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Overview

Recurrent neural networks

e sequence modeling
Training RNNs
e backpropagation through time (BPTT)

Attention mechanism

Sparse attentive backtracking



Sequence modeling

Variable length input and (or) output.

e Speech recognition
e variable length input, variable length output
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Image captioning
e Fixed size input, variable length output
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A woman is throwing a frisbee in a park. A stop sign is on a road with a

untain in the backaround.

A group of people sitting on a boat A giraffe standing in a forest with

in the water. trees in the background. 2

Show, Attend & Tell — arXiv preprint arXiv:1502.03044


https://arxiv.org/pdf/1502.03044.pdf

Sequence modeling

More examples

o Text

e Language modeling
e Language understanding
e Sentiment analysis

e Videos

e Video generation.
e Video understanding.

e Biological data

e Medical imaging



Recurrent neural networks (RNNs)

Handling variable length data

e Variable length input or output
e Variableorder

e "In 2014, | visited Paris.”
e "| visited Paris in 2014."

e Use shared parameters across time



Recurrent neural networks (RNNs)

Vanilla recurrent neural networks

e Parameters of the network
e U W,V
e unrolled across time

Christopher Olah — Understanding LSTM Networks


https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Training RNNs

Backpropagation through time (BPTT)
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Christopher Olah — Understanding LSTM Networks


https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Challenges with RNN training

Parameters are shared across time

e Number of parameters do not change with sequence length.
e Consequences
e Optimization issue
e Exploding or vanishing gradients
e Assumption that same parameters can be used for different time
steps.



Challenges with RNN training

Train to predict the future from the past

e h; is a lossy summary of xp, ..., x;
e Depending on criteria, h; decides what information to keep

e Long term dependency: if y; depends on distant past, then h; has
to keep information from many timesteps ago.



Long term dependency

Example of long term dependency

e Question answering task.

e Answer is the first word.
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Rosemary went Paris

Who went to Paris?
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Exploding and vanishing gradient

Challenges in learn long term dependencies

e Exploding and vanishing gradient
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Long short term memory (LSTM)

Gated recurrent neural networks that helps with long term dependency.

e Self-loop for gradients to flow for many steps
e Gates for learning what to remember or forget

e Long-short term memory (LSTM)

Hochreiter, Sepp, and Jiirgen Schmidhuber. " Long short-term memory." Neural computation 9.8 (1997): 1735-1780.

e Gated recurrent neural networks (GRU)

Cho, Kyunghyun, et al. "Learning phrase representations using RNN encoder-decoder for statistical machine translation.” arXiv

preprint arXiv:1406.1078 (2014).
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https://www.mitpressjournals.org/doi/abs/10.1162/neco.1997.9.8.1735
https://arxiv.org/abs/1406.1078

Long short term memory (LSTM)

Recurrent neural network with gates that dynamically decides what to
put into, forget about and read from memory.

e Memory cell ¢;
e Internal states h;
e Gates for writing into, forgetting and reading from memory
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Christopher Olah — Understanding LSTM Networks
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https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Encoder decoder model

Summarizes the input into a single h; and decoder generates outputs
conditioned on h;.

e Encoder summarizes entire input sequence into a single vector h;.
e Decoder generates outputs conditioned on h;.
e Applications: machine translation, question answering tasks.

e Limitations: h; in encoder is bottleneck.
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Attention mechanism

Removes the bottleneck in encoder decoder architecture using an
attention mechanism.

e At each output step, learns an attention weight for each hg, ..., h; in
the encoder.
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e Dynamically encodes into into context vector at each time step.

e Decoder generates outputs at each step conditioned on context
vector cx;.
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Limitations of BPTT

The most popular RNN training method is backpropagation through time
(BPTT).
e Sequential in nature.

e Exploding and vanishing gradient
e Not biologically plausible

e Detailed replay of all past events.
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Credit assignment

e Credit assignment: The correct division and attribution of blame to
one's past actions in leading to a final outcome.

e Credit assignment in recurrent neural networks uses backpropgation
through time (BPTT).
e Detailed memory of all past events
e Assigns soft credit to almost all past events
e Diffusion of credit? difficulty of learning long-term dependencies
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Credit assignment through time and me

e Humans selectively recall memories that are relevant to the current
behavior.
e Automatic reminding:
e Triggered by contextual features.
e Can serve a useful computational role in ongoing cognition.
e Can be used for credit assignment to past events?
e Assign credit through only a few states, instead of all states:

e Sparse, local credit assignment.
e How to pick the states to assign credit to?

17



Credit assignment through time

Example: Driving on the highway, hear a loud popping sound. Didn't
think too much about it, 20 minutes later stopped by side of the road.
Realized one of the tire has popped.

e What we tend to do?

e Memory replay of event in context: Immediately brings back the
memory of the loud popping sound 20min ago.

e what BPTT does?
e BPTT will replay all events within the past 20min.
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Maybe something more biologically inspired?

e What we tend to do?

e Memory replay of event in context: Immediately brings back the
memory of the loud popping sound 20min ago.

e what BPTT does?
e BPTT will replay all events within the past 20min.
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Credit assignment through a few states?

Can we assign credit only through a few states?

How to pick which states to assign credit to?

RNN models does not support such operations in the past.
Needs to make architecture changes.

e Can change both forward and backward.

e Or just change backward pass.

Change both forward and backward pass

e Forward dense, backward sparse
e Forward sparse, backward sparse
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Sparse replay

Humans are trivially capable of assigning credit or blame to events even a
long time after the fact, and do not need to replay all events from the
present to the credited event sequentially and in reverse to do so.

e Avoids competition for the limited information-carrying capacity of
the sequential path
e A simple form of credit assignment

e Imposes a trade-off that is absent in previous, dense self-attentive
mechanisms: opening a connection to an interesting or useful
timestep must be made at the price of excluding others.
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Sparse attentive backtracking

e Use attention mechanism to select previous timestep to do backprop

e Local backprop: truncated BPTT
e Select previous hidden states - sparsely.
e Skip-connections: natural for long-term dependency.
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Algorithm

Algorithm 1 SAB-augmented LSTM

1: procedure SABCELL (h(~1), ¢t~ 1) (1))
Require: kiop > 0, kot > 0, ktrune > 0
Require: Memories m® € M
Require: Previous hidden state A~
Require: Previous cell state ¢(*~%
Require: Input x®
2: A® c® LSTMCell(h(~D =1 2®)
3 forallic1...|M|do
4: d « Wim® + Wah®
5: a" «— W;tanh(d™)
6
7
8

a,(:tgp + sorted(a®) [kop+1]

a@® + ReLU (a(t) — a,(:“),p)
s(t) «— Z agt)m(i)/ Z agt)
m®em i
9 h® — A® 4 s®
10:  y® «Vih® + Vos® 1+ b
11: ift =0 (mod kqy:) then
12: M . append (h®)
13: return h*) s c(t), y(t)
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Sparse Attentive Backtracking

Forward pass
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Sparse Attentive Backtracking

Backward pass
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Long term dependency tasks

Copy task
Copying (T=100) Copying (T=200) Copying (T=300)

Kirunc FKuop acc. CE1o CE acc. CEjo CE acc. CEig CE

full BPTT 99.8  0.030 0.002 | 560 107 0.046 | 359 0.197 0.047

= full self-anm. | 100.0  0.0008 0.0000 | 100.0 0.001 0.000 | 100.0 0.002 7.5e-5

g 1 - 20.6 1.984 0.165 140 2077  0.065
- 5 -| 310 1737  0.145 17.1 2.03  0.092
10 - 29.6 1.772 0.148 20.2 1.98  0.090

20 -| 305 1714 0143 | 358 1.61 0.073 | 257 1.848 0.197

150 - - - -] 350 1596 0.073 | 244 1.857 0.058

1 1| 579 1041 0087 | 399 1516 0069 | 431 0231 0.045

3 1 51000 0.001  0.000 89.1 0383 0.012

) 5 51 100.0  0.000  0.000 | 100.0 0.000 0.000 | 99.9 0.007 0.001
10 10 | 100.0  0.000  0.001 | 100.0 0.000 0.000

Table 2: Test accuracy and cross-entropy (CE) loss performance on the copying task with sequence lengths of
T=100, 200, and 300. Accuracies are given in percent for the last 10 characters. CE1o corresponds to the CE
loss on the last 10 characters. These results are with mental updates; Compare with Table 4 for without.
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Comparison to Transformers

Image class. PMNIST | CIFAR10
kiune  Kop K acc. acc.
= _full BPTT | 90.3 | 58.3
@ 300 - - | 51.3
20 5 20 89.8
= 20 10 20 90.9
Z 50 10 50 94.2
16 10 16 64.5
Transformer (Vasvani’'17) | 97.9 | 62.2

Table 4: Test accuracy for the permutated MNIST and
CIFAR10 classification tasks.
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Language modeling tasks

Language modeling tasks

Language PTB | Text8
Ktrunc kwop kax | BPC BPC
full BPTT | 136 | 142
z 1 - | 147
x 5 - - | 144 1.56
20 - - | 140

10 5 10| 142 1.47
10 10 10 | 1.40 1.45
20 5 20| 1.39 1.45
20 10 20 | L.37 1.44

SAB
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Are mental updates import

How important is backproping through the local updates (not just
attention weights)?

Ablation

Copying, T=100 Adding,
Kwwe  kwop | acc.  CEustio CE | T=200cg
2 1 1] 49.0 1252 0.104
Z 5 5/ %3 0042 00036
2 10 10|96 002 00018 | 217le6

5 all | 405 1.529  0.127 |
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Generalization

e Generalization on longer sequences
Transfer Learning Results

Copylen. | LSTM LSTM SAB
(T) +self-a.

100 99% 100%  99%
200 34% 52% 95%
300 25% 28% 83%
400 21% 20% 75%
2000 12% 12%  47%
5000 12% OOM 41%

Generalization test for models trained on copy task with T=100

W LSTM LSTM + sclfatt @ SAB

Accuracy of last 10 digits

T=100 T=400 T =2000 T = 5000

Test sequence length 30



Long term dependency tasks

Attention heat map

e Learned attention over different timesteps during training

Timestep
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Future work

e Content-based rule for writing to memory

e Reduces memory storage

e How to decide what to write to memory?

e Humans show a systematic dependence on many content: salient,
extreme, unusual, and unexpected experiences are more likely to be
stored and subsequently remembered

e Credit assignment through more abstract states/ memory?

e Model-based reinforcement learning
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Open-Source Release

e The source code is now open-source, at
https://github.com/nke001/sparse_attentive_backtracking_release
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https://github.com/nke001/sparse_attentive_backtracking_release

