Sparse Attentive Backtracking: Temporal credit assignment through reminding

Nan Rosemary Ke1,2, Anirudh Goyal1, Olexa Bilaniuk 1, Jonathan Binas1 Chris Pal2,4, Mike Mozer 3, Yoshua Bengio1,5

1Mila, Université de Montréal
2Mila, Polytechnique Montreal
3University of Colorado, Boulder
4Element AI
5CIFAR Senior Fellow
Overview

- Recurrent neural networks
 - sequence modeling
- Training RNNs
 - backpropagation through time (BPTT)
- Attention mechanism
- Sparse attentive backtracking
Sequence modeling

Variable length input and (or) output.

- Speech recognition
 - variable length input, variable length output

- Image captioning
 - Fixed size input, variable length output

Sequence modeling

More examples

- Text
 - Language modeling
 - Language understanding
 - Sentiment analysis

- Videos
 - Video generation.
 - Video understanding.

- Biological data
 - Medical imaging
Recurrent neural networks (RNNs)

Handling variable length data

- **Variable** length input or output
- **Variable** order
 - ”In 2014, I visited Paris.”
 - ”I visited Paris in 2014.”
- Use **shared parameters** across time
Vanilla recurrent neural networks

- Parameters of the network
 - U, W, V
 - unrolled across time

\[h_{t-1} = \begin{array}{c}
 h_0 \\
 h_1 \\
 h_2 \\
 \vdots \\
 h_T
\end{array} \]

Christopher Olah – Understanding LSTM Networks
Training RNNs

Backpropagation through time (BPTT)

\[
\frac{dE_2}{dU} = \frac{dE_2}{dh_2} (x_T^2 + \frac{dh_2}{dh_1} (x_T^1 + \frac{dh_1}{dh_0} x_T^0))
\]

\[\text{Christopher Olah – Understanding LSTM Networks}\]
Challenges with RNN training

Parameters are shared across time

- Number of parameters do not change with sequence length.
- Consequences
 - Optimization issue
 - Exploding or vanishing gradients
 - Assumption that same parameters can be used for different time steps.
Challenges with RNN training

Train to predict the future from the past

- h_t is a lossy summary of $x_0, ..., x_t$
- Depending on criteria, h_t decides what information to keep
- **Long term dependency**: if y_t depends on distant past, then h_t has to keep information from many timesteps ago.
Long term dependency

Example of long term dependency

- Question answering task.
- Answer is the first word.
Exploding and vanishing gradient

Challenges in learning long-term dependencies

- Exploding and vanishing gradient
Long short term memory (LSTM)

Gated recurrent neural networks that helps with long term dependency.

- Self-loop for gradients to flow for many steps
- Gates for learning what to remember or forget
- Long-short term memory (LSTM)

- Gated recurrent neural networks (GRU)
Long short term memory (LSTM)

Recurrent neural network with gates that dynamically decides what to put into, forget about and read from memory.

- Memory cell c_t
- Internal states h_t
- Gates for writing into, forgetting and reading from memory
Encoder decoder model

Summarizes the input into a single h_t and decoder generates outputs conditioned on h_t.

- Encoder summarizes entire input sequence into a single vector h_t.
- Decoder generates outputs conditioned on h_t.
- Applications: machine translation, question answering tasks.
- Limitations: h_t in encoder is bottleneck.
Attention mechanism

Removes the bottleneck in encoder decoder architecture using an attention mechanism.

- At each output step, learns an attention weight for each $h_0, ..., h_t$ in the encoder.
 \[
 a_j = \frac{e^{A(z_j, h_j)}}{\sum_{j'} e^{A(z_{j'}, h_{j'})}}
 \]
- Dynamically encodes into context vector at each time step.
- Decoder generates outputs at each step conditioned on context vector c_{x_t}.

![Diagram of attention mechanism](image)
Limitations of BPTT

The most popular RNN training method is backpropagation through time (BPTT).

- Sequential in nature.
- Exploding and vanishing gradient
- Not biologically plausible
 - Detailed replay of all past events.
Credit assignment

- **Credit assignment**: The correct division and attribution of blame to one's past actions in leading to a final outcome.
- Credit assignment in **recurrent neural networks** uses backpropagation through time (BPTT).
 - Detailed memory of all past events
 - Assigns soft credit to almost all past events
 - Diffusion of credit? difficulty of learning long-term dependencies
• Humans selectively recall memories that are relevant to the current behavior.

• Automatic reminding:
 • Triggered by contextual features.
 • Can serve a useful computational role in ongoing cognition.
 • Can be used for credit assignment to past events?

• Assign credit through only a few states, instead of all states:
 • Sparse, local credit assignment.
 • How to pick the states to assign credit to?
Example: Driving on the highway, hear a loud popping sound. Didn’t think too much about it, 20 minutes later stopped by side of the road. Realized one of the tire has popped.

- What we tend to do?
 - Memory replay of event in context: Immediately brings back the memory of the loud popping sound 20min ago.

- what BPTT does?
 - BPTT will replay all events within the past 20min.
Maybe something more biologically inspired?

- What we tend to do?
 - Memory replay of event in context: Immediately brings back the memory of the loud popping sound 20min ago.

- What BPTT does?
 - BPTT will replay all events within the past 20min.
Credit assignment through a few states?

- Can we assign credit only through a few states?
- How to pick which states to assign credit to?
- RNN models does not support such operations in the past. Needs to make **architecture changes**.
 - Can change both forward and backward.
 - Or just change backward pass.
- Change both forward and backward pass
 - Forward dense, backward sparse
 - Forward sparse, backward sparse
Humans are trivially capable of assigning credit or blame to events even a long time after the fact, and do not need to replay all events from the present to the credited event sequentially and in reverse to do so.

- **Avoids competition** for the limited information-carrying capacity of the sequential path
- A simple form of **credit assignment**
- Imposes a **trade-off** that is absent in previous, dense self-attentive mechanisms: opening a connection to an interesting or useful timestep must be made at the price of excluding others.
Sparse attentive backtracking

- Use attention mechanism to select previous timestep to do backprop
 - Local backprop: truncated BPTT
 - Select previous hidden states - **sparsely**.
 - Skip-connections: natural for long-term dependency.
Algorithm 1 SAB-augmented LSTM

1: procedure SABCell \((h^{(t-1)}, c^{(t-1)}, x^{(t)})\)

Require: \(k_{top} > 0, k_{att} > 0, k_{trunc} > 0\)

Require: Memories \(m^{(i)} \in \mathcal{M}\)

Require: Previous hidden state \(h^{(t-1)}\)

Require: Previous cell state \(c^{(t-1)}\)

Require: Input \(x^{(t)}\)

2: \(\hat{h}^{(t)}, c^{(t)} \leftarrow \text{LSTMCell}(h^{(t-1)}, c^{(t-1)}, x^{(t)})\)

3: for all \(i \in 1 \ldots |\mathcal{M}|\) do

4: \(d^{(t)}_i \leftarrow W_1 m^{(i)} + W_2 \hat{h}^{(t)}\)

5: \(a^{(t)}_i \leftarrow W_3 \tanh(d^{(t)}_i)\)

6: \(a^{(t)}_{k_{top}} \leftarrow \text{sorted}(a^{(t)})[k_{top}+1]\)

7: \(\tilde{a}^{(t)} \leftarrow \text{ReLU}(a^{(t)} - a^{(t)}_{k_{top}})\)

8: \(s^{(t)} \leftarrow \sum_{m^{(i)} \in \mathcal{M}} \frac{\tilde{a}^{(t)}_i m^{(i)}}{\sum_{i} \tilde{a}^{(t)}_i}\)

9: \(h^{(t)} \leftarrow \hat{h}^{(t)} + s^{(t)}\)

10: \(y^{(t)} \leftarrow V_1 h^{(t)} + V_2 s^{(t)} + b\)

11: if \(t \equiv 0 \pmod{k_{att}}\) then

12: \(\mathcal{M}.\text{append}(h^{(t)})\)

13: return \(h^{(t)}, c^{(t)}, y^{(t)}\)
Sparse Attentive Backtracking

Forward pass

[Diagram of Sparse Attentive Backtracking with labels for Concat, Broadcast, MLP, Sparsifier, and RNN Cell]
Sparse Attentive Backtracking

Backward pass

Diagram: Network structure with nodes labeled as Concat, Broadcast, MLP, Sparsifier, and RNN Cell. Arrows indicate the flow of information between nodes.
Copy task

<table>
<thead>
<tr>
<th>LSTM</th>
<th>k_{trunc}</th>
<th>k_{top}</th>
<th>Copying (T=100)</th>
<th>Copying (T=200)</th>
<th>Copying (T=300)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>acc. CE CE</td>
<td>acc. CE CE</td>
<td>acc. CE CE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CE CE CE</td>
<td>CE CE CE</td>
<td>CE CE CE</td>
</tr>
<tr>
<td>full BPTT</td>
<td></td>
<td></td>
<td>99.8 0.030 0.002</td>
<td>56.0 1.07 0.046</td>
<td>35.9 0.197 0.047</td>
</tr>
<tr>
<td>full self-attn.</td>
<td></td>
<td></td>
<td>100.0 0.0008 0.0000</td>
<td>100.0 0.001 0.000</td>
<td>100.0 0.002 7.5e-5</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>-</td>
<td>20.6 1.984 0.165</td>
<td>17.1 2.03 0.092</td>
<td>14.0 2.077 0.065</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>-</td>
<td>31.0 1.737 0.145</td>
<td>20.2 1.98 0.090</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>-</td>
<td>29.6 1.772 0.148</td>
<td>35.0 1.596 0.073</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>-</td>
<td>30.5 1.714 0.143</td>
<td>35.8 1.61 0.073</td>
<td></td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>-</td>
<td>- - -</td>
<td>25.7 1.848 0.197</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>24.4 1.857 0.058</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAB</td>
<td>1</td>
<td>1</td>
<td>57.9 1.041 0.087</td>
<td>39.9 1.516 0.069</td>
<td>43.1 0.231 0.045</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>5</td>
<td>100.0 0.001 0.000</td>
<td></td>
<td>89.1 0.383 0.012</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5</td>
<td>100.0 0.000 0.000</td>
<td>100.0 0.000 0.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>10</td>
<td>100.0 0.000 0.001</td>
<td>100.0 0.000 0.000</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Test accuracy and cross-entropy (CE) loss performance on the copying task with sequence lengths of T=100, 200, and 300. Accuracies are given in percent for the last 10 characters. CE_{10} corresponds to the CE loss on the last 10 characters. These results are with mental updates; Compare with Table 4 for without.
Comparison to Transformers

<table>
<thead>
<tr>
<th>Image class.</th>
<th>pMNIST acc.</th>
<th>CIFAR10 acc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSTM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>full BPTT</td>
<td>90.3</td>
<td>58.3</td>
</tr>
<tr>
<td>300</td>
<td>-</td>
<td>51.3</td>
</tr>
<tr>
<td>SAB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>5</td>
<td>89.8</td>
</tr>
<tr>
<td>20</td>
<td>10</td>
<td>90.9</td>
</tr>
<tr>
<td>50</td>
<td>10</td>
<td>94.2</td>
</tr>
<tr>
<td>16</td>
<td>10</td>
<td>64.5</td>
</tr>
<tr>
<td>Transformer (Vasvani’17)</td>
<td>97.9</td>
<td>62.2</td>
</tr>
</tbody>
</table>

Table 4: Test accuracy for the permuted MNIST and CIFAR10 classification tasks.
Language modeling tasks

<table>
<thead>
<tr>
<th>Language</th>
<th>(k_{trunc})</th>
<th>(k_{top})</th>
<th>(k_{att})</th>
<th>PTB BPC</th>
<th>Text8 BPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>full BPTT</td>
<td></td>
<td></td>
<td></td>
<td>1.36</td>
<td>1.42</td>
</tr>
<tr>
<td>LSTM</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1.47</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>1.44</td>
<td>1.56</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>-</td>
<td>-</td>
<td>1.40</td>
<td></td>
</tr>
<tr>
<td>SAB</td>
<td>10</td>
<td>5</td>
<td>10</td>
<td>1.42</td>
<td>1.47</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>1.40</td>
<td>1.45</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>5</td>
<td>20</td>
<td>1.39</td>
<td>1.45</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>10</td>
<td>20</td>
<td>1.37</td>
<td>1.44</td>
</tr>
</tbody>
</table>
Are mental updates important?

How important is backproping through the local updates (not just attention weights)?

<table>
<thead>
<tr>
<th>Ablation</th>
<th>k_{trunc}</th>
<th>k_{iop}</th>
<th>Copying, T=100</th>
<th>Adding, T=200CE</th>
</tr>
</thead>
<tbody>
<tr>
<td>no MU</td>
<td>1</td>
<td>1</td>
<td>49.0 1.252 0.104</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5</td>
<td>98.3 0.042 0.0036</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>10</td>
<td>99.6 0.022 0.0018</td>
<td>2.171e-6</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>all</td>
<td>40.5 1.529 0.127</td>
<td></td>
</tr>
</tbody>
</table>
Generalization

- Generalization on longer sequences

<table>
<thead>
<tr>
<th>Copy len. (T)</th>
<th>LSTM</th>
<th>LSTM + self-a.</th>
<th>SAB</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>99%</td>
<td>100%</td>
<td>99%</td>
</tr>
<tr>
<td>200</td>
<td>34%</td>
<td>52%</td>
<td>95%</td>
</tr>
<tr>
<td>300</td>
<td>25%</td>
<td>28%</td>
<td>83%</td>
</tr>
<tr>
<td>400</td>
<td>21%</td>
<td>20%</td>
<td>75%</td>
</tr>
<tr>
<td>2000</td>
<td>12%</td>
<td>12%</td>
<td>47%</td>
</tr>
<tr>
<td>5000</td>
<td>12%</td>
<td>OOM</td>
<td>41%</td>
</tr>
</tbody>
</table>

Generalization test for models trained on copy task with T=100
Long term dependency tasks

Attention heat map

- Learned attention over different timesteps during training

Copy Task with $T = 200$
Future work

• Content-based rule for writing to memory
 • Reduces memory storage
 • How to decide what to write to memory?
 • Humans show a systematic dependence on many content: salient, extreme, unusual, and unexpected experiences are more likely to be stored and subsequently remembered

• Credit assignment through more abstract states/ memory?
• Model-based reinforcement learning
• The source code is now open-source, at
 https://github.com/nke001/sparse_attentive_backtracking_release