
Jeff Larkin, GTC 2019, March 2019

L8179 – ZERO TO GPU HERO
WITH OPENACC

OUTLINE
Topics to be covered

▪ What is OpenACC

▪ Profile-driven Development

▪ OpenACC with CUDA Unified Memory

▪ OpenACC Data Directives

▪ OpenACC Loop Optimizations

▪ Where to Get Help

ABOUT THIS SESSION

▪ The objective of this session is to give you a brief introduction of OpenACC
programming for NVIDIA GPUs

▪ This is an instructor-led session, there will be no hands on portion

▪ For hands on experience, please consider attending DLIT903 - OpenACC - 2X in 4
Steps or L9112 - Programming GPU-Accelerated POWER Systems with OpenACC if
your badge allows

▪ Feel free to interrupt with questions

INTRODUCTION TO OPENACC

OpenACC is a directives-

based programming approach

to parallel computing

designed for performance

and portability on CPUs

and GPUs for HPC.

main()
{
<serial code>
#pragma acc kernels
{
<parallel code>

}
}

Add Simple Compiler Directive

3 WAYS TO ACCELERATE
APPLICATIONS

Applications

Libraries

Easy to use

Most Performance

Programming

Languages

Most Performance

Most Flexibility

Easy to use

Portable code

Compiler

Directives

OpenACC

▪ OpenACC is designed to be portable to many
existing and future parallel platforms

▪ The programmer need not think about specific
hardware details, but rather express the
parallelism in generic terms

▪ An OpenACC program runs on a host
(typically a CPU) that manages one or more
parallel devices (GPUs, etc.). The host and
device(s) are logically thought of as having
separate memories.

Host

Device

Host

Memory
Device

Memory

OPENACC PORTABILITY
Describing a generic parallel machine

Single Source Low Learning CurveIncremental

OPENACC
Three major strengths

Incremental

OPENACC

▪ Maintain existing
sequential code

▪ Add annotations to
expose parallelism

▪ After verifying
correctness, annotate
more of the code

for(i = 0; i < N; i++)
{

< loop code >
}

for(i = 0; i < N; i++)
{

< loop code >
}

Enhance Sequential Code

#pragma acc parallel loop
for(i = 0; i < N; i++)
{

< loop code >
}

#pragma acc parallel loop
for(i = 0; i < N; i++)
{

< loop code >
}

Begin with a working
sequential code.

Parallelize it with OpenACC.

Rerun the code to verify
correct behavior,

remove/alter OpenACC
code as needed.

Single Source Low Learning CurveIncremental

OPENACC

▪ Maintain existing
sequential code

▪ Add annotations to
expose parallelism

▪ After verifying
correctness, annotate
more of the code

Single Source

OPENACC

▪ Rebuild the same code
on multiple
architectures

▪ Compiler determines
how to parallelize for
the desired machine

▪ Sequential code is
maintained

POWER

Sunway

x86 CPU

x86 Xeon Phi

NVIDIA GPU

PEZY-SC

Supported Platforms

int main(){

...

for(int i = 0; i < N; i++)
< loop code >

}

int main(){

...

#pragma acc parallel loop
for(int i = 0; i < N; i++)

< loop code >

}

The compiler can ignore your
OpenACC code additions, so the same

code can be used for parallel or
sequential execution.

Single Source Low Learning CurveIncremental

OPENACC

▪ Maintain existing
sequential code

▪ Add annotations to
expose parallelism

▪ After verifying
correctness, annotate
more of the code

▪ Rebuild the same code
on multiple
architectures

▪ Compiler determines
how to parallelize for
the desired machine

▪ Sequential code is
maintained

Low Learning Curve

OPENACC

▪ OpenACC is meant to
be easy to use, and
easy to learn

▪ Programmer remains
in familiar C, C++, or
Fortran

▪ No reason to learn
low-level details of the
hardware.

int main(){

<sequential code>

#pragma acc kernels
{
<parallel code>
}

}

Compiler
Hint

CPU
Parallel Hardware

The programmer will
give hints to the

compiler about which
parts of the code to

parallelize.

The compiler will then
generate parallelism
for the target parallel

hardware.

Single SourceIncremental

OPENACC

▪ Maintain existing
sequential code

▪ Add annotations to
expose parallelism

▪ After verifying
correctness, annotate
more of the code

▪ Rebuild the same code
on multiple
architectures

▪ Compiler determines
how to parallelize for
the desired machine

▪ Sequential code is
maintained

Low Learning Curve

▪ OpenACC is meant to
be easy to use, and
easy to learn

▪ Programmer remains
in familiar C, C++, or
Fortran

▪ No reason to learn
low-level details of the
hardware.

LSDalton

Quantum Chemistry
Aarhus University

12X speedup
1 week

PowerGrid

Medical Imaging
University of Illinois

40 days to
2 hours

INCOMP3D

CFD
NC State University

4X speedup

NekCEM

Comp Electromagnetics
Argonne National Lab

2.5X speedup
60% less energy

COSMO

Weather and Climate
MeteoSwiss, CSCS

40X speedup
3X energy efficiency

CloverLeaf

Comp Hydrodynamics
AWE

4X speedup
Single CPU/GPU code

MAESTRO
CASTRO

Astrophysics
Stony Brook University

4.4X speedup
4 weeks effort

FINE/Turbo

CFD
NUMECA

International

10X faster routines
2X faster app

OPENACC SUCCESSES

OPENACC SYNTAX

OPENACC SYNTAX

▪ A pragma in C/C++ gives instructions to the compiler on how to compile the code.
Compilers that do not understand a particular pragma can freely ignore it.

▪ A directive in Fortran is a specially formatted comment that likewise instructions the
compiler in it compilation of the code and can be freely ignored.

▪ “acc” informs the compiler that what will come is an OpenACC directive

▪ Directives are commands in OpenACC for altering our code.

▪ Clauses are specifiers or additions to directives.

Syntax for using OpenACC directives in code

C/C++

#pragma acc directive clauses
<code>

Fortran

!$acc directive clauses
<code>

EXAMPLE CODE

LAPLACE HEAT TRANSFER
Introduction to lab code - visual

Very Hot Room Temp

We will observe a simple simulation
of heat distributing across a metal

plate.

We will apply a consistent heat to
the top of the plate.

Then, we will simulate the heat
distributing across the plate.

EXAMPLE: JACOBI ITERATION

▪ Iteratively converges to correct value (e.g. Temperature), by computing new
values at each point from the average of neighboring points.

▪ Common, useful algorithm

▪ Example: Solve Laplace equation in 2D: 𝛁𝟐𝒇(𝒙, 𝒚) = 𝟎

A(i,j)
A(i+1,j)A(i-1,j)

A(i,j-1)

A(i,j+1)

𝐴𝑘+1 𝑖, 𝑗 =
𝐴𝑘(𝑖 − 1, 𝑗) + 𝐴𝑘 𝑖 + 1, 𝑗 + 𝐴𝑘 𝑖, 𝑗 − 1 + 𝐴𝑘 𝑖, 𝑗 + 1

4

JACOBI ITERATION: C CODE

21

while (err > tol && iter < iter_max) {

err=0.0;

for(int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +

A[j-1][i] + A[j+1][i]);

err = max(err, abs(Anew[j][i] - A[j][i]));

}

}

for(int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

A[j][i] = Anew[j][i];

}

}

iter++;

}

Iterate until converged

Iterate across matrix

elements

Calculate new value from

neighbors

Compute max error for

convergence

Swap input/output arrays

PROFILE-DRIVEN DEVELOPMENT

OPENACC DEVELOPMENT CYCLE
▪ Analyze your code to determine

most likely places needing
parallelization or optimization.

▪ Parallelize your code by starting
with the most time consuming parts
and check for correctness.

▪ Optimize your code to improve
observed speed-up from
parallelization.

Analyze

ParallelizeOptimize

Analyze

Obtain detailed information about how

the code ran.

PROFILING SEQUENTIAL CODE

Profile Your Code

This can include information such as:

▪ Total runtime

▪ Runtime of individual routines

▪ Hardware counters

Identify the portions of code that took

the longest to run. We want to focus on

these “hotspots” when parallelizing.

Lab Code: Laplace Heat Transfer

Total Runtime: 39.43 seconds

calcNext
21.49s

swap
19.04s

PROFILING SEQUENTIAL CODE
First sight when using PGPROF

▪ Profiling a simple, sequential code

▪ Our sequential program will on run
on the CPU

▪ To view information about how our
code ran, we should select the
“CPU Details” tab

PROFILING SEQUENTIAL CODE
CPU Details

▪ Within the “CPU Details” tab, we
can see the various parts of our
code, and how long they took to run

▪ We can reorganize this info using
the three options in the top-right
portion of the tab

▪ We will expand this information, and
see more details about our code

PROFILING SEQUENTIAL CODE
CPU Details

▪ We can see that there are two
places that our code is spending
most of its time

▪ 21.49 seconds in the “calcNext”
function

▪ 19.04 seconds in a memcpy
function

▪ The c_mcopy8 that we see is
actually a compiler optimization that
is being applied to our “swap”
function

PROFILING SEQUENTIAL CODE
PGPROF

▪ We are also able to select the
different elements in the CPU
Details by double-clicking to open
the associated source code

▪ Here we have selected the
“calcNext:37” element, which
opened up our code to show the
exact line (line 37) that is
associated with that element

OPENACC PARALLEL DIRECTIVE

OPENACC PARALLEL DIRECTIVE
Expressing parallelism

#pragma acc parallel
{

}

When encountering the
parallel directive, the
compiler will generate

1 or more parallel
gangs, which execute

redundantly.

gang

gang gang

gang

gang

gang

#pragma acc parallel
{

}

#pragma acc parallel
{

for(int i = 0; i < N; i++)
{

// Do Something
}

}

OPENACC PARALLEL DIRECTIVE
Expressing parallelism

This loop will be
executed redundantly

on each gang

gang

gang gang

gang

gang

gang

loop

lo
o

p

lo
o

p

lo
o

p

lo
o

p

lo
o

p

lo
o

p

#pragma acc parallel
{

for(int i = 0; i < N; i++)
{

// Do Something
}

}

OPENACC PARALLEL DIRECTIVE
Expressing parallelism

#pragma acc parallel
{

}
This means that each
gang will execute the

entire loop

gang

gang gang

gang

gang

gang

OPENACC PARALLEL DIRECTIVE
Parallelizing a single loop

▪ Use a parallel directive to mark a region of
code where you want parallel execution to occur

▪ This parallel region is marked by curly braces in
C/C++ or a start and end directive in Fortran

▪ The loop directive is used to instruct the
compiler to parallelize the iterations of the next
loop to run across the parallel gangs

C/C++

#pragma acc parallel
{
#pragma acc loop
for(int i = 0; j < N; i++)
a[i] = 0;

}

Fortran

!$acc parallel
!$acc loop
do i = 1, N
a(i) = 0

end do
!$acc end parallel

OPENACC PARALLEL DIRECTIVE
Parallelizing a single loop

▪ This pattern is so common that you can do all of
this in a single line of code

▪ In this example, the parallel loop directive
applies to the next loop

▪ This directive both marks the region for parallel
execution and distributes the iterations of the
loop.

▪ When applied to a loop with a data dependency,
parallel loop may produce incorrect results

C/C++

#pragma acc parallel loop
for(int i = 0; j < N; i++)
a[i] = 0;

Fortran

!$acc parallel loop
do i = 1, N
a(i) = 0

end do

#pragma acc parallel
{

for(int i = 0; i < N; i++)
{

// Do Something
}

}

OPENACC PARALLEL DIRECTIVE
Expressing parallelism

#pragma acc parallel
{

#pragma acc loop
for(int i = 0; i < N; i++)
{

// Do Something
}

}

The loop directive
informs the compiler

which loops to
parallelize.

OPENACC PARALLEL LOOP DIRECTIVE
Parallelizing many loops

▪ To parallelize multiple loops, each loop should
be accompanied by a parallel directive

▪ Each parallel loop can have different loop
boundaries and loop optimizations

▪ Each parallel loop can be parallelized in a
different way

▪ This is the recommended way to parallelize
multiple loops. Attempting to parallelize multiple
loops within the same parallel region may give
performance issues or unexpected results

#pragma acc parallel loop
for(int i = 0; i < N; i++)
a[i] = 0;

#pragma acc parallel loop
for(int j = 0; j < M; j++)
b[j] = 0;

PARALLELIZE WITH OPENACC PARALLEL LOOP

37

while (err > tol && iter < iter_max) {

err=0.0;

#pragma acc parallel loop reduction(max:err)

for(int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +

A[j-1][i] + A[j+1][i]);

err = max(err, abs(Anew[j][i] - A[j][i]));

}

}

#pragma acc parallel loop

for(int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

A[j][i] = Anew[j][i];

}

}

iter++;

}

Parallelize first loop nest,

max reduction required.

Parallelize second loop.

We didn’t detail how to
parallelize the loops, just which

loops to parallelize.

BUILDING THE CODE (GPU)

38

$ pgcc -fast -ta=tesla:managed -Minfo=accel laplace2d_uvm.c

main:

63, Accelerator kernel generated

Generating Tesla code

64, #pragma acc loop gang /* blockIdx.x */

Generating reduction(max:error)

66, #pragma acc loop vector(128) /* threadIdx.x */

63, Generating implicit copyin(A[:])

Generating implicit copyout(Anew[:])

Generating implicit copy(error)

66, Loop is parallelizable

74, Accelerator kernel generated

Generating Tesla code

75, #pragma acc loop gang /* blockIdx.x */

77, #pragma acc loop vector(128) /* threadIdx.x */

74, Generating implicit copyin(Anew[:])

Generating implicit copyout(A[:])

77, Loop is parallelizable

BUILDING THE CODE (MULTICORE)

39

$ pgcc -fast -ta=multicore -Minfo=accel laplace2d_uvm.c

main:

63, Generating Multicore code

64, #pragma acc loop gang

64, Accelerator restriction: size of the GPU copy of Anew,A is unknown

Generating reduction(max:error)

66, Loop is parallelizable

74, Generating Multicore code

75, #pragma acc loop gang

75, Accelerator restriction: size of the GPU copy of Anew,A is unknown

77, Loop is parallelizable

OPENACC SPEED-UP

1.00X

3.23X

41.80X

0.00X

5.00X

10.00X

15.00X

20.00X

25.00X

30.00X

35.00X

40.00X

45.00X

SERIAL MULTICORE V100

S
p

e
e

d
-U

p

Speed-up

BUILDING THE CODE (GPU)

41

$ pgcc -fast -ta=tesla -Minfo=accel laplace2d_uvm.c

PGC-S-0155-Compiler failed to translate accelerator region (see -Minfo messages):

Could not find allocated-variable index for symbol (laplace2d_uvm.c: 63)

PGC-S-0155-Compiler failed to translate accelerator region (see -Minfo messages):

Could not find allocated-variable index for symbol (laplace2d_uvm.c: 74)

main:

63, Accelerator kernel generated

Generating Tesla code

63, Generating reduction(max:error)

64, #pragma acc loop gang /* blockIdx.x */

66, #pragma acc loop vector(128) /* threadIdx.x */

64, Accelerator restriction: size of the GPU copy of Anew,A is unknown

66, Loop is parallelizable

74, Accelerator kernel generated

Generating Tesla code

75, #pragma acc loop gang /* blockIdx.x */

77, #pragma acc loop vector(128) /* threadIdx.x */

75, Accelerator restriction: size of the GPU copy of Anew,A is unknown

77, Loop is parallelizable

OPTIMIZE DATA MOVEMENT

EXPLICIT MEMORY MANAGEMENT

▪ Many parallel accelerators (such as
devices) have a separate memory pool
from the host

▪ These separate memories can become
out-of-sync and contain completely
different data

▪ Transferring between these two memories
can be a very time consuming process

Key problems

CPU

Memory
device

Memory

Shared Cache

$ $ $ $ $ $

$ $ $ $ $ $

CPU

Shared Cache

$ $ $ $ $ $ $ $

device

IO Bus

OPENACC DATA DIRECTIVE

▪ The data directive defines a lifetime
for data on the device

▪ During the region data should be
thought of as residing on the
accelerator

▪ Data clauses allow the programmer
to control the allocation and
movement of data

Definition

#pragma acc data clauses
{

< Sequential and/or Parallel code >

}

!$acc data clauses

< Sequential and/or Parallel code >

!$acc end data

DATA CLAUSES

copy(list) Allocates memory on GPU and copies data from host to GPU when
entering region and copies data to the host when exiting region.

Principal use: For many important data structures in your code, this is a
logical default to input, modify and return the data.

copyin(list) Allocates memory on GPU and copies data from host to GPU when
entering region.

Principal use: Think of this like an array that you would use as just an
input to a subroutine.

copyout(list) Allocates memory on GPU and copies data to the host when exiting
region.

Principal use: A result that isn’t overwriting the input data structure.

create(list) Allocates memory on GPU but does not copy.

Principal use: Temporary arrays.

ARRAY SHAPING

▪ Sometimes the compiler needs help understanding the shape of an array

▪ The first number is the start index of the array

▪ In C/C++, the second number is how much data is to be transferred

▪ In Fortran, the second number is the ending index

copy(array(starting_index:ending_index))

copy(array[starting_index:length]) C/C++

Fortran

ARRAY SHAPING (CONT.)
Multi-dimensional Array shaping

copy(array(1:N, 1:M))

copy(array[0:N][0:M]) C/C++

Fortran

Both of these examples copy a 2D array to the device

ARRAY SHAPING (CONT.)
Partial Arrays

copy(array(i*N/4:i*N/4+N/4))

copy(array[i*N/4:N/4]) C/C++

Fortran

Both of these examples copy only ¼ of the full array

STRUCTURED DATA DIRECTIVE
Example

#pragma acc data copyin(a[0:N],b[0:N]) copyout(c[0:N])
{
#pragma acc parallel loop
for(int i = 0; i < N; i++){
c[i] = a[i] + b[i];

}
}

Action

Host Memory Device memory

A B C

Allocate A on
device

Copy A from
CPU to device

A

Allocate B on
device

Copy B from
CPU to device

B

Allocate C on
device

Execute loop on
device

C’

Copy C from
device to CPU

C’

Deallocate C from
device

Deallocate B from
device

Deallocate A from
device

OPTIMIZED DATA MOVEMENT
#pragma acc data copy(A[:n*m]) copyin(Anew[:n*m])

while (err > tol && iter < iter_max) {

err=0.0;

#pragma acc parallel loop reduction(max:err)

for(int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +

A[j-1][i] + A[j+1][i]);

err = max(err, abs(Anew[j][i] - A[j][i]));

}

}

#pragma acc parallel loop

for(int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

A[j][i] = Anew[j][i];

}

}

iter++;

}

Copy A to/from the

accelerator only when

needed.

Copy initial condition of

Anew, but not final value

REBUILD THE CODE
pgcc -fast -ta=tesla -Minfo=accel laplace2d_uvm.c

main:

60, Generating copy(A[:m*n])

Generating copyin(Anew[:m*n])

64, Accelerator kernel generated

Generating Tesla code

64, Generating reduction(max:error)

65, #pragma acc loop gang /* blockIdx.x */

67, #pragma acc loop vector(128) /* threadIdx.x */

67, Loop is parallelizable

75, Accelerator kernel generated

Generating Tesla code

76, #pragma acc loop gang /* blockIdx.x */

78, #pragma acc loop vector(128) /* threadIdx.x */

78, Loop is parallelizable

Now data movement only

happens at our data

region.

OPENACC SPEED-UP

1.00X

3.23X

41.80X
42.99X

0.00X

5.00X

10.00X

15.00X

20.00X

25.00X

30.00X

35.00X

40.00X

45.00X

50.00X

SERIAL MULTICORE V100 V100 (DATA)

S
p

e
e

d
-U

p

Speed-up

DATA SYNCHRONIZATION

update: Explicitly transfers data between the host and the device

Useful when you want to synchronize data in the middle of a data region

Clauses:

self: makes host data agree with device data

device: makes device data agree with host data

#pragma acc update self(x[0:count])

#pragma acc update device(x[0:count])

!$acc update self(x(1:end_index))

!$acc update device(x(1:end_index))

Fortran

C/C++

OPENACC UPDATE DIRECTIVE

BB*

A*A

OPENACC UPDATE DIRECTIVE

A
CPU Memory device Memory

#pragma acc update device(A[0:N])

B*

#pragma acc update self(A[0:N])

The data must exist on
both the CPU and device
for the update directive

to work.

SYNCHRONIZE DATA WITH UPDATE

int* allocate_array(int N){
int* A=(int*) malloc(N*sizeof(int));
#pragma acc enter data create(A[0:N])
return A;

}

void deallocate_array(int* A){
#pragma acc exit data delete(A)
free(A);

}

void initialize_array(int* A, int N){
for(int i = 0; i < N; i++){

A[i] = i;
}
#pragma acc update device(A[0:N])

}

▪ Inside the initialize function we alter the
host copy of ‘A’

▪ This means that after calling initialize the
host and device copy of ‘A’ are out-of-sync

▪ We use the update directive with the
device clause to update the device copy of
‘A’

▪ Without the update directive later compute
regions will use incorrect data.

FURTHER OPTIMIZATIONS

PROFILING GPU CODE (PGPROF)

▪ PGPROF presents far more
information when running on a GPU

▪ We can view CPU Details, GPU
Details, a Timeline, and even do
Analysis of the performance

Using PGPROF to profile GPU code

PROFILING GPU CODE (PGPROF)
Using PGPROF to profile GPU code

▪ MemCpy(HtoD): This includes data
transfers from the Host to the Device
(CPU to GPU)

▪ MemCpy(DtoH): These are data
transfers from the Device to the Host
(GPU to CPU)

▪ Compute: These are our
computational functions. We can
see our calcNext and swap function

LOOP OPTIMIZATIONS

COLLAPSE CLAUSE

▪ collapse(N)

▪ Combine the next N tightly nested loops

▪ Can turn a multidimensional loop nest
into a single-dimension loop

▪ This can be extremely useful for
increasing memory locality, as well as
creating larger loops to expose more
parallelism

#pragma acc parallel loop collapse(2)
for(i = 0; i < size; i++)
for(j = 0; j < size; j++)
double tmp = 0.0f;
#pragma acc loop reduction(+:tmp)
for(k = 0; k < size; k++)
tmp += a[i][k] * b[k][j];

c[i][j] = tmp;

for(i = 0; i < 4; i++)
for(j = 0; j < 4; j++)
array[i][j] = 0.0f;

COLLAPSE CLAUSE

(0,0) (0,1) (0,2) (0,3)

(1,0) (1,1) (1,2) (1,3)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,2) (3,3)

collapse(2)

#pragma acc parallel loop collapse(2)
for(i = 0; i < 4; i++)
for(j = 0; j < 4; j++)
array[i][j] = 0.0f;

TILE CLAUSE

▪ tile (x , y , z, ...)

▪ Breaks multidimensional loops into
“tiles” or “blocks”

▪ Can increase data locality in some
codes

▪ Will be able to execute multiple “tiles”
simultaneously

#pragma acc kernels loop tile(32, 32)
for(i = 0; i < size; i++)
for(j = 0; j < size; j++)
for(k = 0; k < size; k++)
c[i][j] += a[i][k] * b[k][j];

TILE CLAUSE

(0,0) (0,1) (0,3)(0,2)

(1,0) (1,1) (1,3)(1,2)

(2,0) (2,1) (2,3)(2,2)

(3,0) (3,1) (3,3)(3,2)

for(int x = 0; x < 4; x++){
for(int y = 0; y < 4; y++){
array[x][y]++;

}
}

#pragma acc kernels loop tile(2,2)
for(int x = 0; x < 4; x++){
for(int y = 0; y < 4; y++){
array[x][y]++;

}
}

tile (2 , 2)

(0,0) (0,1) (0,3)(0,2)

(1,0) (1,1) (1,3)(1,2)

(2,0) (2,1) (2,3)(2,2)

(3,0) (3,1) (3,3)(3,2)

GANG WORKER VECTOR

▪ Gang / Worker / Vector defines the
various levels of parallelism we can
achieve with OpenACC

▪ This parallelism is most useful when
parallelizing multi-dimensional loop
nests

▪ OpenACC allows us to define a generic
Gang / Worker / Vector model that will
be applicable to a variety of hardware,
but we fill focus a little bit on a GPU
specific implementation

Workers

Gang

Vector

OPTIMIZED LOOP
#pragma acc data copy(A[:n*m]) copyin(Anew[:n*m])

while (err > tol && iter < iter_max) {

err=0.0;

#pragma acc parallel loop reduction(max:err) tile(32,32)

for(int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +

A[j-1][i] + A[j+1][i]);

err = max(err, abs(Anew[j][i] - A[j][i]));

}

}

#pragma acc parallel loop tile(32,32)

for(int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

A[j][i] = Anew[j][i];

}

}

iter++;

}

Create 32x32 tiles of the

loops to better exploit

data locality.

REBUILD THE CODE
pgcc -fast -ta=tesla -Minfo=accel laplace2d_uvm.c

main:

60, Generating copy(A[:m*n])

Generating copyin(Anew[:m*n])

64, Accelerator kernel generated

Generating Tesla code

64, Generating reduction(max:error)

65, #pragma acc loop gang /* blockIdx.x */

67, #pragma acc loop vector(128) /* threadIdx.x */

67, Loop is parallelizable

75, Accelerator kernel generated

Generating Tesla code

76, #pragma acc loop gang /* blockIdx.x */

78, #pragma acc loop vector(128) /* threadIdx.x */

78, Loop is parallelizable

Now data movement only

happens at our data

region.

OPENACC SPEED-UP

1.00X

3.23X

41.80X
42.99X

54.25X

0.00X

10.00X

20.00X

30.00X

40.00X

50.00X

60.00X

SERIAL MULTICORE V100 V100 (DATA) V100 (TILE)

S
p

e
e

d
-U

p

Speed-up

LOOP OPTIMIZATION RULES OF THUMB

▪ It is rarely a good idea to set the number of gangs in your code, let the compiler
decide.

▪ Most of the time you can effectively tune a loop nest by adjusting only the vector
length.

▪ It is rare to use a worker loop. When the vector length is very short, a worker loop
can increase the parallelism in your gang.

▪ When possible, the vector loop should step through your arrays

▪ Use the device_type clause to ensure that tuning for one architecture doesn’t
negatively affect other architectures.

Resources
https://www.openacc.org/resources

Success Stories
https://www.openacc.org/success-stories

Events
https://www.openacc.org/events

OPENACC RESOURCES
Guides ● Talks ● Tutorials ● Videos ● Books ● Spec ● Code Samples ● Teaching Materials ● Events ● Success Stories ● Courses ● Slack ● Stack Overflow

Compilers and Tools
https://www.openacc.org/tools

FREE

Compilers

https://www.openacc.org/resources
https://www.openacc.org/success-stories
https://www.openacc.org/events
https://gcc.gnu.org/wiki/OpenACC
https://www.openacc.org/tools
https://www.pgroup.com/products/community.htm

CLOSING REMARKS

KEY CONCEPTS
In this lab we discussed…

▪ How to profile a serial code to identify loops that should be
accelerated

▪ How to use OpenACC’s parallel loop directive to parallelize key loops

▪ How to use OpenACC’s data clauses to control data movement

▪ How to optimize loops in the code for better performance

NEXT STEPS
Find more information at…

▪ Please Connect with the Experts:

Tuesday & Wednesday 2-3, Thursday 11-12.

▪ Check your schedule for more OpenACC talks

▪ Network at the OpenACC Users Group Meeting, Tuesday 7:00PM @
Mosaic Restaurant (RSVP requested)

▪ Visit https://www.openacc.org/events for future opportunities

https://www.openacc.org/events

