 2m 19s
,,,,,,,,,,,, N O Started: a day ago
! succeeded | gur°°f'q”fk';"’c’t'4i i © Loctupdiated ag A Build:4 O Finished: aday ago 0.9861999750137329 0.044319476932287216
77777777777 | ser: roo reated: a day ago ast updated: a day ago X Total run: 2m 37s
e X O Started: a day ago
! succeeded | gur°°f'q”15k'gacn'4f ad © Last updated: ad ABuild:4 O Finished: aday ago 0.9801999926567078 0.05584655702114105
L] ser: roo reated: a day ago ast updated: a day ago X Total run: 2m 355
____________ Started: 21 h
{ 1 © root.quick-start.43 2 oo © Aa.r N ours ago o
Bilis i hou oo

Ref: https://www.polyaxon.com/

(Al]TRICS

Polyaxon usage

Polyaxon usage

Create a project
polyaxon project create --name=quick-start --description='Polyaxon
quick start.’

Initialize
polyaxon init quick-start

Upload code and start experiments
polyaxon run -u

Ref: https://github.com/polyaxon/polyaxon

(AlJTRICS

Polyaxon usage

test-expl

Overview Experiments Experiment groups Activity logs Instructions

‘D Searches » build.id:3|4, status:~running|scheduled, created_at:2018-01-01..2018-02-01

4, aitrics.test-expl.builds.1

= Backend: native
O Pod: plx-build-deaaf561028f428d895afdf3239be3c6
@ Created: an hour ago

& User: aitrics O Last updated: an hour ago
4, aitrics.test-expl.builds.2

= Backend: native

O Pod: plx-build-81bc2a5469b444a0a36589d3d9191dd8

@®id:2 & User: aitrics

O Created: an hourago @ Last updated: an hour ago

Q < Sort by: -updated_at

Run

@ Started: an hour ago
@ Finished: an hour ago
X Total run: 1m 25s

@ Started: an hour ago
@ Finished: an hour ago
X Total run: 51s

< Refresh

[Al]TRICS

Polyaxon usage

€, aitrics | test-expl / Builds / Build1

Overview Logs Dockerfile Statuses Config Instructions

O Download & Logs Only < Refresh
Logs

C — Building: Step 1/8 : FROM tensorflow/tensorflow:1.4.1-py3
Building:
Pushing ...

C — Building: -—> ec48e5aac4dc
Building: Step 2/8 : ENVLC_ALL en_US.UTF-8

. — Building:

C — Building: -—> Running in c634196b9f76
Building: Removing intermediate container c634196b9f76
Building: -—> 54bdacl46ecb

C — Building: Step 3/8 : ENV LANG en_US.UTF-8
Building:
Building: -—> Running in b965ddf277a4

C — Building: Removing intermediate container b965ddf277a4
Building: -— 9¢9461782d01
Building: Step 4/8 : ENV LANGUAGE en_US.UTF-8

C — Building:

(AlJTRICS

I Polyaxon

~ Polyaxon is a platform for managing the whole lifecycle of large scale deep
learning and machine learning applications, and it supports all the major
deep learning frameworks such as Tensorflow, MXNet, Caffe, Torch, etc.

- Features
- Powerful workspace
~ Reproducible results
~ Developer-friendly API
© Built-in Optimization engine
~ Plugins & integrations

~ Roles & permissions

Ref: https://docs.polyaxon.com/concepts/features/

(AlJTRICS

Polyaxon architecture

VoW

Polyaxon
(Dashboard / CLI / SDK / REST API)

T
i,
d
d
AR
et

a Y @ g ll]
Git handler - Monitors
- _ Training & Dockerized

Code Tracking . . m Jobs

Crons l

Data management f_r ‘—r f_r i—r S
(3, GCS, Azure, Minio, NFS, ...) -

<&

ﬂ

Scheduler HPtuning Events Pipelines
Spawner Actions

¢

Models, Logs, and Outputs

management
o aWS., /A . (S3, GCS, Azure, Minio, NFS, ...)

Kubernetes

Docker registries

Ref: https://docs.polyaxon.com/concepts/architecture/

[Al]TRICS

I How to run my experiment on polyaxon?

~ 1. Create project on polyaxon

o polyaxon project create --name=quick-start
© 2. Initialize the project

o polyaxon 1init quick-start
© 3. Create polyaxonfile.yml

~ See next slide

~ 4. Upload your code and start an experiment with it

(AlJTRICS

Polyaxon usage

polyaxonfile.yml
version: 1

kind: experiment

build:

image: tensorflow/tensorflow:1.4.1-py3
build_steps:

- pip3 1install polyaxon-client

run:
cmd: python model.py

Ref: https://docs.polyaxon.com/concepts/quick-start-internal-repo/

(AlJTRICS

Polyaxon usage

model.py
https://github.com/polyaxon/polyaxon-quick-start/blob/master/model.py

from polyaxon_client.tracking import Experiment, get_data_paths, get_outputs_path

data_paths = list(get_data_paths().values())[0]
mnist = input_data.read_data_sets(data_paths, one_hot=False)

experiment Experiment()

estimator = tf.estimator.Estimator(
get_model_fn(learning_rate=learning_rate, dropout=dropout, activation=activation),
model _dir=get_outputs_path())

estimator.train(input_fn, steps=num_steps)

experiment.log_metrics(loss=metrics['loss'],
accuracy=metrics['accuracy'],
precision=metrics['precision’'])

Ref: https://github.com/polyaxon/polyaxon-quick-start/blob/master/model.py

(AlJTRICS

Polyaxon usage

Integrations in polyaxon

Notebook
polyaxon notebook start -f polyaxon_notebook.yml

Tensorboard
polyaxon tensorboard -xp 23 start

Ref: https://github.com/polyaxon/polyaxon

(AlJTRICS

I Experiment Groups - Hyperparameter Optimization

~ How to?
~ Make single file train.py that accepts 2 parameters
~learning rate - 1r
< batch size - batch_s1ize

< Update the polyaxonfile.yml with matrix

~ Make experiment group

~ Experiment group search algorithm
~ grid search / random search / Hyperband / Bayesian Optimization

© https://docs.polyaxon.com/references/polyaxon-optimization-engine/

Ref: https://docs.polyaxon.com/concepts/experiment-groups-hyperparameters-optimization/

(AlJTRICS

Experiment Groups - Hyperparameter Optimization

polyaxonfile.yml

version: 1
kind: group
declarations:
batch_size: 128
hptuning:
matrix:
lr:
logspace: 0.01:0.1:5
build:
image: tensorflow/tensorflow:1.4.1-py3
build_steps:
- pip install scikit-learn
run:
cmd: python3 train.py --batch-size={{ batch_size }} --lr={{ 1r }}

Ref: https://docs.polyaxon.com/concepts/experiment-groups-hyperparameters-optimization/

(AlJTRICS

Experiment Groups - Hyperparameter Optimization

polyaxonfile_override.yml

version: 1

hptuning:
concurrency: 2
random_search:

n_experiments: 4

early_stopping:

- metric: accuracy
value: 0.9
optimization: maximize

- metric: loss
value: 0.05
optimization: minimize

Ref: https://docs.polyaxon.com/concepts/experiment-groups-hyperparameters-optimization/

(AlJTRICS

I How to install polyaxon?

< Instructions
< Install helm - kubernetes application manager
~ Create polyaxon namespace
~ Write your own config for polyaxon

< Run polyaxon with helm

(AlJTRICS

How to install polyaxon?

install helm (kubernetes package manager)
snap install helm --classic

helm 1nit

Ref: https://github.com/polyaxon/polyaxon

(AlJTRICS

How to install polyaxon?

install polyaxon with helm
kubectl create namespace polyaxon
helm repo add polyaxon https://charts.polyaxon.com

helm repo update

Ref: https://github.com/polyaxon/polyaxon

(AlJTRICS

How to install polyaxon?

config.yaml

rbac:
enabled: true
ingress:
enabled: true
serviceType: LoadBalancer
persistent:
data:
training-data-a-s3:
store: s3
bucket: s3://aitrics-training-data
data-pvcl:
mountPath: "/data-pvc/1"
existingClaim: "data-pvc-1"
outputs:
devtest-s3:
store: s3
bucket: s3://aitrics-dev-test
integrations:
slack:
- url: https://hooks.slack.com/services/***/**x*
channel: research-feed

Ref: https://github.com/polyaxon/polyaxon

(AlJTRICS

How to install polyaxon?

install polyaxon with helm

helm install polyaxon/polyaxon \
--name=polyaxon \
--namespace=polyaxon \
-f config.yml

(AlJTRICS

How to install polyaxon?

install polyaxon with helm

helm install polyaxon/polyaxon \
--name=polyaxon \
--namespace=polyaxon \
-f config.yml

1. Get the application URL by running these commands:
export POLYAXON_IP=$(kubectl get svc --namespace polyaxon polyaxon-polyaxon-
ingress -o jsonpath='{.status.loadBalancer.ingress[@].1ip}")
export POLYAXON_HTTP_PORT=80
export POLYAXON_WS_PORT=80

echo http://$POLYAXON_IP:$POLYAXON_HTTP_PORT
2. Setup your cli by running theses commands:

polyaxon config set --host=$POLYAXON_IP --http_port=$POLYAXON_HTTP_PORT -
ws_port=$POLYAXON_WS_PORT

(AlJTRICS

Summary

Training farm Service Plane
AWS

Master Storage Kubernetes minion

single EC2 k8s k8s @
o Service Ingress ELB
multiple EC2

NAS GPU Nodes

Physical server

RBAC & Resource Quota

namespace

kono-cli kono-web polyaxon

Control plane

[Al]TRICS

I RECAP: Our requirements

> Need to know GPU resource status without accessing our physical servers one
by one.

- Use web dashboard or other monitoring tools like Prometheus +
cAdvisor

- Want to easily use idle GPU with proper training datasets

- Use kubernetes objects to get resources and to mount volumes

~ Have to control permissions of our resources and datasets

- RBAC / Resource quota in kubernetes

- Want to focus on our research: building models, doing the experiments, ... not
infrastructures!

- Use kono / polyaxon

(AlJTRICS

I Too many steps to build my own cluster!

©~ Make it as reusable component

~ Use Terraform

[Al]TRICS

I Terraform

<~ Infrastructure as a code

[Al]TRICS

Terraform

Infrastructure as a code

resource "aws_instance master" {

ami = "am1-593801f1"

instance_type = "t3.small"

key_name = "aitrics-secret-master-key"
tam_instance_profile = "kubernetes-master-iam-role"

user_data = "${data.template_file.master.rendered}"

root_block_device = {
volume_size = "15"

¥
¥

terraform apply

(AlJTRICS

Terraform

Infrastructure as a code

resource "aws_instance" "master" {
ami = "am1-593801f1"
instance_type = "t3.small"
key_name = "aitrics-secret-master-key"
tam_instance_profile = "kubernetes-master-iam-role"
user_data = "${data.template_file.master.rendered}"

root_block_device = {
volume_size = "15"

¥
¥

Launch Instance Connect Actions Vv

Filter by tags and attributes or search by keyword

Name v Instance ID Instance Type Availability Zone Instance State Status Checks Al

@ k8s-training-cluster-master i-0ef0eOc1ec5eadad? t3.small ap-northeast-2a o) running & 2/2 checks ... Nc

(AlJTRICS

I Terraform

~ We publish our infrastructure as a code

© https://github.com/AITRICS/kono

© Configure your settings and just type " terraform apply to get your
own training cluster!

(AlJTRICS

https://github.com/AITRICS/kono

Model deployment & production phase

- Building inference farm from zero (step by step)
- Several ways to make microservices

- Kubeflow

I RECAP: Our requirements

< It's hard to control because it is in the middle of machine learning
engineering and software engineering

~ We want to create simple micro-services that don't need much
management

~ There are many models with different purposes;
- some models need real-time inference
- some models do not require real-time, but they need inference in the
certain time range

~ We have to consider high availability configuration
~ Models must be fitted and re-trained easily

~ We have to manage several versions of models

(AlJTRICS

I Instructions

~ Step 1. Build another kubernetes cluster for production
= Step 2. Make simple web-based micro services for trained models
©2-1. HTTP API Server Example
= 2-2. Asynchronous inference farm example
~ Step 3. Deploy
© 3-1. on the kubernetes with ingress
~ 3-2. standalone server with docker and auto scaling group
~ Step 4. Using TensorRT Inference Server
~ Step 5. Terraform

= Case Study. Kubeflow

(AlJTRICS

I Step 1. Build production kubernetes cluster

< Launch again like training cluster!

[Al]TRICS

I Step 2. Make simple web-based microservices for trained models

~ 2-1. For real time inference (synchronous)
~ Use simple web framework to build HTTP-based microservice!
~ We use bottle (or flask)

© 2-2. For asynchronous (inference farm)
o with kubernetes job - has overheads to be executed

~ with celery - which | prefer

(AlJTRICS

Example. Using bottle for HTTP based microservices

from bottle import run, get, post, request, response
from bottle 1mport app as bottle_app
from aws import aws_client

post('/vl/<location>/<prediction_type>/")
def inference(location, prediction_type):
model = select_model(location, prediction_type)
input_array = deserialize(request.json)
output_array = inference(input_array)
return serialize(output_array)

1f __name__ == "__main__":
args = parse_args()
aws_client.download_model(args.model_path, args.model_version)
app = bottle_app()
run(app=app, host=args.host, port=args.port)

(AlJTRICS

Example. Using kubernetes job for inference

job.yml

apiVersion: batch/vl
kind: Job
metadata:
name: inference-job
spec:
template:
spec:
containers:
- name: 1inference
image: 1inference

command: ["python", "main.py", "s3://ps-images/images.png"]

restartPolicy: Never
backoffLimit: 4

Ref: https://kubernetes.io/docs/concepts/workloads/controllers/jobs-run-to-completion/

(AlJTRICS

Celery

Celery is an asynchronous task queue/job queue based on distributed
message passing. It is focused on real-time operation, but supports
scheduling as well.

o Celery is used in production systems to process millions of tasks a day.

from celery import Celery

app = Celery('hello', broker="amgp://guest@localhost//")

app . task
def hello():
return "hello world'

Ref: http://www.celeryproject.org/

(AlJTRICS

Example. Using celery for asynchronous inference farm

from celery import task

from aws import aws_client

from db import IdentifyResult

from aitrics.models import FasterRCNN

model FasterRCNN(model _path=settings .MODEL_PATH)

task

def task_identify_image_color_shape(id, s3_path):
image = aws_client.download_image(s3_path)
color, shape = model.inference(image)
IdentifyResult.objects.create(id, s3_path, color, shape)

(AlJTRICS

I Step 3. Deploy

~on the kubernetes cluster
~ service & ingress to expose

~ use workload controller like deployments, replica set, replication
controller, don't use pod itself to get high availability.

~onthe AWS instance directly
~ simple docker run example

~ use auto scaling group and load balancers with userdata

(AlJTRICS

Step 3-1. Deploy on kubernetes cluster (ingress)

kind: Ingress
metadata:
name: inference-ingress
spec:
rules:
- host: inference.aitrics.com
- http:
paths:
- backend:
serviceName: MyInferenceService
servicePort: 80

Ref: https://kubernetes.io/docs/concepts/services-networking/ingress/

(AlJTRICS

Step 3-1. Deploy on kubernetes cluster (deployment)

kind: Deployment
metadata:
name: inference-deployment
spec:
replicas: 3
selector:
matchLabels:
app: inference
template:
metadata:

labels:
app: inference

spec:

containers:

- name: ps-inference
image: ps-inference:latest
ports:

- containerPort: 80

Ref: https://kubernetes.io/docs/concepts/workloads/controllers/deployment/

(AlJTRICS

Step 3-2. Deploy on EC2 directly

#!/bin/bash

docker kill ps-inference true

docker rm ps-inference true

docker run -d -p 35000:8000 \
--runtime=nvidia \
-e NVIDIA_VISIBLE_DEVICES=0 \
docker-registry.aitrics.com/ps-inference:gpu \
--host=0.0.0.0 \
--port=8000 \
--sentry-dsn=http://somesecretstring@sentry.aitricsdev.com/13 \
--gpus=0 \
--character-model=best_model.params/faster_rcnn_renetl@1_vlb \
--shape-model=scnet_shape.params/ResNet50_v2Z2 \
--color-model=scnet_color.params/ResNet50_vZ2 \
--s3-bucket=aitrics-research \
--s3-path=faster_rcnn/result/181109 \
--model-path=.data/models \
--aws-access-key=*** \
--aws-secret-key=***

(AlJTRICS

I Step 4. Using TensorRT Inference Server

~ TensorRT is a high-performance deep learning inference optimizer and
runtime engine for production deployment of deep learning
applications.

Layer & Tensor Fusion

. TensorRT Runtime
e o o
®

e O o .

oo o ? :

. >
Trained Neural Optimized

Network Inference

Dynamic Tensor Multi-Stream Engine

Memory Execution

Ref: https://developer.nvidia.com/tensorrt

(Al]TRICS

I Step 4. Using TensorRT Inference Server

~ Use Tensorflow or Caffe to apply TensorRT easily
= Consider TensorRT when you build model

~ Some operations might not be supported

~ Add some TensorRT related code in Python script

~ Use TensorRT docker image to run inference server.

(AlJTRICS

Step 4. Using TensorRT Inference Server

TensorRT From ONNX with Python Example
import tensorrt as trt

with builder = trt.Builder(TRT_LOGGER) as builder, \
builder.create_network() as network, \
trt.OnnxParser(network, TRT_LOGGER) as parser:
with open(model_path, 'rb') as model:
parser.parse(model.read())

Ref: https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#import_onnx_python

(AlJTRICS

Step 4. Using TensorRT Inference Server

Dockerfile
https://github.com/NVIDIA/tensorrt-inference-server/blob/master/Dockerfile

FROM aitrics/tensorrt-inference-server:cuda9-cudnn7-onnx
ADD . /ps-inference/

ENTRYPOINT ["/ps-inference/run.sh"]

Ref: https://github.com/onnx/onnx-tensorrt/blob/master/Dockerfile

(AlJTRICS

I Step 5. Terraform

~You can also find our inference cluster as a code!
~ https://github.com/AITRICS/kono

~ Configure your settings and test example microservices and inference
farm with terraform!

(AlJTRICS

I Case Study. Kubeflow

~ The Kubeflow project is dedicated to making deployments of machine learning (ML)
workflows on Kubernetes simple, portable and scalable.

< https://www.kubeflow.org/
~When to use

~You want to train/serve TensorFlow models in different environments (e.g. local, on
prem, and cloud)

< You want to use Jupyter notebooks to manage TensorFlow training jobs

~You want to launch training jobs that use resources - such as additional CPUs or
GPUs - that aren’t available on your personal computer

<~ You want to combine TensorFlow with other processes

< For example, you may want to use tensorflow/agents to run simulations to
generate data for training reinforcement learning models.

Ref: https://www.kubeflow.org/

(AlJTRICS

I Case Study. Kubeflow

~ Re-define a machine learning workflow object with kubernetes
object

~ Run training, inferencing, serving, and other things on kubernetes

~ Need ksonnet, configuration management tools for kubernets manifests

< https://www.kubeflow.org/docs/components/ksonnet/

~ Only works well with tensorflow (support for PyTorch, MPI, MXNet is on
alpha/beta stage)

~ Some functions only works on GKE cluster

= Very early stage product (less than 1 year)

(AlJTRICS

TF Job
https://www.kubeflow.org/docs/components/tftraining/

apiVersion: kubeflow.org/vlbetal
kind: TFJob
metadata:
labels:
experiment: experimentl0
name: tfjob
namespace: kubeflow
spec:
tfReplicaSpecs:
Ps:
replicas: 1
template:
metadata:
creationTimestamp: null
spec:
containers:
- args:
- python
- tf_cnn_benchmarks.py

Ref: https://www.kubeflow.org/docs/components/tftraining/

(AlJTRICS

Pipelines

Experiments > My XGBoost experiment

,A
4 z.‘ Kubeflow

& @ My first XGBoost run

Graph Run output Config
V]
create-cluster
o
analyze
[l \ /
V]
transform
//(r
V]

train

NN

‘ predict

Ref: https://www.kubeflow.org/docs/components/tftraining/

(Al]TRICS

Conclusion

I Summary

~You can build your own training cluster!

~You also can build your own inference cluster!

~If you do not want to get your hands dirty, you can use our terraform
code and cli.

~ https://github.com/AITRICS/kono

(AlJTRICS

What's next?

I What's next topic (which is not covered)?

<~ Monitoring resources

< Prometheus + cAdvisor

© https://devopscube.com/setup-prometheus-monitoring-on-kubernetes/
~ Training models from real-time data streaming

~ Real-time one Kafka Stream (+ Spark Streaming) + Online learning

~ https://github.com/kaiwaehner/kafka-streams-machine-learning-
examples

© Large-scale data preprocessing

< Apache Spark

(AlJTRICS

I What's next topic (which is not covered)?

~ Distributed training

~ Polyaxon supports: https://github.com/polyaxon/polyaxon-
examples/blob/master/in_cluster/tensorflow/cifar10/
polyaxonfile_distributed.yml

~ Use horovod: https://github.com/horovod/horovod
~ Model & Data Versioning

~ https://github.com/iterative/dvc

(AlJTRICS

Thank you!

Jaeman An <jaeman@aitrics.com>

Contact:

Jaeman An <jaeman@aitrics.com>
Yongseon Lee <yongseon@aitrics.com>
Tony Kim <tonykim@aitrics.com>

—
www.aitrics.com contact@aitrics.com
Tel. +82 2 569 5507 Fax. +82 2 569 5508

mE e

W T ""’TE'_}T",IT‘TTY", |

EmEEmEESE LN |
1P
.

1':177‘“!\%1;)1

=

mailto:jaeman@aitrics.com
mailto:jaeman@aitrics.com
mailto:yongseon@aitrics.com
mailto:tonykim@aitrics.com

