
Machine Learning Parameterizations of
Atmospheric Processes

David John Gagne
Machine Learning Scientist

National Center for Atmospheric Research
March 19, 2019

Collaborators: Rich Loft, Sue Ellen Haupt, Branko
Kosovic, Andrew Gettelman, Tyler McCandless,

Jack Chen, and Negin Sobhani

1

Numerical Modeling Is Ripe for Disruption

• NWP model predictions have steadily improved thanks to better data assimilation and resolution
• Weather and climate models have grown increasingly complex
• However, the rate of NWP model error improvement is slowing
• Trends in high performance computing systems are making the current development paradigm unsustainable

ECMWF Prediction Errors

2

Processors Hitting Fundamental Limits

• Processor trends
• Transistor size -> nanoscale
• Hitting power density limits
• Flat/slowing thread and clock speeds
• More cores (∝ transistors) per proc.
• Lower fraction of peak for BW limited code

• Climate model and computing trends not aligned!
• Climate applications are state heavy, memory bandwidth intensive, with

low arithmetic intensity.
• Physics code is branchy, hard to vectorize, has divides and load

imbalances.

• Climate Model Benchmark: 3 km GCM at 5 sim. Years/day
• Extrapolated 3 km FV3 Simulation: 0.97 years/day on 100,000 cores
• 17x too slow!

Source: Karl Rupp

Courtesy Rich Loft, NCAR 3

Paths for Further Improvement
• Code optimization: redesign model codes to run more

efficiently
• Pros: model runs faster, discover potential bugs
• Cons: extremely labor intensive, less interpretable code

• Heterogeneous Computing: run model components on
GPUs, FPGAs, TPUs, etc.
• Pros: Great speedup for parallel processes, power savings
• Cons: rewriting code for each framework, data transfers

• Machine learning emulation: replace model
components with ML model
• Pros: large speedups, approximate higher complexity fast
• Cons: data, non-stationarity, interfaces to ML software

• Note: NCAR is working on all of these areas

More $
More Compute

More $
More Compute

Faster Threads, and/or
Better Code Efficiency
to Improve SYPD

Complexity

Resolution

Ensemble size

Resources

Figure courtesy Rich Loft
via Jim Kinter and others

4

Machine Learning Along the NWP Pipeline
Data

Assimilation Dynamics Physics
Parameterizations Diagnostics Post-

Processing

Raissi, M., P. Perdikaris, and G. E. Karniadakis, 2017:
Physics Informed Deep Learning (Part I): Data-driven
Solutions of Nonlinear Partial Differential Equations,
arXiv Preprint. https://arxiv.org/abs/1711.10561

Physics-Informed Neural Network Neural Network Parameterization

S. Rasp, M. S. Pritchard, and P. Gentine, 2018:
Deep learning to represent subgrid processes in
climate models. PNAS, 39, 9684-9689.
https://doi.org/10.1073/pnas.1810286115

Machine Learning Hail Prediction

D. J. Gagne, S. E. Haupt, and D. W. Nychka 2019:
Interpretable Deep Learning for Spatial Analysis of
Severe Hailstorms. Mon. Wea. Rev., Accepted.

5

How Can ML Parameterizations Help Physical
Models?

• Emulate an existing parameterization to enable faster computation
• Example: Krasnopolsky et al. (2010) emulating the radiation physics

with a neural network
• Emulate a computationally intense but more realistic

parameterization
• Example: Neural network emulating cloud droplet to rain drop

growth processes
• Create a new parameterization from long records of observations
• Example: Random forest parameterization of energy fluxes between

lower atmosphere and land surface

6

Neural Network Basics

7

Artificial Neural Network Structure

Perceptron (artificial neuron)

Training Procedure
1. Send batch of training examples through network

2. Calculate prediction error

3. Calculate error gradients back through layers and update weights

4. Repeat over all training examples until errors are satisfactory

Definitions
Batch: subset of training examples used to update weights

Epoch: One pass through all examples in training set

Images from http://cs231n.github.io/convolutional-networks/

● Precipitation formation is a critical uncertainty for
weather and climate models.

● Different sizes of drops interact to evolve from
small cloud drops to large precipitation drops.

● Detailed codes (right) are too expensive for large
scale models, so empirical approaches are used.

● Let’s emulate one (or more)

● Goal: put a detailed treatment into a global model
and emulate it using ML techniques.

● Good test of ML approaches: can they reproduce
a complex process, but with simple
inputs/outputs?

Sd-coal model output animation

Credit: Daniel Rothenberg

Emulating Cloud Microphysics: Motivation

8

Cloud Droplet to Rain Drop Processes
Cloud droplets grow into rain droplets
through 3 processes

Autoconversion: cloud droplets
stochastically collide in a chain reaction to
form rain drops

Rain Accretion: rain drops can collide with
other cloud droplets

Self-Collection: rain drops can collide with
other raindrops

d: rain drop
c: cloud droplet
CCN: cloud condensation nuclei 9

Microphysics: Bulk vs. Bin Schemes

10

Bulk scheme (MG2 in CAM6):
Calculate with a semi-empirical particle size
distribution (PSD). Gamma distribution
often used.

Bin Scheme (Tel Aviv University (TAU) in CAM6):
Divide particle sizes into bins and calculate evolution of
each bin separately. Better representation of interactions
but much more computationally expensive.

Microphysics Emulator Procedure

1. Run CESM2/CAM6 for 2 years
2. Output global microphysics input and output fields
every 123 hours
3. Filter and subsample data to find grid points with
realistic amounts of cloud water
4. Inputs:
Cloud water mixing ratio (QC)
Cloud water number concentration (NC)
Rain water mixing ratio (QR)
Rain water number concentration (NR)
Air density
Temperature

dQR/dt > 0?

dQR/dt

0

dNC/dt

dNR/dt +,-, or 0? 0

+dNR/dt

-dNR/dt

dQC/dt=-dQR/dt

11

Random Hyperparameter Search Validation

• Trained 1000 dense neural networks
with random hyperparameter samples

• Trend of marginal hyperparameter
distribution reveals influence

• Median performance levels off after 6
layers

• 20 neurons per layer appear to be
sufficient to represent patterns in data

12

Microphysics Results

• Neural network microphysics emulates distribution
and exact values of bin microphysics more closely
than bulk microphysics

13

Bi
n

M
L

Bu
lk

Partial Dependence Plots

Temperature Dewpoint Pressure

15 10 986

15 14 1014

15 2 992

15 25 1025

15 6 950

1. Set all instances for one variable in a dataset

to a single value

Machine Learning

or Physical Model

2. Feed fixed data through

model

Mean

Prediction

3. Calculate mean

prediction for fixed

value

4. Repeat process for range of input values

Example: Temperature=[20, 22, ..., 40]

14

Microphysics Emulator Results

15

Surface Layer Parameterizations
• The energy transfer (flux) from the atmosphere to the

land surface is modeled by the surface layer
parameterization.

• The flux depends on gradients in wind speed,
temperature and moisture between the lower-
atmosphere and air just above the surface

• In atmospheric models Monin-Obukhov similarity theory
is used to determine surface fluxes and stresses.

• Stability functions Φ" (momentum) and Φ# (heat) are
determined experimentally.

• Stability functions come from field studies under nearly
ideal atmospheric flow conditions characterized by
horizontally homogeneous, flat terrain and stationarity.
However, the stability functions show a large amount of
variation.

https://nevada.usgs.gov/et/measured.htm

16

Surface Layer Methods
• Regression is commonly used to estimate stability functions and thus

relationship between surface stresses and fluxes and wind and
temperature profiles.

• Instead, we use machine learning algorithms to develop models relating
surface stresses and fluxes to wind and temperature profiles.

• Most of the previous field studies used to determine stability functions
were process studies of episodic nature - a few months in length.

• To develop machine learning models we need long observational
records.

• We have therefore selected two data sets that provide multiyear
records:

• KNMI-mast at Cabauw (Netherlands), 213 m tower, 2003 - 2017,

• FDR tower near Scoville, Idaho – measurements from 2015 – 2017

• Fit random forest to each site to predict friction velocity and sensible
heat flux

Cabauw Idaho

17

Input and Output Variables
Common Variables Heights (Idaho/Cabauw)

Potential Temperature (K) 2m, 10m, 15m/20m, 40/45m
Solar Radiation (w m-2) Surface
Wind Speed (m/s) 10m, 15m/20m, 40/45m

Bulk Richardson number 10 m- 0 m
Pressure (hPa) Surface
Relative Humidity (%) 2 m, 10 m
Obukhov Length (m)
Moisture Availability (%) 5cm/3cm
Skin Temperature (K) 0 m
Solar Zenith Angle (degrees)

Output equations

Predictands
u*=Friction velocity
θ*=Temperature scale
q*=Moisture scale

18

ML Model: Random Forest

19

Surface Layer Results: Friction Velocity

20

Surface Layer Results: Friction Velocity

21

Surface Layer Results: Friction Velocity

22

Cross-Training ML Models

23

R2 MAE

Idaho Test Dataset
Friction
Velocity

Temperature
Scale

Moisture
Scale

Friction
Velocity

Temperature
Scale

Moisture
Scale

MO Similarity 0.85 0.42 0.077 0.203
RF Trained on Idaho 0.91 0.80 0.41 0.047 0.079 0.023
RF Trained on Cabauw 0.88 0.76 0.22 0.094 0.139 0.284

R2 MAE

Cabauw Test Dataset
Friction
Velocity

Temperature
Scale

Moisture
Scale

Friction
Velocity

Temperature
Scale

Moisture
Scale

MO Similarity 0.90 0.44 0.115 0.062
RF Trained on Cabauw 0.93 0.82 0.73 0.031 0.030 0.055
RF Trained on Idaho 0.90 0.77 0.49 0.074 0.049 0.112

Results Courtesy Tyler McCandless

Temperature and Moisture Scale Diurnal Cycles

24

25

26

27

28

ML Integration with NWP Models
• Problem: Atmospheric models are written in

Fortran, but the ML model codes are written in
Python
• Solution: Fortran neural network and random

forest inference subroutines!
• Subroutine Contents

• Calculate derived input variables
• Feed inputs into ML models
• Calculate diagnostics from ML output

• Advantages
• No outside library dependencies
• ML models can be switched out easily when more

data are available
• Disadvantage

• More limited ML functionality/optimization
compared with community ML models

type decision_tree
integer :: nodes
integer, allocatable :: node(:)
integer, allocatable :: feature(:)
real(kind=8), allocatable :: threshold(:)
real(kind=8), allocatable :: tvalue(:)
integer, allocatable :: children_left(:)
integer, allocatable :: children_right(:)
real(kind=8), allocatable :: impurity(:)

end type decision_tree

29

Role of GPUs in ML Parameterization

• Most operational numerical weather and climate models run
entirely on the CPU on CPU-only supercomputers

• ML models running on these systems have to be able to
operate efficiently on the CPU

• However, new atmospheric modeling frameworks can be
accelerated with GPUs (MPAS) or run entirely on the GPU
(FastEddy)

• ML parameterizations can utilize GPU integration to train
and run more complex ML models within the NWP model

30

Summary

• Machine learning models applied to all parts of the NWP model
pipeline can help improve prediction accuracy or computational speed
• A set of neural networks can closely emulate bin microphysical

processes and generally match their sensitivities
• Random forests and neural networks can estimate surface layer fluxes

better than the current Monin-Obukhov Similarity Theory Approach

Acknowledgements
Collaborators: Sue Ellen Haupt, Rich Loft, Andrew Gettelman,
Jack Chen, Negin Sobhani, Tyler McCandless, Branko Kosovic,
The National Center for Atmospheric Research is sponsored
by the National Science Foundation.

Contact Information
Email: dgagne@ucar.edu
Twitter: @DJGagneDos

Github: djgagne

31

mailto:dgagne@ucar.edu

