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Overview

• Recurrent neural networks

• sequence modeling

• Training RNNs

• backpropagation through time (BPTT)

• Attention mechanism

• Sparse attentive backtracking
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Sequence modeling

Variable length input and (or) output.

• Speech recognition

• variable length input, variable length output

• Image captioning

• Fixed size input, variable length output

Show, Attend & Tell – arXiv preprint arXiv:1502.03044
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https://arxiv.org/pdf/1502.03044.pdf


Sequence modeling

More examples

• Text

• Language modeling

• Language understanding

• Sentiment analysis

• Videos

• Video generation.

• Video understanding.

• Biological data

• Medical imaging
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Recurrent neural networks (RNNs)

Handling variable length data

• Variable length input or output

• Variableorder

• ”In 2014, I visited Paris.”

• ”I visited Paris in 2014.”

• Use shared parameters across time
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Recurrent neural networks (RNNs)

Vanilla recurrent neural networks

• Parameters of the network

• U, W, V

• unrolled across time

Christopher Olah – Understanding LSTM Networks
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https://colah.github.io/posts/2015-08-Understanding-LSTMs/


Training RNNs

Backpropagation through time (BPTT)
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Christopher Olah – Understanding LSTM Networks
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https://colah.github.io/posts/2015-08-Understanding-LSTMs/


Challenges with RNN training

Parameters are shared across time

• Number of parameters do not change with sequence length.

• Consequences

• Optimization issue

• Exploding or vanishing gradients

• Assumption that same parameters can be used for different time

steps.
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Challenges with RNN training

Train to predict the future from the past

• ht is a lossy summary of x0, ..., xt

• Depending on criteria, ht decides what information to keep

• Long term dependency: if yt depends on distant past, then ht has

to keep information from many timesteps ago.

8



Long term dependency

Example of long term dependency

• Question answering task.

• Answer is the first word.
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Exploding and vanishing gradient

Challenges in learn long term dependencies

• Exploding and vanishing gradient
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Long short term memory (LSTM)

Gated recurrent neural networks that helps with long term dependency.

• Self-loop for gradients to flow for many steps

• Gates for learning what to remember or forget

• Long-short term memory (LSTM)

Hochreiter, Sepp, and Jürgen Schmidhuber. ”Long short-term memory.” Neural computation 9.8 (1997): 1735-1780.

• Gated recurrent neural networks (GRU)

Cho, Kyunghyun, et al. ”Learning phrase representations using RNN encoder-decoder for statistical machine translation.” arXiv

preprint arXiv:1406.1078 (2014).
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https://www.mitpressjournals.org/doi/abs/10.1162/neco.1997.9.8.1735
https://arxiv.org/abs/1406.1078


Long short term memory (LSTM)

Recurrent neural network with gates that dynamically decides what to

put into, forget about and read from memory.

• Memory cell ct
• Internal states ht
• Gates for writing into, forgetting and reading from memory

Christopher Olah – Understanding LSTM Networks
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https://colah.github.io/posts/2015-08-Understanding-LSTMs/


Encoder decoder model

Summarizes the input into a single ht and decoder generates outputs

conditioned on ht .

• Encoder summarizes entire input sequence into a single vector ht .

• Decoder generates outputs conditioned on ht .

• Applications: machine translation, question answering tasks.

• Limitations: ht in encoder is bottleneck.
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Attention mechanism

Removes the bottleneck in encoder decoder architecture using an

attention mechanism.

• At each output step, learns an attention weight for each h0, ..., ht in

the encoder.

aj =
eA(zj ,hj )∑
j′ e

A(zj ,hj′ )

• Dynamically encodes into into context vector at each time step.

• Decoder generates outputs at each step conditioned on context

vector cxt .
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Limitations of BPTT

The most popular RNN training method is backpropagation through time

(BPTT).

• Sequential in nature.

• Exploding and vanishing gradient

• Not biologically plausible

• Detailed replay of all past events.
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Credit assignment

• Credit assignment: The correct division and attribution of blame to

one’s past actions in leading to a final outcome.

• Credit assignment in recurrent neural networks uses backpropgation

through time (BPTT).

• Detailed memory of all past events

• Assigns soft credit to almost all past events

• Diffusion of credit? difficulty of learning long-term dependencies
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Credit assignment through time and memory

• Humans selectively recall memories that are relevant to the current

behavior.

• Automatic reminding:

• Triggered by contextual features.

• Can serve a useful computational role in ongoing cognition.

• Can be used for credit assignment to past events?

• Assign credit through only a few states, instead of all states:

• Sparse, local credit assignment.

• How to pick the states to assign credit to?
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Credit assignment through time

Example: Driving on the highway, hear a loud popping sound. Didn’t

think too much about it, 20 minutes later stopped by side of the road.

Realized one of the tire has popped.

• What we tend to do?

• Memory replay of event in context: Immediately brings back the

memory of the loud popping sound 20min ago.

• what BPTT does?

• BPTT will replay all events within the past 20min.
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Maybe something more biologically inspired?

• What we tend to do?

• Memory replay of event in context: Immediately brings back the

memory of the loud popping sound 20min ago.

• what BPTT does?

• BPTT will replay all events within the past 20min.
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Credit assignment through a few states?

• Can we assign credit only through a few states?

• How to pick which states to assign credit to?

• RNN models does not support such operations in the past.

Needs to make architecture changes.

• Can change both forward and backward.

• Or just change backward pass.

• Change both forward and backward pass

• Forward dense, backward sparse

• Forward sparse, backward sparse
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Sparse replay

Humans are trivially capable of assigning credit or blame to events even a

long time after the fact, and do not need to replay all events from the

present to the credited event sequentially and in reverse to do so.

• Avoids competition for the limited information-carrying capacity of

the sequential path

• A simple form of credit assignment

• Imposes a trade-off that is absent in previous, dense self-attentive

mechanisms: opening a connection to an interesting or useful

timestep must be made at the price of excluding others.
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Sparse attentive backtracking

• Use attention mechanism to select previous timestep to do backprop

• Local backprop: truncated BPTT

• Select previous hidden states - sparsely.

• Skip-connections: natural for long-term dependency.
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Algorithm
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Sparse Attentive Backtracking

Forward pass
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Sparse Attentive Backtracking

Backward pass
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Long term dependency tasks

Copy task
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Comparison to Transformers
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Language modeling tasks

Language modeling tasks
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Are mental updates important?

How important is backproping through the local updates (not just

attention weights)?
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Generalization

• Generalization on longer sequences
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Long term dependency tasks

Attention heat map

• Learned attention over different timesteps during training

Copy Task with T = 200

31



Future work

• Content-based rule for writing to memory

• Reduces memory storage

• How to decide what to write to memory?

• Humans show a systematic dependence on many content: salient,

extreme, unusual, and unexpected experiences are more likely to be

stored and subsequently remembered

• Credit assignment through more abstract states/ memory?

• Model-based reinforcement learning

32



Open-Source Release

• The source code is now open-source, at

https://github.com/nke001/sparse attentive backtracking release
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https://github.com/nke001/sparse_attentive_backtracking_release

