Fast and Accurate Object Detection with PyTorch and TensorRT
OVERVIEW

Topics

What & Why?
- Problem
- Our solution

How?
- Architecture
- Performance
- Optimizations

Future
PROBLEM
Performance and Workflow

Lack of object detection codebase with high accuracy and high performance
- Single stage detectors (YOLO, SSD) - fast but low accuracy
- Region based models (faster, mask-RCNN) - high accuracy, low inference performance

No end-to-end GPU processing
- Data loading and pre-processing on CPU can be slow
- Post-processing on CPU is a performance bottleneck
- Large tensors copy between host and GPU memory is expensive

No full detection workflow integrating NVIDIA optimized libraries all together
- Using DALI, Apex and TensorRT
SOLUTION

End-to-End Object Detection

Fast and accurate
- Single shot object detector based on RetinaNet
- Accuracy similar to two-stages object detectors
- End-to-end optimized for GPU
- Distributed and mixed precision training and inference

Codebase
- Open source, easily customizable tools
- Written in PyTorch/Apex with CUDA extensions
- Production ready inference through TensorRT
ARCHITECTURE

RetinaNet

The one-stage RetinaNet network architecture [1] with FPN [2]
ARCHITECTURE

Single Shot Detection

YOLO detection model [3]
ARCHITECTURE

Bounding Boxes and Anchors

Single Shot MultiBox Detector framework [4]
ARCHITECTURE

Non Maximum Suppression

YOLO detection model [3]
ARCHITECTURE

End-to-end GPU processing

Image \rightarrow \text{Pre-proc} \rightarrow \text{Backbone} \rightarrow \text{FPN} \rightarrow \text{Box heads} \rightarrow \text{Box decode} \rightarrow \text{NMS} \rightarrow \text{Detections}

- DALI
- PyTorch+Apex / TensorRT
- PyTorch extensions / TensorRT plugins

Inference only
def forward(self, x):
 if self.training: x, targets = x

 # Backbone and class/box heads
 features = self.backbone(x)
 cls_heads = [self.cls_head(t) for t in features]
 box_heads = [self.box_head(t) for t in features]

 if self.training:
 return self._compute_loss(x, cls_heads, box_heads, targets)

 # Decode and filter boxes
 decoded = []
 for cls_head, box_head in zip(cls_heads, box_heads):
 decoded.append(decode(cls_head.sigmoid(), box_head, stride,
 self.threshold, self.top_n, self.anchors[stride]))

 # Perform non-maximum suppression
 decoded = [torch.cat(tensors, 1) for tensors in zip(*decoded)]
 return nms(*decoded, self.nms, self.detections)
ARCHITECTURE

Features

Customizable backbone - easy accuracy vs performance trade-offs
 ○ Supports variable feature maps and ensembles

End-to-end processing on the GPU

High performance through NVIDIA libraries/tools integration
 ○ Optimized pre-processing with DALI
 ○ Mixed precision, distributed training with Apex
 ○ Easy model export to TensorRT for inference with optimized post-processing

Light PyTorch codebase for research and customization
 ○ With optimized CUDA extensions and plugins
PERFORMANCE

Training Time (lower is better)

- Ours: ResNet34 FPN-800 0.34 mAP
- Ours: ResNet50 FPN-800 0.356 mAP
- Ours: ResNet101 FPN-800 0.375 mAP
- Detectron: ResNet50 FPN-800 0.356 mAP

Training time for COCO on DGX-1v (hrs)
PERFORMANCE

Inference Latency (lower is better)
WORKFLOW

Command Line Utility

- Training and evaluation

  ```
  > retinanet train model.pth --images images_train/ --annotations annotations_train.json
  > retinanet infer model.pth --images images_val/ --annotations annotations_val.json
  ```

- Export to TensorRT and inference

  ```
  > retinanet export model.pth engine.plan
  > retinanet infer engine.plan --images images_prod/
  ```

- Production-ready inference engine
OPTIMIZATION
DALI, PyTorch+Apex, and TensorRT

Pre-proc → Backbone → FPN
Box heads → Class heads → Box decode → NMS

Image → Detections

DALI PyTorch+Apex / TensorRT PyTorch extensions / TensorRT plugins
DALI

Highly optimized open source library for data preprocessing

- **Execution engine** for fast preprocessing pipeline
- **Accelerated blocks** for image loading and augmentation
- **GPU support** for JPEG decoding and image manipulation
def __init__(self, batch_size, num_threads, device_id, training, *args):

 self.decode = ops.nvJPEGDecoder(device="mixed", output_type=types.RGB)
 self.resize = ops.Resize(device="gpu", image_type=types.RGB, resize_longer=size)
 self.pad = ops.Paste(device="gpu", paste_x=0, paste_y=0, min_canvas_size=size)
 self.crop_norm = ops.CropMirrorNormalize(device="gpu", mean=mean, std=std,
 crop=size, image_type=types.RGB, output_dtype=types.FLOAT)

 if training:
 self.coin_flip = ops.CoinFlip(probability=0.5)
 self.horizontal_flip = ops.Flip(device="gpu")
 self.box_flip = ops.BbFlip(device="cpu")
```python
def define_graph(self):
    inputs, bboxes, labels, ids = self.input()
    images = self.decode(images)
    images = self.resize(images)

    if self.training:
        do_flip = self.coin_flip()
        images = self.image_flip(images, horizontal=do_flip)
        boxes = self.box_flip(boxes, horizontal=do_flip)

    images = self.pad(images)
    images = self.crop_norm(images)
    return images, boxes, labels, ids
```
DALI

Inference Latency (lower is better)

- **Overhead (ms/batch)**
- **Model latency (ms/batch)**

DataLoader 1-batch

DALI 1-batch

DataLoader 2-batch

DALI 2-batch
APEX

Library of utilities for PyTorch

- Optimized multi-process \textit{distributed} training
- Streamlined \textit{mixed precision} training
- And more...
APEX

Distributed Training

DistributedDataParallel wrapper

- Easy **multiprocess** distributed training
- Optimized for **NCCL**

```python
def worker(rank, args, world, model, state):
    if torch.cuda.is_available():
        torch.cuda.set_device(rank)
        torch.distributed.init_process_group(backend='nccl', init_method='env://')

torch.multiprocessing.spawn(worker, args=(args, world, model, state), nprocs=world)
```
APEX

Mixed Precision

Safe and optimized mixed precision

- Convert ops to Tensor Core-friendly FP16, keep unsafe ops on FP32
- Optimizer wrapper with loss scaling under the hood

```python
# Initialize Amp
model, optimizer = amp.initialize(model, optimizer, opt_level='O2')

# Backward pass with scaled loss
with amp.scale_loss(loss, optimizer) as scaled_loss:
    scaled_loss.backward()
```
APEX

Training Throughput (higher is better)

- Training speed on DGX-1v (images/second)

<table>
<thead>
<tr>
<th>Model</th>
<th>Throughput (images/second)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ResNet50FPN-800 FP32</td>
<td>~40</td>
</tr>
<tr>
<td>ResNet50FPN-800 Mixed Precision</td>
<td>~80</td>
</tr>
</tbody>
</table>
TENSORRT

Platform for high-performance deep learning inference deployment

- **Optimizes** network performance for inference on a target GPU
- **Lower precision** conversion with minimal accuracy loss
- **Production** ready for datacenter, embedded, and automotive applications
TENSORRT Optimization Workflow

Trained Neural Network -> Dynamic Tensor Memory -> Layer & Tensor Fusion

Precision Calibration -> Multi-Stream Execution

Kernel Auto-Tuning -> Optimized Inference Engine
TENSORRT

Workflow

PyTorch -> ONNX -> TensorRT engine

- **Export** PyTorch backbone, FPN, and {cls, bbox} heads to ONNX model
- **Parse** converted ONNX file into TensorRT optimizable network
- **Add** custom C++ TensorRT plugins for bbox decode and NMS

TensorRT automatically applies:

- **Graph optimizations** (layer fusion, remove unnecessary layers)
- **Layer by layer kernel autotuning** for target GPU
- **Conversion to reduced precision** if desired (FP16, INT8)
// Parse ONNX FCN
auto parser = createParser(*network, gLogger);
parser->parse(onnx_model, onnx_size);
...

// Add decode plugins
for (int i = 0; i < nbBoxOutputs; i++) {
 auto decodePlugin = DecodePlugin(score_thresh, top_n, anchors[i], scale);
 auto layer = network->addPluginV2(inputs.data(), inputs.size(), decodePlugin);
}
...

// Add NMS plugin
auto nmsPlugin = NMSPlugin(nms_thresh, detections_per_im);
auto layer = network->addPluginV2(concat.data(), concat.size(), nmsPlugin);

// Build CUDA inference engine
auto engine = builder->buildCudaEngine(*network);
Custom C++ plugins for bounding box decoding and non-maximum suppression

- Leverage CUDA for optimized decoding and NMS

- Enables full detection workflow on the GPU
 - No need to copy large feature maps back to host for post-processing

- Integrated into TensorRT engine and used transparently during inference
class DecodePlugin : public IPluginV2 {
 void configureWithFormat(const Dims* inputDims, ...) override;
 int enqueue(int batchSize, const void **inputs, ...) override;
 void serialize(void *buffer, ...) const override;
 ...
}

class DecodePluginCreator : public IPluginCreator {
 IPluginV2 *createPlugin (const char *name, ...) override;
 IPluginV2 *deserializePlugin (const char *name, ...) override;
 ...
}

REGISTER_TENSORRT_PLUGIN(DecodePluginCreator);
TENSORRT

Inference Latency (lower is better)

- Inference latency on V100 (ms/im)

- ResNet50FPN-800 Naive PyTorch
- ResNet50FPN-800 PyTorch w/ CUDA ext
- ResNet50FPN-800 TensorRT w/ plugins
FUTURE

- TRT Inference Server and DeepStream support
- Network pruning for faster inference
- New SoTA backbones
- Dynamic depth for inference
- New regularization techniques
WHAT NOW?

Go check out the code and try it!

https://github.com/NVIDIA/retinanet-examples
REFERENCES

