

Deep Learning with Myia

Olivier Breuleux Research Developer, MILA

Arnaud Bergeron (MILA)
Bart van Merriënboer (MILA, Google Brain)
Pascal Lamblin (Google Brain)

The Needs

What we need from a language for deep learning

Autodiff

What it is, how it works, what the challenges are

Representation

The best representation for our needs

Type system

Flexible inference for performance and robustness

The Needs

What we need from a language for deep learning

Autodiff

What it is, how it works, what the challenges are

Representation

The best representation for our needs

Type system

Flexible inference for performance and robustness

Deep Learning

DL algorithms are increasingly complex

Feedforward (trivial)

Recurrent (loops)

Recursive (recursion)

Deep Learning

DL algorithms are increasingly complex

- More and more language features needed
- Most existing frameworks are limited
- High level abstraction increases productivity
 - Focus on the algorithm over implementation details
- Effortless abstractions encourage their use

Needs

Goal: a language adapted to the needs of machine learning, past and future

General purpose: Capable of expressing complex control flow.

Differentiable: Should be able to take nth-order derivative of any program.

Debuggable: Clear errors, inspectable, instrumentable.

Fast: Must leverage parallelism and GPU.

Portable: Serializable, support multiple hardware.

Needs

Myia: a language adapted to the needs of machine learning, past and future

General purpose: Conditionals, loops, recursion, data structures.

Differentiable: Transformation at the intermediate representation level.

Debuggable: Type+shape inference, step debugger.

Fast & portable: Choose from various backends such as NNVM/Relay.

The Needs

What we need from a language for deep learning

Autodiff

What it is, how it works, what the challenges are

Representation

The best representation for our needs

Type system

Flexible inference for performance and robustness

Differentiability

How to train a model

- Initialize a model's parameters
- Compute some quantity using the parameters
- Compute a cost or "loss function"
- Update parameters using the gradient of the loss
- Rinse and repeat

$$\theta$$

$$f(x;\theta)$$

$$L(f(x;\theta),y)$$

$$\theta \leftarrow \theta - \lambda \frac{\partial L(f(x;\theta), y)}{\partial \theta}$$

Gradients

- Can be computed exactly and automatically
- But: no mainstream language supports this natively
- Computational strategies: forward or reverse
- Implementation strategies: operator overloading or source transform

$$y_1 = f(x)$$

$$y_2 = g(y_1)$$

$$y_3 = h(y_2)$$

$$f: \mathbb{R}_m \to \mathbb{R}_p$$

$$g: \mathbb{R}_p \to \mathbb{R}_q$$

$$h: \mathbb{R}_q \to \mathbb{R}_n$$

The derivative of a straight composition of functions is the multiplication of their Jacobians

$$\underbrace{\mathbf{J_{h \circ g \circ f}(\mathbf{x})}}_{n \times m} = \underbrace{\mathbf{J_{h}(y_2)}}_{n \times q} \underbrace{\mathbf{J_{g}(y_1)}}_{q \times p} \underbrace{\mathbf{J_{f}(\mathbf{x})}}_{p \times m}$$

In what order?

Forward

$$\underbrace{\mathbf{J_h(y_2)}}_{n\times q} \underbrace{\left(\underbrace{\mathbf{J_g(y_1)}}_{q\times p} \underbrace{\mathbf{J_f(x)}}_{p\times m} \right)}_{q\times m}$$

Cost

$$qpm + nqm$$

$$= m(qp + nq)$$

Reverse

$$\underbrace{\mathbf{J_h(y_2)}_{n\times q} \underbrace{\mathbf{J_g(y_1)}}_{p\times m} \underbrace{\mathbf{J_f(x)}}_{p\times m}$$

Cost

$$nqp + npm$$

$$= n(qp + pm)$$

Forward mode is good when there are few inputs.

Easy to implement: dual numbers.

$$x \to \left(y_1, \frac{dy_1}{dx}\right) \to \left(y_2, \frac{dy_2}{dx}\right) \to \left(y_3, \frac{dy_3}{dx}\right)$$

Reverse mode is good when there are few outputs.

Hard to implement: execution is reversed.

$$x \to y_1 \to y_2 \to y_3 \to \frac{dy_3}{dy_2} \to \frac{dy_3}{dy_1} \to \frac{dy_3}{dx}$$

Deep learning involves computing the gradient of millions of parameters with respect to a loss.

$$\theta \leftarrow \theta - \epsilon \frac{\partial \mathcal{L}}{\partial \theta}$$
where $\theta = (\mathbf{W_1}, \mathbf{W_2}, \dots, \mathbf{b_1}, \mathbf{b_2}, \dots)$

We need reverse mode.

OO vs SCT: Operator Overloading


```
def f(x):
    i = 0
                                   x = tanh(x)
                        Trace
    while i < 3:
                                   i = i + 1
                                                   Backprop
        i = i + 1
                                   x = tanh(x)
        x = tanh(x)
                                   i = i + 1
    x = x * 10
                                   x = tanh(x)
    return x
                                   x = x * 10
                                      Tape
   Program
```

- Overload every operation to log itself on a tape.
- At the end, we walk the tape backward.
- "Define-by-run", "Dynamic graph"
- Easy to implement, but lots of overhead
 - Discourages composing small & cheap operations

OO vs SCT: Source Code Transformation

- Transform a **function** that computes a value into a **new function** that computes the derivative.
 - Operate on source code or intermediate representation
 - Applies the chain rule to code
- Standard language optimizations apply: can eliminate overhead
- Easier to apply to functional languages
 - Reverse mode AD interacts badly with mutation and side effects
 - Requires deep analysis and optimization to remove dead code

```
def bprop_pow(x, y, out, dout):
    dx = dout * y * x ** (y - 1)
    dy = dout * out * log(x)
    return dx, dy
What if we don't need dy?
```


The Needs

What we need from a language for deep learning

Autodiff

What it is, how it works, what the challenges are

Representation

The best representation for our needs

Type system

Flexible inference for performance and robustness

About syntax

Myia is an intermediate representation

- High level
- No syntax of its own
- Multiple languages may target it

Python frontend

- Why? Most used language in DL
- Productive for research and prototyping
- Translate functional subset to Myia
 - Control flow: if, while, for, def, lambda
 - Data: lists, tuples, arrays, @dataclass
 - Not supported: mutation, side effects, eval
- One issue: translate dynamically typed code

Needs

Requirements for our representation

- Powerful enough to represent recursion
- Minimal
- Easy to parallelize
- Easy to optimize
- Easy to extend

Solutions

- Functional (ANF)
- Graph-based
- Typed

Why functional programming?

Easier to transform

Referential transparency: same expression, same result

Easier to think about

No side effects

Easier to optimize

- Order of operations can be changed
- Parallelizable
- Common subexpression elimination easy

Type system is easier

No side effects

Easier for automatic differentiation

Why graphs?

Input

Output

Easy to parallelize

Only data flow relationships

Easy to optimize

- Direct use-def pointers (no names)
- Dead code elimination is trivial
- Inlining is easy

Why static typing?

Guarantees

- Correctness of the user's program
- Type correctness of code transforms (autodiff)

Performance

- No runtime type checking = better performance
- Leverage shape information for optimization

User experience

Prevent errors late in process

```
model :: Model(
               TanhLayer(W :: f64 \times 10 \times 12, b :: f64 \times 1 \times 12),
               TanhLayer(W :: f64 \times 14 \times 1, b :: f64 \times 1 \times 1)
     x :: f64 \times 3 \times 10
     y :: i8 \times 3 \times 1
     model :: Model(
          layers :: (
               TanhLayer(W :: f64 \times 10 \times 12, b :: f64 \times 1 \times 12),
               TanhLayer(W :: f64 \times 14 \times 1, b :: f64 \times 1 \times 1)
     x :: f64 \times 3 \times 10,
     target :: i8 x 3 x 1
  n apply(
     self :: Model(
          layers :: (
               TanhLayer(W :: f64 \times 10 \times 12, b :: f64 \times 1 \times 12),
               TanhLayer(W :: f64 \times 14 \times 1, b :: f64 \times 1 \times 1)
     x :: f64 x 3 x 10
in apply(
     self :: TanhLayer(W :: f64 \times 14 \times 1, b :: f64 \times 1 \times 1),
     input :: f64 x 3 x 12
39: return tanh(input @ self.W + self.b)
 in dot(f64 x 3 x 12, f64 x 14 x 1)
MyiaShapeError: Incompatible shapes in dot: (3, 12) and (14, 1)
```


The Needs

What we need from a language for deep learning

Autodiff

What it is, how it works, what the challenges are

Representation

The best representation for our needs

Type system

Flexible inference for performance and robustness

Myia's Types

Scalars: Int/UInt/Float<8/16/32/64>, Bool

Tuples: Tuple<T1, T2, ...>

• Heterogeneously typed, static length

Lists: List<T>

Homogeneously typed, dynamic length, fast append

Arrays: Array<T, Shape<D1, D2, ...>>

Homogeneously typed, shape part of the type

Functions: Function<Args<TIn1, TIn2, ...>, TOut>

Struct types are reduced to tuples in pre-processing.

Why inference?

Annotations are annoying

- Polymorphic types are awkward to express
- Function types are awkward to express
- Impede rapid prototyping
- Duck typing is more natural
- This is why people like Python

Type/shape inference

- Infer from the input types from entry point
- Implicit polymorphism
- Feels dynamic
- Functions are re-compiled when they are given new input types

Myia's inference pipeline

1. Transform inputs into abstract inputs

- Represent type and shape no concrete values
- More types: structs, polymorphic functions

2. Run abstract interpreter on abstract inputs

- Bounded input signatures for each function
- Recursive functions become fixed points

3. Specialize functions to their possible signatures

- If function called with int, make int version, etc.
- Higher order uses require signature uniqueness

4. Update or re-run inference after optimizations or AD

Error reporting

Abstract inferrer shows compile-time tracebacks for type/shape errors.

```
mlp.py:85
in step(
     model :: Model(
          layers :: (
              TanhLayer(W :: f64 \times 10 \times 12, b :: f64 \times 1 \times 12),
              TanhLayer(W :: f64 x 14 x 1, b :: f64 x 1 x 1)
     x :: f64 \times 3 \times 10,
     y:: i8 x 3 x 1
85: dmodel = grad(cost)(model, x, y)
mlp.py:75
in cost(
     model :: Model(
          layers :: (
              TanhLayer(W :: f64 \times 10 \times 12, b :: f64 \times 1 \times 12),
              TanhLayer(W :: f64 \times 14 \times 1, b :: f64 \times 1 \times 1)
     x :: f64 \times 3 \times 10,
     target :: i8 x 3 x 1
75: y = model.apply(x)
```

```
mlp.py:49
in apply(
    self :: Model(
         layers :: (
              TanhLayer(W :: f64 \times 10 \times 12, b :: f64 \times 1 \times 12),
              TanhLayer(W :: f64 \times 14 \times 1, b :: f64 \times 1 \times 1)
    x :: f64 x 3 x 10
49: x = layer.apply(x)
mlp.py:39
in apply(
    self :: TanhLayer(W :: f64 x 14 x 1, b :: f64 x 1 x 1),
    input :: f64 x 3 x 12
39: return tanh(input @ self.W + self.b)
in dot(f64 \times 3 \times 12, f64 \times 14 \times 1)
MyiaShapeError: Incompatible shapes in dot: (3, 12) and (14, 1)
```

Debugging

Tracking correspondence to source code

- Through parsing
- Through optimization
- Through automatic differentiation
- Through macros/code generation

Debugging tools we need

- Custom debugger for step by step execution
- Watching variables and gradients
- Breakpoints that trigger during the reverse phase
- Profiling and reporting which parts of the code are "hot"

In Conclusion: Myia's focus

General purpose, including recursion

Automatic differentiation

- Code transform
- Optimizable, higher order gradients

Type and shape inference

Can handle duck typed code

Good debugging facilities

- Step debugger, profiling
- Gradient debugging

