

Sparse Attentive Backtracking:

Temporal credit assignment through reminding

Nan Rosemary Ke^{1,2}, Anirudh Goyal¹, Olexa Bilaniuk ¹, Jonathan Binas¹ Chris Pal^{2,4}, Mike Mozer ³, Yoshua Bengio^{1,5}

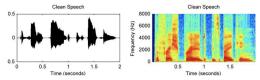
¹Mila, Université de Montréal ²Mila, Polytechnique Montreal ³University of Colorado, Boulder ⁴Element Al ⁵CIFAR Senior Fellow

- Recurrent neural networks
 - sequence modeling
- Training RNNs
 - backpropagation through time (BPTT)
- Attention mechanism
- Sparse attentive backtracking

Sequence modeling

Variable length input and (or) output.

- Speech recognition
 - variable length input, variable length output



- Image captioning
 - Fixed size input, variable length output

A woman is throwing a frisbee in a park.

A group of people sitting on a boat in the water.

A stop sign is on a road with a mountain in the background.

A giraffe standing in a forest with trees in the background.

Show, Attend & Tell - arXiv preprint arXiv:1502.03044

More examples

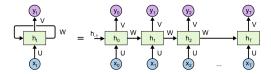
- Text
 - Language modeling
 - Language understanding
 - Sentiment analysis
- Videos
 - Video generation.
 - Video understanding.
- Biological data
 - Medical imaging

Handling variable length data

- Variable length input or output
- Variableorder
 - "In 2014, I visited Paris."
 - "I visited Paris in 2014."
- Use shared parameters across time

Vanilla recurrent neural networks

- Parameters of the network
 - U, W, V
 - unrolled across time

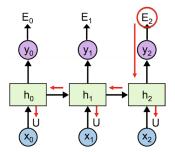


Christopher Olah - Understanding LSTM Networks

Training RNNs

Backpropagation through time (BPTT)

$$\frac{dE_2}{dU} = \frac{dE_2}{dh_2} (x_2^T + \frac{dh_2}{dh_1} (x_1^T + \frac{dh_1}{dh_0} x_0^T))$$



Christopher Olah - Understanding LSTM Networks

Parameters are shared across time

- Number of parameters do not change with sequence length.
- Consequences
 - Optimization issue
 - Exploding or vanishing gradients
 - Assumption that same parameters can be used for different time steps.

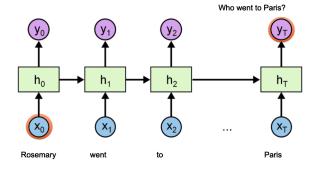
Train to predict the future from the past

- h_t is a lossy summary of $x_0, ..., x_t$
- Depending on criteria, h_t decides what information to keep
- Long term dependency: if y_t depends on distant past, then h_t has to keep information from many timesteps ago.

Long term dependency

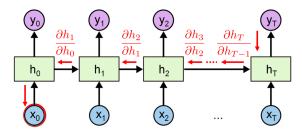
Example of long term dependency

- Question answering task.
- Answer is the first word.



Challenges in learn long term dependencies

• Exploding and vanishing gradient



Gated recurrent neural networks that helps with long term dependency.

- Self-loop for gradients to flow for many steps
- · Gates for learning what to remember or forget
- Long-short term memory (LSTM)

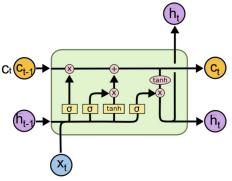
Hochreiter, Sepp, and Jürgen Schmidhuber. "Long short-term memory." Neural computation 9.8 (1997): 1735-1780.

• Gated recurrent neural networks (GRU)

Cho, Kyunghyun, et al. "Learning phrase representations using RNN encoder-decoder for statistical machine translation." arXiv preprint arXiv:1406.1078 (2014).

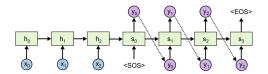
Recurrent neural network with gates that dynamically decides what to put into, forget about and read from memory.

- Memory cell c_t
- Internal states h_t
- Gates for writing into, forgetting and reading from memory



Summarizes the input into a single h_t and decoder generates outputs conditioned on h_t .

- Encoder summarizes entire input sequence into a single vector h_t .
- Decoder generates outputs conditioned on *h_t*.
- Applications: machine translation, question answering tasks.
- Limitations: h_t in encoder is bottleneck.



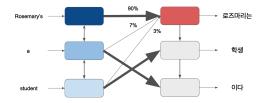
Attention mechanism

Removes the bottleneck in encoder decoder architecture using an **attention mechanism**.

• At each output step, learns an attention weight for each $h_0, ..., h_t$ in the encoder.

$$a_j = \frac{e^{A(z_j,h_j)}}{\sum_{j'e^{A(z_j,h_{j'})}}}$$

- Dynamically encodes into into context vector at each time step.
- Decoder generates outputs at each step conditioned on context vector cx_t.



The most popular RNN training method is backpropagation through time (BPTT).

- Sequential in nature.
- Exploding and vanishing gradient
- Not biologically plausible
 - Detailed replay of all past events.

- Credit assignment: The correct division and attribution of blame to one's past actions in leading to a final outcome.
- Credit assignment in recurrent neural networks uses backpropgation through time (BPTT).
 - Detailed memory of all past events
 - Assigns soft credit to almost all past events
 - Diffusion of credit? difficulty of learning long-term dependencies

- Humans selectively recall memories that are relevant to the current behavior.
- Automatic reminding:
 - Triggered by contextual features.
 - Can serve a useful computational role in ongoing cognition.
 - Can be used for credit assignment to past events?
- Assign credit through only a few states, instead of all states:
 - Sparse, local credit assignment.
 - How to pick the states to assign credit to?

Example: Driving on the highway, hear a loud popping sound. Didn't think too much about it, 20 minutes later stopped by side of the road. Realized one of the tire has popped.

- What we tend to do?
 - Memory replay of event in context: Immediately brings back the memory of the loud popping sound 20min ago.
- what BPTT does?
 - BPTT will replay all events within the past 20min.

- What we tend to do?
 - Memory replay of event in context: Immediately brings back the memory of the loud popping sound 20min ago.
- what BPTT does?
 - BPTT will replay all events within the past 20min.

- Can we assign credit only through a few states?
- How to pick which states to assign credit to?
- RNN models does not support such operations in the past. Needs to make **architecture changes**.
 - Can change both forward and backward.
 - Or just change backward pass.
- Change both forward and backward pass
 - Forward dense, backward sparse
 - Forward sparse, backward sparse

Humans are trivially capable of assigning credit or blame to events even a **long time** after the fact, and do not need to replay all events from the present to the credited event sequentially and in reverse to do so.

- Avoids competition for the limited information-carrying capacity of the sequential path
- A simple form of credit assignment
- Imposes a trade-off that is absent in previous, dense self-attentive mechanisms: opening a connection to an interesting or useful timestep must be made at the price of excluding others.

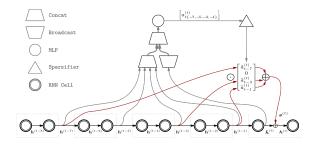
- Use attention mechanism to select previous timestep to do backprop
 - Local backprop: truncated BPTT
 - Select previous hidden states sparsely.
 - Skip-connections: natural for long-term dependency.

Algorithm

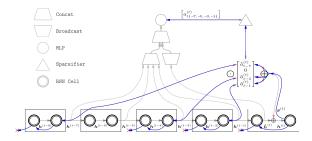
Algorithm 1 SAB-augmented LSTM

1: procedure SABCELL ($h^{(t-1)}, c^{(t-1)}, x^{(t)}$) **Require:** $k_{top} > 0, k_{att} > 0, k_{trunc} > 0$ **Require:** Memories $\boldsymbol{m}^{(i)} \in \mathcal{M}$ **Require:** Previous hidden state $h^{(t-1)}$ **Require:** Previous cell state $c^{(t-1)}$ **Require:** Input $\boldsymbol{x}^{(t)}$ $\hat{m{h}}^{(t)}, m{c}^{(t)} \leftarrow \texttt{LSTMCell}(m{h}^{(t-1)}, m{c}^{(t-1)}, m{x}^{(t)})$ 2: 3: for all $i \in 1 \dots |\mathcal{M}|$ do $oldsymbol{d}_i^{(t)} \leftarrow oldsymbol{W}_1 oldsymbol{m}^{(i)} + oldsymbol{W}_2 oldsymbol{\hat{h}}^{(t)}$ 4: $a_i^{(t)} \leftarrow W_3 \tanh(\boldsymbol{d}_i^{(t)})$ 5: $a_{ktop}^{(t)} \leftarrow \texttt{sorted}(a^{(t)})[k_{top}+1]$ 6: $\tilde{\boldsymbol{a}}^{(t)} \leftarrow \text{ReLU}\left(\boldsymbol{a}^{(t)} - a^{(t)}_{k \text{top}}\right)$ 7: $\boldsymbol{s}^{(t)} \leftarrow \sum_{\boldsymbol{m}^{(i)} \in \mathcal{M}} \tilde{a}_i^{(t)} \boldsymbol{m}^{(i)} / \sum_i \tilde{a}_i^{(t)}$ 8: $\boldsymbol{h}^{(t)} \leftarrow \boldsymbol{\hat{h}}^{(t)} + \boldsymbol{s}^{(t)}$ 9: $\boldsymbol{u}^{(t)} \leftarrow \boldsymbol{V}_1 \boldsymbol{h}^{(t)} + \boldsymbol{V}_2 \boldsymbol{s}^{(t)} + \boldsymbol{b}$ 10: 11: if $t \equiv 0 \pmod{k_{att}}$ then 12: \mathcal{M} .append($\boldsymbol{h}^{(t)}$) return $h^{(t)}, c^{(t)}, y^{(t)}$ 13:

Forward pass



Backward pass



Copy task

			Co	pying (T=	100)	Copying (T=200)		:200)	Copying (T=300)		
	k_{trunc}	k_{top}	acc.	CE_{10}	CE	acc.	CE_{10}	CE	acc.	CE_{10}	CE
MIST	full BP full selj		99.8 100.0	0.030 0.0008	$0.002 \\ 0.0000$	56.0 100.0	1.07 0.001	0.046 0.000	35.9 100.0	0.197 0.002	0.047 7.5e-5
	1 5 10	-	20.6 31.0 29.6	1.984 1.737 1.772	0.165 0.145 0.148	17.1 20.2	2.03 1.98	0.092 0.090	14.0	2.077	0.065
	20 150	-	30.5	1.714	0.143	35.8 35.0	1.61 1.596	0.073 0.073	25.7 24.4	1.848 1.857	0.197 0.058
SAB	1 1 5 10	1 5 5 10	57.9 100.0 100.0 100.0	1.041 0.001 0.000 0.000	0.087 0.000 0.000 0.001	39.9 100.0 100.0	1.516 0.000 0.000	0.069 0.000 0.000	43.1 89.1 99.9	0.231 0.383 0.007	0.045 0.012 0.001

Table 2: Test accuracy and cross-entropy (CE) loss performance on the copying task with sequence lengths of T=100, 200, and 300. Accuracies are given in percent for the last 10 characters. CE₁₀ corresponds to the CE loss on the last 10 characters. These results are with mental updates; Compare with Table 4 for without.

Im	age clas	s.		pMNIST	CIFAR10
	$k_{ ext{trunc}}$	k_{top}	$k_{ m att}$	acc.	acc.
M	full BF	PTT		90.3	58.3
MTSL	300	-	-		51.3
	20	5	20	89.8	
В	20	10	20	90.9	
SAB	50	10	50	94.2	
•	16	10	16		64.5
Tra	nsforme	er (Vasva	uni'17)	97.9	62.2

Table 4: Test accuracy for the permutated MNIST and CIFAR10 classification tasks.

Language modeling tasks

La	nguage	РТВ	Text8		
	$k_{ ext{trunc}}$	$k_{ m top}$	$k_{ m att}$	BPC	BPC
	full BP2	IT		1.36	1.42
TSTM	1	-	-	1.47	
Š	5	-	-	1.44	1.56
	20	-	-	1.40	
	10	5	10	1.42	1.47
B	10	10	10	1.40	1.45
SAB	20	5	20	1.39	1.45
-	20	10	20	1.37	1.44

How important is backproping **through the local** updates (not just attention weights)?

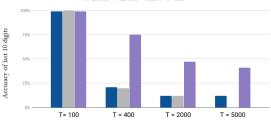
Ablation			0	Adding,		
	$k_{ ext{trunc}}$	$k_{ m top}$	acc.	CE _{last 10}	CE	T=200CE
5	1	1	49.0	1.252	0.104	
no MI	5	5	98.3	0.042	0.0036	
0U	10	10	99.6	0.022	0.0018	2.171e-6
	5	all	40.5	1.529	0.127	

• Generalization on longer sequences

Transfer Learning Results

Copy len. (T)	LSTM	LSTM +self-a.	SAB
100	99%	100%	99%
200	34%	52%	95%
300	25%	28%	83%
400	21%	20%	75%
2000	12%	12%	47%
5000	12%	OOM	41%

Generalization test for models trained on copy task with T=100



■ LSTM ■ LSTM + self.att ■ SAB

Test sequence length

Attention heat map

• Learned attention over different timesteps during training

220 а 210 220 b Timestep 210 220 с 210 160 0 40 80 120 200 + past Macrostate

Copy Task with T = 200

• Content-based rule for writing to memory

- Reduces memory storage
- How to decide what to write to memory?
- Humans show a systematic dependence on many content: salient, extreme, unusual, and unexpected experiences are more likely to be stored and subsequently remembered
- Credit assignment through more abstract states/ memory?
- Model-based reinforcement learning

• The source code is now open-source, at https://github.com/nke001/sparse_attentive_backtracking_release