
Lars Nyland & Stephen Jones, GTC 2019

ALL YOU NEED TO KNOW ABOUT
PROGRAMMING NVIDIA’S DGX-2

2

DGX-2: FASTEST COMPUTE NODE EVER BUILT
We’re here to tell you about it

3

NVIDIA DGX-2 SERVER AND NVSWITCH

16 Tesla™ V100 32 GB GPUs
FP64: 125 TFLOPS

FP32: 250 TFLOPS

Tensor: 2000 TFLOPS

512 GB of GPU HBM2

Single-Server Chassis
10U/19-Inch Rack Mount
10 kW Peak TDP
Dual 24-core Xeon CPUs
1.5 TB DDR4 DRAM
30 TB NVMe Storage

New NVSwitch Chip
18 2nd Generation NVLink™ Ports
25 GBps per Port
900 GBps Total Bidirectional
Bandwidth
450 GBps Total Throughput

12 NVSwitch Network
Full-Bandwidth Fat-Tree Topology
2.4 TBps Bisection Bandwidth
Global Shared Memory
Repeater-less

® ™™

4

USING MULTI-GPU MACHINES
What’s the difference between a mining rig and DGX-2?

5

SINGLE GPU

HBM

PCIe I/O

S

M

L2

HBM

XBAR

H

U

B

PCIe I/O NVLink2

L2 L2 L2

CPU

PCIe Bus

6

SINGLE GPU

HBM

PCIe I/O

S

M

L2

HBM

XBAR

H

U

B

PCIe I/O NVLink2

L2 L2 L2

CPU

PCIe Bus

7

SINGLE GPU

HBM

PCIe I/O

S

M

L2

HBM

XBAR

H

U

B

PCIe I/O NVLink2

L2 L2 L2

CPU

PCIe Bus

8

TWO GPUS
Can read and write each other’s memory over PCIe

CPU

PCIe Bus

HBM

PCIe I/O

S

M

L2

HBM

XBAR

H

U

B

PCIe I/O NVLink2

L2 L2 L2

HBM

PCIe I/O

S

M

L2

HBM

XBAR

H

U

B

PCIe I/ONVLink2

L2L2L2

9

TWO GPUS
Can read and write each other’s memory over PCIe

CPU

PCIe Bus

HBM

PCIe I/O

S

M

L2

HBM

XBAR

H

U

B

PCIe I/O NVLink2

L2 L2 L2

HBM

PCIe I/O

S

M

L2

HBM

XBAR

H

U

B

PCIe I/ONVLink2

L2L2L2

10

TWO GPUS USING NVLINK
6 Bidirectional Channels Directly Connecting 2 GPUs

PCIe Bus

HBM

PCIe I/O

S

M

L2

HBM

XBAR

H

U

B

PCIe I/ONVLink2

L2L2L2

CPU

HBM

PCIe I/O

S

M

L2

HBM

XBAR

H

U

B

PCIe I/O NVLink2

L2 L2 L2

11

TWO GPUS USING NVLINK
6 Bidirectional Channels Directly Connecting 2 GPUs

PCIe Bus

HBM

PCIe I/O

S

M

L2

HBM

XBAR

H

U

B

PCIe I/ONVLink2

L2L2L2

CPU

HBM

PCIe I/O

S

M

L2

HBM

XBAR

H

U

B

PCIe I/O NVLink2

L2 L2 L2

12

TWO GPUS USING NVLINK
6 Bidirectional Channels Directly Connecting 2 GPUs

PCIe Bus

HBM

PCIe I/O

S

M

L2

HBM

XBAR

H

U

B

PCIe I/ONVLink2

L2L2L2

CPU

HBM

PCIe I/O

S

M

L2

HBM

XBAR

H

U

B

PCIe I/O NVLink2

L2 L2 L2

13

MULTIPLE GPUS

- Requires dedicated
connections between
GPUs

- Decreases bandwidth
between GPUs as more
are added

- Not scalable

Directly connected using NVLink2

HBM

PCIe

I/O

S

M

L2

HBM

XBAR

H

U

B

PCIe

I/O
NVLink2

L2 L2 L2

HBM

PCIe

I/O

S

M

L2

HBM

XBAR

H

U

B

PCIe

I/O
NVLink2

L2L2L2

HBM

PCIe

I/O

S

M

L2

HBM

XBAR

H

U

B

PCIe

I/O
NVLink2

L2 L2 L2

14

ADDING A SWITCH

HBM

PCIe

I/O

S

M

L2

HBM

XBAR

H

U

B

PCIe

I/O
NVLink2

L2 L2 L2

HBM

PCIe

I/O

S

M

L2

HBM

XBAR

H

U

B

PCIe

I/O
NVLink2

L2L2L2

HBM

PCIe

I/O

S

M

L2

HBM

XBAR

H

U

B

PCIe

I/O
NVLink2

L2 L2 L2

NVSwitch

15

DGX-2 INTERCONNECT INTRO
8 GPUs with 6 NVSwitch Chips

NVSwitch NVSwitch NVSwitch NVSwitch NVSwitch NVSwitch

V100 V100 V100 V100 V100 V100 V100 V100

16

DGX-2 INTERCONNECT INTRO
8 GPUs with 6 NVSwitch Chips

NVSwitch NVSwitch NVSwitch NVSwitch NVSwitch NVSwitch

V100 V100 V100 V100 V100 V100 V100 V100

17

DGX-2 INTERCONNECT INTRO
8 GPUs with 6 NVSwitch Chips

NVSwitch NVSwitch NVSwitch NVSwitch NVSwitch NVSwitch

V100 V100 V100 V100 V100 V100 V100 V100

18

FULL DGX-2 INTERCONNECT
Baseboard to baseboard

N
V

S
w

i

tc
h

N
V

S
w

i

tc
h

N
V

S
w

i

tc
h

N
V

S
w

i

tc
h

N
V

S
w

i

tc
h

N
V

S
w

i

tc
h

V
1
0
0

V
1
0
0

V
1
0
0

V
1
0
0

V
1
0
0

V
1
0
0

V
1
0
0

V
1
0
0

N
V

S
w

i

tc
h

N
V

S
w

i

tc
h

N
V

S
w

i

tc
h

N
V

S
w

i

tc
h

N
V

S
w

i

tc
h

N
V

S
w

i

tc
h

V
1
0
0

V
1
0
0

V
1
0
0

V
1
0
0

V
1
0
0

V
1
0
0

V
1
0
0

V
1
0
0

19

MOVING DATA ACROSS THE NVLINK FABRIC

Bulk transfers

Use copy-engine (DMA) between GPUs
to move data

Available with cudaMemcpy()

Word by word

Programs running on SMs can access all
memory by address

For LOAD, STORE, and ATOM
operations

1 to 16 bytes per thread

Similar performance guidelines for
addressing coalescing apply

20

HOST MEMORY VIA PCIE

2 Intel Xeon 8168 CPUs

1.5 Terabytes DRAM

4 PCIe buses

2/CPU

4 GPUs/bus

GPUs can read/write host memory at
50 GB/s

1.5 TB of host memory accessible via four PCIe channels

NVS

WIT

CH

NVS

WIT

CH

NVS

WIT

CH

NVS

WIT

CH

NVS

WIT

CH

V100

V100

V100

V100
NVS

WIT

CH
V100

V100

V100

V100

NVS

WIT

CH

NVS

WIT

CH

NVS

WIT

CH

V100

V100

V100

V100

V100

V100

V100

V100

PCIE

SW
x86x86

PCIE

SW

PCIE

SW

PCIE

SW

PCIE

SW

PCIE

SW

x6x6

PCIE

SW

PCIE

SW

PCIE

SW

PCIE

SW

PCIE

SW

PCIE

SW

PCIE

SW

PCIE

SW

100G

NIC

100G

NIC

100G

NIC

100G

NIC

100G

NIC

100G

NIC

100G

NIC

100G

NIC

N
V

S
W

IT
C

H

N
V

S
W

IT
C

H

QPIQPI

21

HOST MEMORY BANDWIDTH
User data moving at 49+ GB/s

1 kernel/GPU reading host
memory

On GPUs 0, 1, …, 15

10 second delay between
each launch

GPUs 0-3 share one PCIe bus

Same for 4-7, 8-11, 12-15

22

MULTI-GPU PROGRAMMING IN CUDA

Programs control each device independently

▪ Streams are per-device work queues

▪ Launch & synchronize on a stream implies
device

Inter-stream synchronization uses events

▪ Events can mark kernel completion

▪ Kernels queued in a stream on one device
can wait for an event from another

GPU
1

CPU

Program

GPU
0

GPU
N...

23

// Create as many streams as I have devices
cudaStream_t stream[16];
for(int gpu=0; gpu<numGPUs; gpu++) {

cudaSetDevice(gpu);
cudaStreamCreate(&stream[gpu]);

}

// Launch a copy of the first kernel onto each GPU’s stream
for(int gpu=0; gpu<numGPUs; gpu++) {

cudaSetDevice(gpu);
firstKernel<<< griddim, blockdim, 0, stream[gpu] >>>(...);

}

// Wait for the kernel to finish on each stream
for(int gpu=0; gpu<numGPUs; gpu++)

cudaStreamSynchronize(stream[gpu]);

// Now launch a copy of another kernel onto each GPU’s stream
for(int gpu=0; gpu<numGPUs; gpu++) {

cudaSetDevice(gpu);
secondKernel<<< griddim2, blockdim2, 0, stream[gpu] >>>(...);

}

VERY BASIC MULTI-GPU LAUNCH

Create stream

on each GPU

Launch kernel

on each GPU

Synchronize stream

on each GPU

24

BETTER ASYNCHRONOUS MULTI-GPU LAUNCH

// Launch the first kernel and an event to mark its completion
for(int gpu=0; gpu<numGPUs; gpu++) {

cudaSetDevice(gpu);
firstKernel<<< griddim, blockdim, 0, stream[gpu] >>>(...);
cudaEventRecord(event[gpu], stream[gpu]);

}

// Make GPU 0 sync with other GPUs to know when all are done
for(int gpu=1; gpu<numGPUs; gpu++)

cudaStreamWaitEvent(stream[0], event[gpu], 0);

// Then make other GPUs sync with GPU 0 for a full handshake
cudaEventRecord(event[0], stream[0]);
for(int gpu=1; gpu<numGPUs; gpu++)

cudaStreamWaitEvent(stream[gpu], event[0], 0);

// Now launch the next kernel with an event... and so on
for(int gpu=0; gpu<numGPUs; gpu++) {

cudaSetDevice(gpu);
secondKernel<<< griddim, blockdim, 0, stream[gpu] >>>(...);
cudaEventRecord(event[gpu], stream[gpu]);

}

Launch kernel

on each GPU

GPU 0 waits for all

kernels on all GPUs

Other GPUs wait

for GPU 0

Synchronize all

GPUs at end

25

MUCH SIMPLER: COOPERATIVE LAUNCH

// Cooperative launch provides easy inter-grid sync.
// Kernels and per-GPU streams are in “launchParams”
cudaLaunchCooperativeKernelMultiDevice(launchParams, numGPUs);

// Now just synchronize to wait for the work to finish.
cudaStreamSynchronize(stream[0]);

Launch

cooperative kernel

Program runs

across all GPUs

Synchronize within

GPU code

Exit when done

// Inside the kernel, instead of kernels make function calls
__global__ void masterKernel(...) {

firstKernelAsFunction(...); // All threads on all GPUs run
this_multi_grid().sync(); // Sync all threads on all GPUs

secondKernelAsFunction(...)
this_multi_grid().sync();

...
}

26

MULTI-GPU MEMORY MANAGEMENT

Unified Memory
Program spans all GPUs + CPUs

GPU
1

GPU
0

CPU

Program

GPU
0

GPU
1

P2P

CPU

Program

PCIe

Individual memory

Independent instances read
from neighbours explicitly

27

16 GPUs WITH 32GB MEMORY EACH

NVSWITCH PROVIDES

All-to-all high-bandwidth
peer mapping between GPUs

Full inter-GPU memory
interconnect (incl. Atomics)

GPU
0

GPU
1

GPU
2

GPU
3

GPU
4

GPU
5

GPU
6

GPU
7

16x 32GB Independent Memory Regions

GPU
8

GPU
9

GPU
10

GPU
11

GPU
12

GPU
13

GPU
14

GPU
15

28

UNIFIED MEMORY PROVIDES

Single memory view
shared by all GPUs

User control of data locality

Automatic migration of data
between GPUs

UNIFIED MEMORY + DGX-2

GPU
0

GPU
1

GPU
2

GPU
3

GPU
4

GPU
5

GPU
6

GPU
7

GPU
8

GPU
9

GPU
10

GPU
11

GPU
12

GPU
13

GPU
14

GPU
15

512 GB Unified Memory

29

WE WANT LINEAR MEMORY ACCESS
But cudaMalloc creates a partitioned global address space

4 GPUs require 4 allocations
giving 4 regions of memory

Problem: Program must now
be aware of data & compute

layout across GPUs

GPU 0

GPU 1

GPU 2

GPU 3

30

UNIFIED MEMORY
CUDA’s Unified Memory Allows One Allocation To Span Multiple GPUs

Normal pointer arithmetic
just works

GPU 0

GPU 1

GPU 2

GPU 3

31

SETTING UP UNIFIED MEMORY

// Allocate data for cube of side “N”
float *data;
size_t size = N*N*N * sizeof(float);
cudaMallocManaged(&data, size);

// Make whole allocation visible to all GPUs
for(int gpu=0; gpu<numGPUs; gpu++) {

cudaMemAdvise(data, size, cudaMemAdviseSetAccessedBy, gpu);
}

// Now place chunks on each GPU in a striped layout
float *start = ptr;
for(int gpu=0; gpu<numGPUs; gpu++) {

cudaMemAdvise(start, size / numGpus, cudaMemAdviseSetPreferredLocation, gpu);
cudaMemPrefetchAsync(start, size / numGpus, gpu);
start += size / numGpus;

}

GPU 0

GPU 1

GPU 2

GPU 3

32

WEAK SCALING
Problem Grows As Processor Count Grows – Constant Work Per GPU

1x 1x 1x 1x 1x 1x 1x

33

IDEAL WEAK SCALING

34

STRONG SCALING
Problem Stays Same As Processor Count Grows – Less Work Per GPU

1x ½x ¼x½x ¼x ¼x ¼x

35

IDEAL STRONG SCALING

36

EXAMPLE: MERGESORT

Break list into 2 equal parts, recursively

Until just 1 element per list

Merge pairs of lists

Keeping them sorted

Until just 1 list remains

S

p

l

i

t

M

e

r

g

e

37

PARALLELIZING MERGESORT

Parallelize merging of lists

Compute where elements are stored in result
independently

For all items in list A

Find lowest j such that A[i] < B[j]

Store A[i] at D[i+j]

Binary search step impacts O(parallelism)

Extra log(n) work to perform binary search

A B

D

i j

i+j

38

OUTLINE OF PARALLEL MERGESORT

1. Read by thread-id

2. Compute location in
write-buffer

3. Write

4. Sync

5. Flip read, write buffers

6. Repeat, doubling list
lengths

The “merge” step

T T T T T T T T T T T T T T T T

T
im

e

39

OUTLINE OF PARALLEL MERGESORT

1. Read by thread-id

2. Compute location in
write-buffer

3. Write

4. Sync

5. Flip read, write buffers

6. Repeat, doubling list
lengths

The “merge” step

T T T T T T T T T T T T T T T T

W
r T

im
e

40

OUTLINE OF PARALLEL MERGESORT

1. Read by thread-id

2. Compute location in
write-buffer

3. Write

4. Sync

5. Flip read, write buffers

6. Repeat, doubling list
lengths

The “merge” step

T T T T T T T T T T T T T T T T

T T T T T T T T T T T T T T T T

W
r T

im
e

W
r

41

OUTLINE OF PARALLEL MERGESORT

1. Read by thread-id

2. Compute location in
write-buffer

3. Write

4. Sync

5. Flip read, write buffers

6. Repeat, doubling list
lengths

The “merge” step

T T T T T T T T T T T T T T T T

T T T T T T T T T T T T T T T T

W
r

W
r

T T T T T T T T T T T T T T T T

W
r

T
im

e

42

ALIGNMENT OF THREADS & DATA

Memory pages are 2 MB

Pinned to GPUs in round-robin fashion

Run 80*1024 = 81920 threads on each GPU

One 8-byte read covers 655,360 bytes

16 GPUs cover 10,485,760 bytes

No optimized alignment between threads
and memory

Possible to do better (and worse)

memory

threads

43

ACHIEVED BANDWIDTH

16 GPUs read & write data at 6 TB/s

Adding more GPUs

Adds more accessible bandwidth

Adds memory capacity

Is 6 TB/s fast enough?

Speed of light is 2 TB/s for DGX-2

Caching gives a performance boost

Aggregate bandwidth for all loads and stores in mergesort

44

STRONG SCALING
Sorting 8 billion values on 4-16 GPUs

45

COMMUNICATING ALGORITHMS

3x3 Convolution

46

COMMUNICATING ALGORITHMS

3x3 Convolution

47

COMMUNICATION IS EVERYTHING

48

COMMUNICATION IS EVERYTHING

49

COMMUNICATION IS EVERYTHING
Halo Cells Keep Computation Local and Communication Asynchronous

Copy remote node boundary-cell
data into local halo cells

50

STRONG SCALING: DIMINISHING RETURNS

Strong

scaling

51

LEAVING COMMUNICATION TO NVLINK

1. Eliminate halo cells

Pretending That Memory Over NVLink Is Local Memory

52

LEAVING COMMUNICATION TO NVLINK

1. Eliminate halo cells

2. Read directly from neighbor GPUs as if all
memory were local

Pretending That Memory Over NVLink Is Local Memory

53

LEAVING COMMUNICATION TO NVLINK

1. Eliminate halo cells

2. Read directly from neighbor GPUs as if all
memory were local

3. NVLink takes care of fast communication

How far can we push this?

Pretending That Memory Over NVLink Is Local Memory

54

LEAVING COMMUNICATION TO NVLINK

As GPU count increases

▪ Halo-to-core ratio increases

▪ Off-chip accesses increase

▪ On-chip accesses decrease

▪ Proportions depend on algorithm

We reach NVLink bandwidth limit

Pretending That Memory Over NVLink Is Local Memory

55

LEAVING COMMUNICATION TO NVLINK

As GPU count increases

▪ Halo-to-core ratio increases

▪ Off-chip accesses increase

▪ On-chip accesses decrease

▪ Proportions depend on algorithm

We reach NVLink bandwidth limit

BUT: Communication is many-to-many
so full aggregate bandwidth is available

Pretending That Memory Over NVLink Is Local Memory

56

LOOKING FOR BANDWIDTH LIMITS

Stencil codes are memory bandwidth limited

Limited by HBM2 bandwidth
for on-chip reads

Limited by NVLink bandwidth
for off-chip reads

Hypothesis: Local-to-Remote Ratio Determines Performance

NVLink = 120 GB/sec

HBM2 = 880 GB/sec

Ratio = 18.4%

57

NAÏVE 3D STENCIL PROGRAM
How Well Does The Simplest Possible Stencil Perform?

Slope = 25%

58

BANDWIDTH & OVERHEAD LIMITS

Example: LULESH stencil CFD code

Expect to lose performance when off-
chip bandwidth exceeds NVLink
bandwidth:

NVLink = 120 GB/sec

HBM2 = 880 GB/sec

Ratio = 18.4%
18.4%

59

BONUS FOR NINJAS: ONE-SIDED COMMUNICATION

NVLink achieves higher bandwidth for
writes than for reads:

Read requests consume inbound
bandwidth at remote node

Difference is ~9%

60

WORK STEALING
Weak Scaling Mechanism: GPUs Compete To Process Data

Producers feed work
into FIFO queue

Any consumer can pop head of queue
whenever it needs more work

61

DESIGN OF A FAST FIFO QUEUE
Basic Building Block For Many Dynamic Scheduling Applications

TailHead

Push Operation: Adds data to head of queue

62

DESIGN OF A FAST FIFO QUEUE
Basic Building Block For Many Dynamic Scheduling Applications

Head

Advance head pointer to claim more space1

Push Operation: Adds data to head of queue

Tail

63

DESIGN OF A FAST FIFO QUEUE
Basic Building Block For Many Dynamic Scheduling Applications

Advance head pointer to claim more space1

Push Operation: Adds data to head of queue

Write new data into space2

Head Tail

64

DESIGN OF A FAST FIFO QUEUE
Basic Building Block For Many Dynamic Scheduling Applications

Pop Operation: Extracts data from tail of queue

Head Tail

65

DESIGN OF A FAST FIFO QUEUE
Basic Building Block For Many Dynamic Scheduling Applications

Tail

Advance tail pointer to next item1

Pop Operation: Extracts data from tail of queue

Head

66

DESIGN OF A FAST FIFO QUEUE
Basic Building Block For Many Dynamic Scheduling Applications

Advance tail pointer to next item1

Pop Operation: Extracts data from tail of queue

Read data from new location2

Head Tail

67

DESIGN OF A FAST FIFO QUEUE
Basic Building Block For Many Dynamic Scheduling Applications

Head

Advance head pointer to claim more space1

Push Operation: Adds data to head of queue

Write new data into space2

Tail

Advance tail pointer to next item1

Pop Operation: Extracts data from tail of queue

Read data from new location2

68

DESIGN OF A FAST FIFO QUEUE
Problem: Concurrent Access Of Empty Queue

Tail

Head

Empty Queue: When Head == Tail

69

DESIGN OF A FAST FIFO QUEUE
Problem: Concurrent Access Of Empty Queue

TailHead

Advance head pointer to claim more space1

Push Operation: Adds data to head of queue

70

DESIGN OF A FAST FIFO QUEUE
Problem: Concurrent Access Of Empty Queue

Tail

Head

Advance head pointer to claim more space1

Push Operation: Adds data to head of queue

Advance tail pointer to next item1

Pop Operation: Extracts data from tail of queue

71

DESIGN OF A FAST FIFO QUEUE
Problem: Concurrent Access Of Empty Queue

Tail

Head

Advance head pointer to claim more space1

Push Operation: Adds data to head of queue

Advance tail pointer to next item1

Pop Operation: Extracts data from tail of queue

Read data from new location2

72

DESIGN OF A FAST FIFO QUEUE
Solution: Two Head (& Tail) Pointers For Thread-Safety

Tail

Inner
Head

Outer
Head

73

DESIGN OF A FAST FIFO QUEUE
Solution: Two Head (& Tail) Pointers For Thread-Safety

Tail

Inner
Head

Advance outer head pointer1

Push Operation: Adds data to head of queue

Outer
Head

74

DESIGN OF A FAST FIFO QUEUE
Solution: Two Head (& Tail) Pointers For Thread-Safety

Tail

Inner
Head

Advance outer head pointer1

Push Operation: Adds data to head of queue

Outer
Head

While “tail” == “inner head”, do nothing1

Pop Operation: Extracts data from tail of queue

1

75

DESIGN OF A FAST FIFO QUEUE
Solution: Two Head (& Tail) Pointers For Thread-Safety

Tail

Inner
Head

Advance outer head pointer1

Push Operation: Adds data to head of queue

Outer
Head

While “tail” == “inner head”, do nothing1

Pop Operation: Extracts data from tail of queue

Write new data into space2
1

76

DESIGN OF A FAST FIFO QUEUE
Solution: Two Head (& Tail) Pointers For Thread-Safety

Tail

Inner
Head

Advance outer head pointer1

Push Operation: Adds data to head of queue

Outer
Head

While “tail” == “inner head”, do nothing1

Pop Operation: Extracts data from tail of queue

Write new data into space2

Advance inner head pointer3

1

77

DESIGN OF A FAST FIFO QUEUE
Solution: Two Head (& Tail) Pointers For Thread-Safety

Tail

Inner
Head

Advance outer head pointer1

Push Operation: Adds data to head of queue

Outer
Head

While “tail” == “inner head”, do nothing1

Pop Operation: Extracts data from tail of queue

Write new data into space2

Advance inner head pointer3

Advance tail pointer to next item2

78

DESIGN OF A FAST FIFO QUEUE
Solution: Two Head (& Tail) Pointers For Thread-Safety

Inner
Head

Advance outer head pointer1

Push Operation: Adds data to head of queue

Outer
Head

While “tail” == “inner head”, do nothing1

Pop Operation: Extracts data from tail of queue

Write new data into space2

Advance inner head pointer3

Advance tail pointer to next item2

Read data from new location3
Tail

79

DESIGN OF A FAST FIFO QUEUE
Thread-Safe Multi-Producer / Multi-Consumer Operation

Outer
Tail

Outer
Head

Inner
Head

Inner
Tail

Basic Rules

1. Use inner/outer head to avoid underflow

2. Use inner/outer tail to avoid overflow

3. Access all pointers atomically to allow
multiple push/pop operations at once

4. NVLink carries atomics – this would be
much, much harder over PCIe

80

SCALE EASILY BY ADDING MORE CONSUMERS
Limit Is Memory Bandwidth Between Queue & Consumers

81

SCALING OUT TO LOTS OF GPUS
It Works! Here’s an Incredibly Boring Graph To Prove It

82

QUEUE CONTENTION LIMITATION

Why are more consumers worse?

▪ Large number of consumers
accessing a single queue

▪ Saturates memory system at
queue head

▪ Loss of throughput even
though bandwidth is available

When Consumers Are Consuming Too Quickly

83

MEMORY CONTENTION LIMITATION

Mitigations

▪ Contention arises when many
consumers are available for
work

▪ Apply backoff delay between
queue requests

▪ BUT: Unnecessary backoff
increases latency

▪ Full-queue management still
adds overhead

Throttling requests restores throughput, but costs latency

84

GUIDANCE AND GOTCHAS

You can mostly ignore NVLink – it’s just like memory thanks to NVSwitch

BUT

2TB/sec is combined bandwidth, for many-to-many access patterns

If everyone accesses a single GPU, they share 137GB/sec

NVSwitch Is The Secret Sauce

85

GUIDANCE AND GOTCHAS

You can mostly ignore NVLink – it’s just like memory thanks to NVSwitch

BUT

2TB/sec is combined bandwidth, for many-to-many access patterns

If everyone accesses a single GPU, they share 137GB/sec

ALSO

Sometimes NVLink bandwidth is not the limiting factor

High contention at a single memory location hurt you

You have 2.6 million threads – contention can get very high

NVSwitch Is The Secret Sauce

86

KEEPING PERFORMANCE HIGH

Spread your data across all GPUs

To avoid colliding memory requests at
the “storage” GPU

Spread threads and data across all GPUs to use the most hardware

Spread your threads across all GPUs

To avoid all traffic congesting at the
“computing” GPU

“All the wires, all the time”

GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6

GPU8 GPU9 GPU10 GPU11 GPU12 GPU13 GPU14

GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6

GPU8 GPU9 GPU10 GPU11 GPU12 GPU13 GPU14

87

GUIDANCE: RELY ON DGX-2 HARDWARE

Unified virtual memory gives you a simple memory model for spanning multiple GPUs

At maximum performance

Remote memory traffic uses L1 cache

Volta has a 128 KB cache for each SM

Not coherent, use fences to ensure consistency after writes

Explicit management of local & remote memory accesses may improve performance

How much tuning is needed?

88

CONCLUSIONS

The fabric makes DGX-2 more than just 16 GPUs – it’s not just a mining rig

DGX-2 is a superb strong scaling machine in a time-to-solution sense

Overhead of Multi-GPU programming is low

Naïve code behaves well – great effort/reward ratio

Linearization of addresses through UVM provides a familiar model for free

