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Numerical Modeling Is Ripe for Disruption

• NWP model predictions have steadily improved thanks to better data assimilation and resolution
• Weather and climate models have grown increasingly complex 
• However, the rate of NWP model error improvement is slowing
• Trends in high performance computing systems are making the current development paradigm unsustainable

ECMWF Prediction Errors
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Processors Hitting Fundamental Limits

• Processor trends 
• Transistor size -> nanoscale
• Hitting power density limits
• Flat/slowing thread and clock speeds
• More cores (∝ transistors) per proc.
• Lower fraction of peak for BW limited code

• Climate model and computing trends not aligned!
• Climate applications are state heavy, memory bandwidth intensive, with 

low arithmetic intensity.
• Physics code is branchy, hard to vectorize, has divides and load 

imbalances.

• Climate Model Benchmark: 3 km GCM at 5 sim. Years/day
• Extrapolated 3 km FV3 Simulation: 0.97 years/day on 100,000 cores
• 17x too slow!

Source: Karl Rupp
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Paths for Further Improvement
• Code optimization: redesign model codes to run more 

efficiently
• Pros: model runs faster, discover potential bugs
• Cons: extremely labor intensive, less interpretable code

• Heterogeneous Computing: run model components on 
GPUs, FPGAs, TPUs, etc.
• Pros: Great speedup for parallel processes, power savings
• Cons: rewriting code for each framework, data transfers

• Machine learning emulation: replace model 
components with ML model 
• Pros: large speedups, approximate higher complexity fast
• Cons: data, non-stationarity, interfaces to ML software

• Note: NCAR is working on all of these areas

More $
More Compute

More $
More Compute

Faster Threads, and/or
Better Code Efficiency 
to Improve SYPD

Complexity

Resolution

Ensemble size

Resources

Figure courtesy Rich Loft 
via Jim Kinter and others
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Machine Learning Along the NWP Pipeline
Data 

Assimilation Dynamics Physics
Parameterizations Diagnostics Post-

Processing

Raissi, M., P. Perdikaris, and G. E. Karniadakis, 2017: 
Physics Informed Deep Learning (Part I): Data-driven 
Solutions of Nonlinear Partial Differential Equations, 
arXiv Preprint. https://arxiv.org/abs/1711.10561

Physics-Informed Neural Network Neural Network Parameterization

S. Rasp, M. S. Pritchard, and P. Gentine, 2018: 
Deep learning to represent subgrid processes in 
climate models. PNAS, 39, 9684-9689. 
https://doi.org/10.1073/pnas.1810286115

Machine Learning Hail Prediction

D. J. Gagne, S. E. Haupt, and D. W. Nychka 2019: 
Interpretable Deep Learning for Spatial Analysis of 
Severe Hailstorms. Mon. Wea. Rev., Accepted.
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How Can ML Parameterizations Help Physical 
Models?

• Emulate an existing parameterization to enable faster computation
• Example: Krasnopolsky et al. (2010) emulating the radiation physics 

with a neural network 
• Emulate a computationally intense but more realistic 

parameterization
• Example: Neural network emulating cloud droplet to rain drop 

growth processes
• Create a new parameterization from long records of observations
• Example:  Random forest parameterization of energy fluxes between 

lower atmosphere and land surface
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Neural Network Basics
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Artificial Neural Network Structure

Perceptron (artificial neuron)

Training Procedure
1. Send batch of training examples through network

2. Calculate prediction error

3. Calculate error gradients back through layers and update weights

4. Repeat over all training examples until errors are satisfactory

Definitions
Batch: subset of training examples used to update weights

Epoch: One pass through all examples in training set

Images from http://cs231n.github.io/convolutional-networks/



● Precipitation formation is a critical uncertainty for 
weather and climate models.

● Different sizes of drops interact to evolve from 
small cloud drops to large precipitation drops.

● Detailed codes (right) are too expensive for large 
scale models, so empirical approaches are used.

● Let’s emulate one (or more)

● Goal: put a detailed treatment into a global model 
and emulate it using ML techniques.

● Good test of ML approaches: can they reproduce 
a complex process, but with simple 
inputs/outputs?

Sd-coal model output animation 

Credit: Daniel Rothenberg

Emulating Cloud Microphysics: Motivation
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Cloud Droplet to Rain Drop Processes
Cloud droplets grow into rain droplets 
through 3 processes

Autoconversion: cloud droplets 
stochastically collide in a chain reaction to 
form rain drops

Rain Accretion: rain drops can collide with 
other cloud droplets

Self-Collection: rain drops can collide with 
other raindrops

d: rain drop
c: cloud droplet
CCN: cloud condensation nuclei 9



Microphysics: Bulk vs. Bin Schemes
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Bulk scheme (MG2 in CAM6):
Calculate with a semi-empirical particle size 
distribution (PSD). Gamma distribution 
often used.

Bin Scheme (Tel Aviv University (TAU) in CAM6):
Divide particle sizes into bins and calculate evolution of 
each bin separately. Better representation of interactions
but much more computationally expensive. 



Microphysics Emulator Procedure

1. Run CESM2/CAM6 for 2 years
2. Output global microphysics input and output fields 
every 123 hours
3. Filter and subsample data to find grid points with 
realistic amounts of cloud water
4. Inputs:
Cloud water mixing ratio (QC)
Cloud water number concentration (NC)
Rain water mixing ratio (QR)
Rain water number concentration (NR)
Air density
Temperature

dQR/dt > 0? 

dQR/dt

0

dNC/dt

dNR/dt +,-, or 0? 0

+dNR/dt

-dNR/dt

dQC/dt=-dQR/dt
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Random Hyperparameter Search Validation

• Trained 1000 dense neural networks 
with random hyperparameter samples

• Trend of marginal hyperparameter 
distribution reveals influence 

• Median performance levels off after 6 
layers

• 20 neurons per layer appear to be 
sufficient to represent patterns in data
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Microphysics Results

• Neural network microphysics emulates distribution 
and exact values of bin microphysics more closely 
than bulk microphysics
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Partial Dependence Plots

Temperature Dewpoint Pressure

15 10 986

15 14 1014

15 2 992

15 25 1025

15 6 950

1. Set all instances for one variable in a dataset 

to a single value

Machine Learning 

or Physical Model

2. Feed fixed data through 

model

Mean 

Prediction

3. Calculate mean 

prediction for fixed 

value

4. Repeat process for range of input values

Example: Temperature=[20, 22, ..., 40]
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Microphysics Emulator Results
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Surface Layer Parameterizations
• The energy transfer (flux) from the atmosphere to the 

land surface is modeled by the surface layer 
parameterization.

• The flux depends on gradients in wind speed, 
temperature and moisture between the lower-
atmosphere and air just above the surface

• In atmospheric models Monin-Obukhov similarity theory 
is used to determine surface fluxes and stresses. 

• Stability functions Φ" (momentum) and Φ# (heat) are 
determined experimentally.

• Stability functions come from field studies under nearly 
ideal atmospheric flow conditions characterized by 
horizontally homogeneous, flat terrain and stationarity. 
However, the stability functions show a large amount of 
variation.

https://nevada.usgs.gov/et/measured.htm
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Surface Layer Methods
• Regression is commonly used to estimate stability functions and thus 

relationship between surface stresses and fluxes and wind and 
temperature profiles.

• Instead, we use machine learning algorithms to develop models relating 
surface stresses and fluxes to wind and temperature profiles.

• Most of the previous field studies used to determine stability functions 
were process studies of episodic nature - a few months in length.

• To develop machine learning models we need long observational 
records.

• We have therefore selected two data sets that provide multiyear 
records:

• KNMI-mast at Cabauw (Netherlands), 213 m tower, 2003 - 2017,

• FDR tower near Scoville, Idaho – measurements from 2015 – 2017

• Fit random forest to each site to predict friction velocity and sensible 
heat flux

Cabauw Idaho
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Input and Output Variables
Common Variables Heights (Idaho/Cabauw)

Potential Temperature (K) 2m, 10m, 15m/20m, 40/45m
Solar Radiation (w m-2) Surface
Wind Speed (m/s) 10m, 15m/20m, 40/45m

Bulk Richardson number 10 m- 0 m
Pressure (hPa) Surface
Relative Humidity (%) 2 m, 10 m
Obukhov Length (m)
Moisture Availability (%) 5cm/3cm
Skin Temperature (K) 0 m
Solar Zenith Angle (degrees)

Output equations

Predictands
u*=Friction velocity
θ*=Temperature scale
q*=Moisture scale
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ML Model: Random Forest 
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Surface Layer Results: Friction Velocity
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Surface Layer Results: Friction Velocity
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Surface Layer Results: Friction Velocity
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Cross-Training ML Models
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R2 MAE

Idaho Test Dataset
Friction 
Velocity

Temperature 
Scale

Moisture 
Scale

Friction 
Velocity

Temperature 
Scale

Moisture 
Scale

MO Similarity 0.85 0.42 0.077 0.203
RF Trained on Idaho 0.91 0.80 0.41 0.047 0.079 0.023
RF Trained on Cabauw 0.88 0.76 0.22 0.094 0.139 0.284

R2 MAE

Cabauw Test Dataset
Friction 
Velocity

Temperature 
Scale

Moisture 
Scale

Friction 
Velocity

Temperature 
Scale

Moisture 
Scale

MO Similarity 0.90 0.44 0.115 0.062
RF Trained on Cabauw 0.93 0.82 0.73 0.031 0.030 0.055
RF Trained on Idaho 0.90 0.77 0.49 0.074 0.049 0.112

Results Courtesy Tyler McCandless



Temperature and Moisture Scale Diurnal Cycles
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ML Integration with NWP Models
• Problem: Atmospheric models are written in 

Fortran, but the ML model codes are written in 
Python
• Solution: Fortran neural network and random 

forest inference subroutines!
• Subroutine Contents

• Calculate derived input variables
• Feed inputs into ML models
• Calculate diagnostics from ML output

• Advantages
• No outside library dependencies
• ML models can be switched out easily when more 

data are available
• Disadvantage

• More limited ML functionality/optimization 
compared with community ML models 

type decision_tree
integer :: nodes
integer, allocatable :: node(:)
integer, allocatable :: feature(:)
real(kind=8), allocatable :: threshold(:)
real(kind=8), allocatable :: tvalue(:)
integer, allocatable :: children_left(:)
integer, allocatable :: children_right(:)
real(kind=8), allocatable :: impurity(:)

end type decision_tree
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Role of GPUs in ML Parameterization 

• Most operational numerical weather and climate models run 
entirely on the CPU on CPU-only supercomputers

• ML models running on these systems have to be able to
operate efficiently on the CPU

• However, new atmospheric modeling frameworks can be
accelerated with GPUs (MPAS) or run entirely on the GPU 
(FastEddy)

• ML parameterizations can utilize GPU integration to train 
and run more complex ML models within the NWP model
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Summary

• Machine learning models applied to all parts of the NWP model 
pipeline can help improve prediction accuracy or computational speed
• A set of neural networks can closely emulate bin microphysical 

processes and generally match their sensitivities
• Random forests and neural networks can estimate surface layer fluxes 

better than the current Monin-Obukhov Similarity Theory Approach
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