VALTA
o ‘7'\—/
(Y | .—/'\—
‘0‘0'._\./

Deep Learning with Myia

Olivier Breuleux
Research Developer, MILA

Arnaud Bergeron (MILA)
Bart van Merriénboer (MILA, Google Brain)
Pascal Lamblin (Google Brain)

The Needs

What we need from a language for deep learning

Autodiff

What it is, how it works, what the challenges are

Representation

The best representation for our needs

Type system

Flexible inference for performance and robustness

AN

\/ \

/\/

\/

The Needs

What we need from a language for deep learning

Deep Learning

DL algorithms are increasingly complex

Feedforward Recurrent Recursive
(trivial) (loops) (recursion)

Deep Learning

DL algorithms are increasingly complex

 More and more language features needed
 Most existing frameworks are limited

 High level abstraction increases productivity
e Focus on the algorithm over implementation detalls

o Effortless abstractions encourage their use

Needs iiffi-MiIa

Goal: a language adapted to the needs of machine learning, past and future

General purpose: Capable of expressing complex control flow.
Differentiable: Should be able to take nth-order derivative of any program.
Debuggable: Clear errors, inspectable, instrumentable.

Fast: Must leverage parallelism and GPU.

Portable: Serializable, support multiple hardware.

Needs iiffi-MiIa

Myia: a language adapted to the needs of machine learning, past and future

General purpose: Conditionals, loops, recursion, data structures.

Differentiable: Transformation at the intermediate representation level.

Debuggable: Type+shape inference, step debugger.

Fast & portable: Choose from various backends such as NNVM/Relay.

AN

\ / \ Autoditf
What it is, how it works, what the challenges are

/\/

\/

Difterentiability

How to train a model

* |nitialize a model's parameters 0

« Compute some quantity using the parameters f(x; 0)

« (Compute a cost or “loss function” L(f(x;0),y)
 Update parameters using the gradient of the loss OL(f(x; 0), y)
 Rinse and repeat 0« 0—1 30
Gradients

e (Can be computed exactly and automatically

 But: no mainstream language supports this natively
 Computational strategies: forward or reverse

 Implementation strategies: operator overloading or source transform

Forward vs Reverse o Mila

- The derivative of a straight composition of functions is
g2 = g (yl) the multiplication of their Jacobians
ys = h(y2)
Jhogot (x) = Jn(yz2) Jg(yi) Je(x)
f Qm — %p \—— N N\ N e’
nXxXm nXxq gqXxXp pXm
g: R, = R,

h : Qq — Ry, In what order?

10

Forward vs Reverse

Forward Reverse
Jh(}’2>(']g(yl) Jf(X)) (Jh(yz> Jg(yl))Jf(X>
N N N — N N N~

nXxq qXxXmp D XM nXxq qXxXmp PXM

%,_/ _/_/

qgXxXm nXxXp
Cost Cost
gpmm -+ ngm ngp + npm

= m(gp + nq) = n(gp + pm)

11

Forward vs Reverse

Forward mode is good when there are few inputs.
 Easy to implement: dual numbers.

dq dyo dys
L — (yh dx) — (yz, daz) — (y?)? dx)

Reverse mode is good when there are few outputs.

 Hard to implement: execution is reversed.

d d d
r— Y —7 Y2 — Y3z — ?JS% J3 > J3
dy> dyn dx

12

‘
Forward vs Reverse o'

Deep learning involves computing the gradient of millions of parameters
with respect to a loss.

oL

00
where 0 = (Wl,WZ, e ,bl,bz, ..)

0 <+ 60— ¢

We need reverse mode.

13

OO vs SCT: Operator Overloading

def f(x): i : ? .1
1 =0 X = tanh(x)
whilg i < 33 Trace A
1 =1+ 1 — tanh(x) Backprop
x = tanh(x) S i+
X = X * 10 B
return X x = tanh(x)
X = X * 10
Program Tape

 (Qverload every operation to log itself on a tape.
 Atthe end, we walk the tape backward.

e "Define-by-run”, “Dynamic graph”

 Easy to implement, but lots of overhead

e Discourages composing small & cheap operations

14

OO vs SCT: Source Code Transformation

* T[ransform a function that computes a value into a new function that
computes the derivative.
* Operate on source code or intermediate representation
* Applies the chain rule to code

e Standard language optimizations apply: can eliminate overhead

 Easier to apply to functional languages
 Reverse mode AD interacts badly with mutation and side effects
* Requires deep analysis and optimization to remove dead code

def bprop pow(x, y, out, dout):
dx = dout * y * x ** (y - 1) : ,
dy = dout * out * log(x) What if we don't need dy”
return dx, dy

15

/\

'\ /.\

Representation

The best representation for our needs
. A .

\/

16

About syntax o Mila

Myia is an intermediate representation " T2t
* High level RUAL A —
» No syntax of its own return x * fact(x - 1) b o
« Multiple languages may target it \

Free var.
Python frontend fact(x Xfact(
 Why"” Most used language in DL

* Productive for research and prototyping
* Translate functional subsetto Myia
e Control flow: if, while, for, def, 1lambda
 Data: lists, tuples, arrays, @dataclass
* Not supported:. mutation, side eftects, eval
 One issue: translate dynamically typed code

17

vfact()

Needs

Requirements for our representation

* Powerful enough to represent recursion

e Minimal

e FEasy to parallelize How(x. n) pow(®n, ®r, Ox) Spow(

 Easy to optimize T
 [Easy to extena : . l

Solutions owt
» Functional (ANF) _
¢ @Graph-based

e TJyped

18

Why functional programming?

Easier to transform

o Referential transparency: same expression, same result
Easier to think about

 No side effects

Easier to optimize

* Qrder of operations can be changed

e Parallelizable

« (Common subexpression elimination easy
Type system Is easier

 No side effects

Easier for automatic differentiation

19

@
A
/
_l
o

Why graphs? :‘ 5;§>-Mi|a

f)
Input

W, X, Y, Z

Easy to parallelize
* Only data flow relationships

Easy to optimize

e Direct use-def pointers (N0 names)
 Dead code elimination is trivial

* [nlining Is easy

20

Why static typing?

mlp.py:85

1n step(
model :: Model(
layers :: (
Guarantees TanhLayer(W :: f64 x 10 x 12, b :: fo4 x 1 x 12),
TanhLayer(W :: fe4 x 14 x 1, b :: f64 x 1 x 1)

)

o (Correctness of the user’s program

y :: 18 x3x1

* TJype correctness of code transforms (autodiff) i o - O, , 3
Performance R

)

 No runtime type checking = better performance

target :: 18 x 3 x 1

o [everage shape information for optimization
User experience - B A
 Prevent errors late in process X

49: x = layer.apply(x)

mlp.py:39

in apply(
self :: TanhLayer(W :: f64 x 14 x 1, b ::
input :: fe4 x 3 x 12

)
39: return tanh(input @ self.W + self.b)

MyiaShapeError: Incompatible shapes in dot: (3, 12) and (14, 1)

AN

\/ \

/\/

\/

Type system

Flexible inference for performance and robustness

22

Myia’s Types

Scalars: Int/UInt/Float<8/16/32/64>, Bool
Tuples: Tuple<Tl, T2, ..>

 Heterogeneously typed, static length
Lists: L1st<T>

« Homogeneously typed, dynamic length, fast append
Arrays: Array<T, Shape<D1, D2, .>>

* Homogeneously typed, shape part of the type

Functions: Function<Args<TInl, TIn2, ...>, TOut>

Struct types are reduced to tuples in pre-processing.

23

Why inference?

Annotations are annoying

o Polymorphic types are awkward to express
 [unction types are awkward to express
 |mpede rapid prototyping

 Duck typing is more natural

 [hisis why people like Python

Type/shape inference

o [nfer from the input types from entry point

e |Implicit polymorphism

 [eels dynamic

* [unctions are re-compiled when they are given new input types

Myia’s inference pipeline

1. Transform inputs into abstract inputs
 Represent type and shape — no concrete values
 More types: structs, polymorphic functions

2. Run abstract interpreter on abstract inputs
 Bounded input signatures for each function
 Recursive functions become fixed points

3. Specialize functions to their possible signhatures
 |f function called with int, make int version, etc.
* HIgher order uses require signature unigueness

4. Update or re-run inference after optimizations or AD

Error reporting

mlp.py:85
1n step(
model :: Model(
layers :: (

TanhLayer(W ::
TanhLayer(W ::

. fe4 x 3 x 10,
:: 18 x 3 x 1

1n cost(
model :: Model(
layers :: (

TanhLayer(W ::
TanhLayer(W ::

)

D5
X :: fe4 x 3 x 10,

target :: 18 x 3 x 1

)
/5: y = model .apply(x)

f64
f64

x 10 x 12, b ::
x 14 x1, b ::

x 10 x 12, b ::
x 14 x 1, b ::

fo4 x 1 x 12),

fe4 x 1 x 1)

fe4 x 1 x 12),

fe4 x 1 x 1)

1n apply(
self :: Model(
layers :: (

TanhLayer(W ::
TanhLayer(W ::

. fo4 x 3 x 10

49: x = layer.apply(x)

1n apply(

self :: TanhLayer(W ::
lnput :: f64 x 3 x 12

fo4 x 10 x 12, b ::
fo4 x 14 x 1, b ::

fo4 x 14 x 1, b ::

39: return tanh(input @ self.W + self.b)

MyiaShapeError: Incompatible shapes in dot: (3, 12) and (14, 1)

fo4 x 1 x 12),
fe4 x 1 x 1)

fo4 x 1 x 1),

Debugging

Tracking correspondence to source code
 [hrough parsing

 [hrough optimization

 Through automatic differentiation

* Through macros/code generation

Debugging tools we need

o (Custom debugger for step by step execution
 Watching variables and gradients

 Breakpoints that trigger during the reverse phase

* Profiling and reporting which parts of the code are “hot”

In Conclusion: Myia’s focus

General purpose, including recursion

Automatic differentiation
e (Code transform
* (Optimizable, higher order gradients

Type and shape inference
 (Can handle duck typed code

Good debugging facilities
o Step debugger, protiling
» (Gradient debugging

us on GitHub: https://github.com/mila-igia/myia

https://github.com/mila-iqia/myia

