

ALL YOU NEED TO KNOW ABOUT PROGRAMMING NVIDIA'S DGX-2

Lars Nyland & Stephen Jones, GTC 2019

DGX-2: FASTEST COMPUTE NODE EVER BUILT

We're here to tell you about it

NVIDIA[®] DGX-2[™] SERVER AND NVSWITCH[™]

16 Tesla[™] V100 32 GB GPUs FP64: 125 TFLOPS FP32: 250 TFLOPS Tensor: 2000 TFLOPS 512 GB of GPU HBM2

Single-Server Chassis

10U/19-Inch Rack Mount 10 kW Peak TDP Dual 24-core Xeon CPUs 1.5 TB DDR4 DRAM 30 TB NVMe Storage

12 NVSwitch Network

Full-Bandwidth Fat-Tree Topology 2.4 TBps Bisection Bandwidth Global Shared Memory Repeater-less

New NVSwitch Chip 18 2nd Generation NVLink[™] Ports 25 GBps per Port 900 GBps Total Bidirectional Bandwidth 450 GBps Total Throughput

USING MULTI-GPU MACHINES

What's the difference between a mining rig and DGX-2?

SINGLE GPU

SINGLE GPU

SINGLE GPU

TWO GPUS

Can read and write each other's memory over PCIe

TWO GPUS

Can read and write each other's memory over PCIe

TWO GPUS USING NVLINK

6 Bidirectional Channels Directly Connecting 2 GPUs

TWO GPUS USING NVLINK

6 Bidirectional Channels Directly Connecting 2 GPUs

TWO GPUS USING NVLINK

6 Bidirectional Channels Directly Connecting 2 GPUs

MULTIPLE GPUS Directly connected using NVLink2

- Requires dedicated connections between GPUs
- Decreases bandwidth between GPUs as more are added
- Not scalable

ADDING A SWITCH

DGX-2 INTERCONNECT INTRO

8 GPUs with 6 NVSwitch Chips

DGX-2 INTERCONNECT INTRO

8 GPUs with 6 NVSwitch Chips

DGX-2 INTERCONNECT INTRO

8 GPUs with 6 NVSwitch Chips

FULL DGX-2 INTERCONNECT

Baseboard to baseboard

MOVING DATA ACROSS THE NVLINK FABRIC

Bulk transfers

- Use copy-engine (DMA) between GPUs to move data
- Available with cudaMemcpy()

Word by word

- Programs running on SMs can access all memory by address
- For LOAD, STORE, and ATOM operations
 - 1 to 16 bytes per thread
- Similar performance guidelines for addressing coalescing apply

HOST MEMORY VIA PCIE

1.5 TB of host memory accessible via four PCIe channels

2 Intel Xeon 8168 CPUs

1.5 Terabytes DRAM

4 PCIe buses

- 2/CPU
- 4 GPUs/bus

GPUs can read/write host memory at 50 GB/s

HOST MEMORY BANDWIDTH

User data moving at 49+ GB/s

1 kernel/GPU reading host memory

- On GPUs 0, 1, ..., 15
- 10 second delay between each launch
- GPUs 0-3 share one PCIe bus
 - Same for 4-7, 8-11, 12-15

MULTI-GPU PROGRAMMING IN CUDA

Programs control each device independently

- Streams are per-device work queues
- Launch & synchronize on a stream implies device

Inter-stream synchronization uses events

- Events can mark kernel completion
- Kernels queued in a stream on one device can wait for an event from another

VERY BASIC MULTI-GPU LAUNCH


```
// Create as many streams as I have devices
cudaStream_t stream[16];
for(int gpu=0; gpu<numGPUs; gpu++) {
    cudaSetDevice(gpu);
    cudaStreamCreate(&stream[gpu]);
}</pre>
```

```
// Launch a copy of the first kernel onto each GPU's stream
for(int gpu=0; gpu<numGPUs; gpu++) {
    cudaSetDevice(gpu);
    firstKernel<<< griddim, blockdim, 0, stream[gpu] >>>( ... );
}
```

// Now launch a copy of another kernel onto each GPU's stream
for(int gpu=0; gpu<numGPUs; gpu++) {
 cudaSetDevice(gpu);
 secondKernel<<< griddim2, blockdim2, 0, stream[gpu] >>>(...);

BETTER ASYNCHRONOUS MULTI-GPU LAUNCH


```
// Launch the first kernel and an event to mark its completion
for(int gpu=0; gpu<numGPUs; gpu++) {</pre>
     cudaSetDevice(gpu);
     firstKernel<<< griddim, blockdim, 0, stream[gpu] >>>( ... );
     cudaEventRecord(event[gpu], stream[gpu]);
}
// Make GPU 0 sync with other GPUs to know when all are done
for(int gpu=1; gpu<numGPUs; gpu++)</pre>
     cudaStreamWaitEvent(stream[0], event[gpu], 0);
// Then make other GPUs sync with GPU 0 for a full handshake
cudaEventRecord(event[0], stream[0]);
for(int gpu=1; gpu<numGPUs; gpu++)</pre>
     cudaStreamWaitEvent(stream[gpu], event[0], 0);
// Now launch the next kernel with an event... and so on
for(int gpu=0; gpu<numGPUs; gpu++) {</pre>
     cudaSetDevice(gpu);
     secondKernel<<< griddim, blockdim, 0, stream[gpu] >>>( ... );
     cudaEventRecord(event[gpu], stream[gpu]);
```

MUCH SIMPLER: COOPERATIVE LAUNCH

// Cooperative launch provides easy inter-grid sync. // Kernels and per-GPU streams are in "launchParams" cudaLaunchCooperativeKernelMultiDevice(launchParams, numGPUs);

// Now just synchronize to wait for the work to finish.
cudaStreamSynchronize(stream[0]);

// Inside the kernel, instead of kernels make function calls __global__ void masterKernel(...) { firstKernelAsFunction(...); // All threads on all GPUs run this_multi_grid().sync(); // Sync all threads on all GPUs secondKernelAsFunction(...) this_multi_grid().sync(); ... }

MULTI-GPU MEMORY MANAGEMENT

Individual memory

Independent instances read from neighbours explicitly

16 GPUs WITH 32GB MEMORY EACH

16x 32GB Independent Memory Regions

NVSWITCH PROVIDES

All-to-all high-bandwidth peer mapping between GPUs

Full inter-GPU memory interconnect (incl. Atomics)

UNIFIED MEMORY + DGX-2

UNIFIED MEMORY PROVIDES

Single memory view shared by all GPUs

User control of data locality

Automatic migration of data between GPUs

WE WANT LINEAR MEMORY ACCESS

But cudaMalloc creates a partitioned global address space

4 GPUs require 4 allocations giving 4 regions of memory

Problem: Program must now be aware of data & compute layout across GPUs

UNIFIED MEMORY

CUDA's Unified Memory Allows One Allocation To Span Multiple GPUs

Normal pointer arithmetic just works

SETTING UP UNIFIED MEMORY


```
// Allocate data for cube of side "N"
float *data;
size_t size = N*N*N * sizeof(float);
cudaMallocManaged(&data, size);
```

```
// Make whole allocation visible to all GPUs
for(int gpu=0; gpu<numGPUs; gpu++) {
    cudaMemAdvise(data, size, cudaMemAdviseSetAccessedBy, gpu);
}</pre>
```

```
// Now place chunks on each GPU in a striped layout
float *start = ptr;
for(int gpu=0; gpu<numGPUs; gpu++) {
    cudaMemAdvise(start, size / numGpus, cudaMemAdviseSetPreferredLocation, gpu);
    cudaMemPrefetchAsync(start, size / numGpus, gpu);
    start += size / numGpus;
}</pre>
```

WEAK SCALING

Problem Grows As Processor Count Grows - Constant Work Per GPU

IDEAL WEAK SCALING

STRONG SCALING

Problem Stays Same As Processor Count Grows - Less Work Per GPU

IDEAL STRONG SCALING

EXAMPLE: MERGESORT

Break list into 2 equal parts, recursively

Until just 1 element per list

Merge pairs of lists

- Keeping them sorted
- Until just 1 list remains

PARALLELIZING MERGESORT

Parallelize merging of lists

Compute where elements are stored in result independently

For all items in list A

- Find lowest j such that A[i] < B[j]</p>
- Store A[i] at D[i+j]

Binary search step impacts O(parallelism)

Extra log(n) work to perform binary search

The "merge" step

- 1. Read by thread-id
- 2. Compute location in write-buffer
- 3. Write
- 4. Sync
- 5. Flip read, write buffers
- 6. Repeat, doubling list lengths

Ime

The "merge" step

- 1. Read by thread-id
- 2. Compute location in write-buffer
- 3. Write
- 4. Sync
- 5. Flip read, write buffers
- 6. Repeat, doubling list lengths

The "merge" step

- 1. Read by thread-id
- 2. Compute location in write-buffer
- 3. Write
- 4. Sync
- 5. Flip read, write buffers
- 6. Repeat, doubling list lengths

The "merge" step

- 1. Read by thread-id
- 2. Compute location in write-buffer
- 3. Write
- 4. Sync
- 5. Flip read, write buffers
- 6. Repeat, doubling list lengths

ALIGNMENT OF THREADS & DATA

Memory pages are 2 MB

Pinned to GPUs in round-robin fashion

Run 80*1024 = 81920 threads on each GPU

- One 8-byte read covers 655,360 bytes
- 16 GPUs cover 10,485,760 bytes

No optimized alignment between threads and memory

Possible to do better (and worse)

ACHIEVED BANDWIDTH

Aggregate bandwidth for all loads and stores in mergesort

16 GPUs read & write data at 6 TB/s

Adding more GPUs

- Adds more accessible bandwidth
- Adds memory capacity

Is 6 TB/s fast enough?

- Speed of light is 2 TB/s for DGX-2
- Caching gives a performance boost

STRONG SCALING Sorting 8 billion values on 4-16 GPUs

COMMUNICATING ALGORITHMS

3x3 Convolution

COMMUNICATING ALGORITHMS

3x3 Convolution

COMMUNICATION IS EVERYTHING

COMMUNICATION IS EVERYTHING

COMMUNICATION IS EVERYTHING

Halo Cells Keep Computation Local and Communication Asynchronous

Copy remote node boundary-cell data into local halo cells

STRONG SCALING: DIMINISHING RETURNS

Pretending That Memory Over NVLink Is Local Memory

1. Eliminate halo cells

Pretending That Memory Over NVLink Is Local Memory

- 1. Eliminate halo cells
- 2. Read directly from neighbor GPUs as if all memory were local

Pretending That Memory Over NVLink Is Local Memory

- 1. Eliminate halo cells
- 2. Read directly from neighbor GPUs as if all memory were local
- 3. NVLink takes care of fast communication

How far can we push this?

Pretending That Memory Over NVLink Is Local Memory

As GPU count increases

- Halo-to-core ratio increases
- Off-chip accesses increase
- On-chip accesses decrease
- Proportions depend on algorithm

We reach NVLink bandwidth limit

Pretending That Memory Over NVLink Is Local Memory

As GPU count increases

- Halo-to-core ratio increases
- Off-chip accesses increase
- On-chip accesses decrease
- Proportions depend on algorithm

We reach NVLink bandwidth limit

BUT: Communication is many-to-many so full aggregate bandwidth is available

LOOKING FOR BANDWIDTH LIMITS

Hypothesis: Local-to-Remote Ratio Determines Performance

Stencil codes are memory bandwidth limited

Limited by **HBM2** bandwidth for on-chip reads

Limited by **NVLink** bandwidth for off-chip reads

- NVLink = 120 GB/sec
 - HBM2 = 880 GB/sec
 - Ratio = 18.4%

NAÏVE 3D STENCIL PROGRAM

How Well Does The Simplest Possible Stencil Perform?

BANDWIDTH & OVERHEAD LIMITS

Example: LULESH stencil CFD code

Expect to lose performance when offchip bandwidth exceeds NVLink bandwidth:

> NVLink = 120 GB/sec HBM2 = 880 GB/sec Ratio = 18.4%

BONUS FOR NINJAS: ONE-SIDED COMMUNICATION

NVLink achieves higher **bandwidth** for writes than for reads:

Read requests consume inbound bandwidth at remote node

Difference is ~9%

WORK STEALING

Weak Scaling Mechanism: GPUs Compete To Process Data

Any consumer can pop head of queue whenever it needs more work

Basic Building Block For Many Dynamic Scheduling Applications

Push Operation: Adds data to head of queue

Basic Building Block For Many Dynamic Scheduling Applications

(1

Push Operation: Adds data to head of queue

Advance head pointer to claim more space

Basic Building Block For Many Dynamic Scheduling Applications

Push Operation: Adds data to head of queue

(1) Advance head pointer to claim more space

2) Write new data into space

Basic Building Block For Many Dynamic Scheduling Applications

Pop Operation: Extracts data from tail of queue

Basic Building Block For Many Dynamic Scheduling Applications

Pop Operation: Extracts data from tail of queue

1 Advance tail pointer to next item

Basic Building Block For Many Dynamic Scheduling Applications

Pop Operation: Extracts data from tail of queue

1 Advance tail pointer to next item

2 Read data from new location

Basic Building Block For Many Dynamic Scheduling Applications

Push Operation: Adds data to head of queue

1) Advance head pointer to claim more space

2) Write new data into space

Pop Operation: Extracts data from tail of queue

1 Advance tail pointer to next item

2 Read data from new location

Problem: Concurrent Access Of Empty Queue

Empty Queue: When Head == Tail

Problem: Concurrent Access Of Empty Queue

(1

Push Operation: Adds data to head of queue

Advance head pointer to claim more space

Problem: Concurrent Access Of Empty Queue

Problem: Concurrent Access Of Empty Queue

Push Operation: Adds data to head of queue

Advance head pointer to claim more space

Pop Operation: Extracts data from tail of queue

1 Advance tail pointer to next item

2 Read data from new location

Solution: Two Head (& Tail) Pointers For Thread-Safety

Solution: Two Head (& Tail) Pointers For Thread-Safety

Push Operation: Adds data to head of queue

Advance **outer** head pointer

1

Solution: Two Head (& Tail) Pointers For Thread-Safety

Push Operation: Adds data to head of queue

Advance **outer** head pointer

1

Pop Operation: Extracts data from tail of queue

 1
 While "tail" == "inner head", do nothing

Solution: Two Head (& Tail) Pointers For Thread-Safety

Push Operation: Adds data to head of queue

1) Advance **outer** head pointer

2 Write new data into space

Pop Operation: Extracts data from tail of queue

While "tail" == "inner head", do nothing

Solution: Two Head (& Tail) Pointers For Thread-Safety

Push Operation: Adds data to head of queue

1 Advance **outer** head pointer

2 Write new data into space

3 Advance **inner** head pointer

Pop Operation: Extracts data from tail of queue

1 While "tail" == "inner head", **do nothing**

Solution: Two Head (& Tail) Pointers For Thread-Safety

Solution: Two Head (& Tail) Pointers For Thread-Safety

Thread-Safe Multi-Producer / Multi-Consumer Operation

SCALE EASILY BY ADDING MORE CONSUMERS

Limit Is Memory Bandwidth Between Queue & Consumers

SCALING OUT TO LOTS OF GPUS

It Works! Here's an Incredibly Boring Graph To Prove It

QUEUE CONTENTION LIMITATION

When Consumers Are Consuming Too Quickly

Why are more consumers worse?

- Large number of consumers accessing a single queue
- Saturates memory system at queue head
- Loss of throughput even though bandwidth is available

MEMORY CONTENTION LIMITATION

Throttling requests restores throughput, but costs latency

Mitigations

- Contention arises when many consumers are available for work
- Apply backoff delay between queue requests
- BUT: Unnecessary backoff increases latency
- Full-queue management still adds overhead

GUIDANCE AND GOTCHAS

NVSwitch Is The Secret Sauce

You can mostly ignore NVLink - it's just like memory thanks to NVSwitch BUT

2TB/sec is combined bandwidth, for many-to-many access patterns If everyone accesses a single GPU, they share 137GB/sec

GUIDANCE AND GOTCHAS

NVSwitch Is The Secret Sauce

You can mostly ignore NVLink - it's just like memory thanks to NVSwitch BUT

2TB/sec is combined bandwidth, for many-to-many access patterns If everyone accesses a single GPU, they share 137GB/sec

ALSO

Sometimes NVLink bandwidth is not the limiting factor

High contention at a single memory location hurt you

You have 2.6 million threads - contention can get very high

KEEPING PERFORMANCE HIGH

Spread threads and data across all GPUs to use the most hardware

Spread your data across all GPUs

To avoid colliding memory requests at the "storage" GPU

Spread your threads across all GPUs

 To avoid all traffic congesting at the "computing" GPU

"All the wires, all the time"

GUIDANCE: RELY ON DGX-2 HARDWARE

How much tuning is needed?

Unified virtual memory gives you a simple memory model for spanning multiple GPUs

At maximum performance

Remote memory traffic uses L1 cache

- Volta has a 128 KB cache for each SM
- Not coherent, use fences to ensure consistency after writes

Explicit management of local & remote memory accesses may improve performance

CONCLUSIONS

The fabric makes DGX-2 more than just 16 GPUs - it's not just a mining rig

DGX-2 is a superb strong scaling machine in a time-to-solution sense

Overhead of Multi-GPU programming is low

Naïve code behaves well - great effort/reward ratio

Linearization of addresses through UVM provides a familiar model for free