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ALL YOU NEED TO KNOW ABOUT 
PROGRAMMING NVIDIA’S DGX-2
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DGX-2: FASTEST COMPUTE NODE EVER BUILT
We’re here to tell you about it
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NVIDIA DGX-2  SERVER AND NVSWITCH

16 Tesla™ V100 32 GB GPUs
FP64: 125 TFLOPS

FP32: 250 TFLOPS

Tensor: 2000 TFLOPS

512 GB of GPU HBM2

Single-Server Chassis
10U/19-Inch Rack Mount 
10 kW Peak TDP
Dual 24-core Xeon CPUs
1.5 TB DDR4 DRAM
30 TB NVMe Storage

New NVSwitch Chip
18 2nd Generation NVLink™ Ports 
25 GBps per Port
900 GBps Total Bidirectional 
Bandwidth
450 GBps Total Throughput

12 NVSwitch Network
Full-Bandwidth Fat-Tree Topology
2.4 TBps Bisection Bandwidth
Global Shared Memory
Repeater-less

® ™™



4

USING MULTI-GPU MACHINES
What’s the difference between a mining rig and DGX-2?
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TWO GPUS
Can read and write each other’s memory over PCIe
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TWO GPUS
Can read and write each other’s memory over PCIe
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TWO GPUS USING NVLINK
6 Bidirectional Channels Directly Connecting 2 GPUs
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TWO GPUS USING NVLINK
6 Bidirectional Channels Directly Connecting 2 GPUs
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TWO GPUS USING NVLINK
6 Bidirectional Channels Directly Connecting 2 GPUs
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MULTIPLE GPUS

- Requires dedicated 
connections between 
GPUs

- Decreases bandwidth 
between GPUs as more 
are added

- Not scalable

Directly connected using NVLink2
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ADDING A SWITCH
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DGX-2 INTERCONNECT INTRO
8 GPUs with 6 NVSwitch Chips

NVSwitch NVSwitch NVSwitch NVSwitch NVSwitch NVSwitch

V100 V100 V100 V100 V100 V100 V100 V100
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DGX-2 INTERCONNECT INTRO
8 GPUs with 6 NVSwitch Chips
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FULL DGX-2 INTERCONNECT
Baseboard to baseboard
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MOVING DATA ACROSS THE NVLINK FABRIC

Bulk transfers

Use copy-engine (DMA) between GPUs 
to move data

Available with cudaMemcpy()

Word by word

Programs running on SMs can access all 
memory by address

For LOAD, STORE, and ATOM 
operations

1 to 16 bytes per thread

Similar performance guidelines for 
addressing coalescing apply
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HOST MEMORY VIA PCIE

2 Intel Xeon 8168 CPUs

1.5 Terabytes DRAM

4 PCIe buses

2/CPU

4 GPUs/bus

GPUs can read/write host memory at 
50 GB/s

1.5 TB of host memory accessible via four PCIe channels
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HOST MEMORY BANDWIDTH
User data moving at 49+ GB/s

1 kernel/GPU reading host 
memory

On GPUs 0, 1, …, 15

10 second delay between 
each launch

GPUs 0-3 share one PCIe bus

Same for 4-7, 8-11, 12-15
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MULTI-GPU PROGRAMMING IN CUDA

Programs control each device independently

▪ Streams are per-device work queues

▪ Launch & synchronize on a stream implies 
device

Inter-stream synchronization uses events

▪ Events can mark kernel completion

▪ Kernels queued in a stream on one device 
can wait for an event from another

GPU
1

CPU

Program

GPU
0

GPU
N...
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// Create as many streams as I have devices
cudaStream_t stream[16];
for(int gpu=0; gpu<numGPUs; gpu++) {

cudaSetDevice(gpu);
cudaStreamCreate(&stream[gpu]);

}

// Launch a copy of the first kernel onto each GPU’s stream
for(int gpu=0; gpu<numGPUs; gpu++) {

cudaSetDevice(gpu);
firstKernel<<< griddim, blockdim, 0, stream[gpu] >>>( ... );

}

// Wait for the kernel to finish on each stream
for(int gpu=0; gpu<numGPUs; gpu++)

cudaStreamSynchronize(stream[gpu]);

// Now launch a copy of another kernel onto each GPU’s stream
for(int gpu=0; gpu<numGPUs; gpu++) {

cudaSetDevice(gpu);
secondKernel<<< griddim2, blockdim2, 0, stream[gpu] >>>( ... );

}

VERY BASIC MULTI-GPU LAUNCH

Create stream

on each GPU

Launch kernel

on each GPU

Synchronize stream 

on each GPU
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BETTER ASYNCHRONOUS MULTI-GPU LAUNCH

// Launch the first kernel and an event to mark its completion
for(int gpu=0; gpu<numGPUs; gpu++) {

cudaSetDevice(gpu);
firstKernel<<< griddim, blockdim, 0, stream[gpu] >>>( ... );
cudaEventRecord(event[gpu], stream[gpu]);

}

// Make GPU 0 sync with other GPUs to know when all are done
for(int gpu=1; gpu<numGPUs; gpu++)

cudaStreamWaitEvent(stream[0], event[gpu], 0);

// Then make other GPUs sync with GPU 0 for a full handshake
cudaEventRecord(event[0], stream[0]);
for(int gpu=1; gpu<numGPUs; gpu++)

cudaStreamWaitEvent(stream[gpu], event[0], 0);

// Now launch the next kernel with an event... and so on
for(int gpu=0; gpu<numGPUs; gpu++) {

cudaSetDevice(gpu);
secondKernel<<< griddim, blockdim, 0, stream[gpu] >>>( ... );
cudaEventRecord(event[gpu], stream[gpu]);

}

Launch kernel

on each GPU

GPU 0 waits for all 

kernels on all GPUs

Other GPUs wait 

for GPU 0

Synchronize all 

GPUs at end
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MUCH SIMPLER: COOPERATIVE LAUNCH

// Cooperative launch provides easy inter-grid sync.
// Kernels and per-GPU streams are in “launchParams”
cudaLaunchCooperativeKernelMultiDevice(launchParams, numGPUs);

// Now just synchronize to wait for the work to finish.
cudaStreamSynchronize(stream[0]);

Launch 

cooperative kernel

Program runs 

across all GPUs

Synchronize within 

GPU code

Exit when done

// Inside the kernel, instead of kernels make function calls
__global__ void masterKernel( ... ) {

firstKernelAsFunction( ... ); // All threads on all GPUs run
this_multi_grid().sync(); // Sync all threads on all GPUs

secondKernelAsFunction( ... )
this_multi_grid().sync();

...
}
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MULTI-GPU MEMORY MANAGEMENT

Unified Memory
Program spans all GPUs + CPUs

GPU
1

GPU
0

CPU

Program

GPU
0

GPU
1

P2P

CPU

Program

PCIe

Individual memory

Independent instances read
from neighbours explicitly



27

16 GPUs WITH 32GB MEMORY EACH

NVSWITCH PROVIDES

All-to-all high-bandwidth 
peer mapping between GPUs

Full inter-GPU memory 
interconnect (incl. Atomics)

GPU
0

GPU
1

GPU
2

GPU
3

GPU
4

GPU
5

GPU
6

GPU
7

16x 32GB Independent Memory Regions

GPU
8

GPU
9

GPU
10

GPU
11

GPU
12

GPU
13

GPU
14

GPU
15
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UNIFIED MEMORY PROVIDES

Single memory view
shared by all GPUs

User control of data locality

Automatic migration of data 
between GPUs

UNIFIED MEMORY + DGX-2

GPU
0

GPU
1

GPU
2

GPU
3

GPU
4

GPU
5

GPU
6

GPU
7

GPU
8

GPU
9

GPU
10

GPU
11

GPU
12

GPU
13

GPU
14

GPU
15

512 GB Unified Memory
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WE WANT LINEAR MEMORY ACCESS
But cudaMalloc creates a partitioned global address space

4 GPUs require 4 allocations
giving 4 regions of memory

Problem: Program must now
be aware of data & compute

layout across GPUs

GPU 0

GPU 1

GPU 2

GPU 3



30

UNIFIED MEMORY
CUDA’s Unified Memory Allows One Allocation To Span Multiple GPUs 

Normal pointer arithmetic
just works

GPU 0

GPU 1

GPU 2

GPU 3
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SETTING UP UNIFIED MEMORY

// Allocate data for cube of side “N”
float *data;
size_t size = N*N*N * sizeof(float);
cudaMallocManaged(&data, size);

// Make whole allocation visible to all GPUs
for(int gpu=0; gpu<numGPUs; gpu++) {

cudaMemAdvise(data, size, cudaMemAdviseSetAccessedBy, gpu);
}

// Now place chunks on each GPU in a striped layout
float *start = ptr;
for(int gpu=0; gpu<numGPUs; gpu++) {

cudaMemAdvise(start, size / numGpus, cudaMemAdviseSetPreferredLocation, gpu);
cudaMemPrefetchAsync(start, size / numGpus, gpu);
start += size / numGpus;

}

GPU 0

GPU 1

GPU 2

GPU 3
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WEAK SCALING
Problem Grows As Processor Count Grows – Constant Work Per GPU

1x 1x 1x 1x 1x 1x 1x
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IDEAL WEAK SCALING
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STRONG SCALING
Problem Stays Same As Processor Count Grows – Less Work Per GPU

1x ½x ¼x½x ¼x ¼x ¼x
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IDEAL STRONG SCALING
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EXAMPLE: MERGESORT

Break list into 2 equal parts, recursively

Until just 1 element per list

Merge pairs of lists

Keeping them sorted

Until just 1 list remains
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PARALLELIZING MERGESORT

Parallelize merging of lists

Compute where elements are stored in result 
independently

For all items in list A

Find lowest j such that A[i] < B[j]

Store A[i] at D[i+j]

Binary search step impacts O(parallelism)

Extra log(n) work to perform binary search

A B

D

i j

i+j
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OUTLINE OF PARALLEL MERGESORT

1. Read by thread-id

2. Compute location in 
write-buffer

3. Write

4. Sync

5. Flip read, write buffers

6. Repeat, doubling list 
lengths

The “merge” step

T T T T T T T T T T T T T T T T

T
im

e
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OUTLINE OF PARALLEL MERGESORT

1. Read by thread-id

2. Compute location in 
write-buffer

3. Write

4. Sync

5. Flip read, write buffers

6. Repeat, doubling list 
lengths

The “merge” step
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OUTLINE OF PARALLEL MERGESORT

1. Read by thread-id

2. Compute location in 
write-buffer

3. Write

4. Sync

5. Flip read, write buffers

6. Repeat, doubling list 
lengths

The “merge” step

T T T T T T T T T T T T T T T T
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OUTLINE OF PARALLEL MERGESORT

1. Read by thread-id

2. Compute location in 
write-buffer

3. Write

4. Sync

5. Flip read, write buffers

6. Repeat, doubling list 
lengths

The “merge” step

T T T T T T T T T T T T T T T T

T T T T T T T T T T T T T T T T
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ALIGNMENT OF THREADS & DATA

Memory pages are 2 MB

Pinned to GPUs in round-robin fashion

Run 80*1024 = 81920 threads on each GPU

One 8-byte read covers 655,360 bytes

16 GPUs cover 10,485,760 bytes

No optimized alignment between threads 
and memory

Possible to do better (and worse)

memory

threads
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ACHIEVED BANDWIDTH

16 GPUs read & write data at 6 TB/s

Adding more GPUs

Adds more accessible bandwidth

Adds memory capacity

Is 6 TB/s fast enough?

Speed of light is 2 TB/s for DGX-2

Caching gives a performance boost

Aggregate bandwidth for all loads and stores in mergesort
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STRONG SCALING
Sorting 8 billion values on 4-16 GPUs
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COMMUNICATING ALGORITHMS

3x3 Convolution
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COMMUNICATING ALGORITHMS

3x3 Convolution
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COMMUNICATION IS EVERYTHING
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COMMUNICATION IS EVERYTHING
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COMMUNICATION IS EVERYTHING
Halo Cells Keep Computation Local and Communication Asynchronous

Copy remote node boundary-cell
data into local halo cells
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STRONG SCALING: DIMINISHING RETURNS

Strong

scaling
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LEAVING COMMUNICATION TO NVLINK

1. Eliminate halo cells

Pretending That Memory Over NVLink Is Local Memory
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LEAVING COMMUNICATION TO NVLINK

1. Eliminate halo cells

2. Read directly from neighbor GPUs as if all 
memory were local

Pretending That Memory Over NVLink Is Local Memory



53

LEAVING COMMUNICATION TO NVLINK

1. Eliminate halo cells

2. Read directly from neighbor GPUs as if all 
memory were local

3. NVLink takes care of fast communication

How far can we push this?

Pretending That Memory Over NVLink Is Local Memory
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LEAVING COMMUNICATION TO NVLINK

As GPU count increases

▪ Halo-to-core ratio increases

▪ Off-chip accesses increase

▪ On-chip accesses decrease

▪ Proportions depend on algorithm

We reach NVLink bandwidth limit

Pretending That Memory Over NVLink Is Local Memory
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LEAVING COMMUNICATION TO NVLINK

As GPU count increases

▪ Halo-to-core ratio increases

▪ Off-chip accesses increase

▪ On-chip accesses decrease

▪ Proportions depend on algorithm

We reach NVLink bandwidth limit

BUT: Communication is many-to-many
so full aggregate bandwidth is available

Pretending That Memory Over NVLink Is Local Memory
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LOOKING FOR BANDWIDTH LIMITS

Stencil codes are memory bandwidth limited

Limited by HBM2 bandwidth
for on-chip reads

Limited by NVLink bandwidth
for off-chip reads

Hypothesis: Local-to-Remote Ratio Determines Performance

NVLink = 120 GB/sec

HBM2 = 880 GB/sec

Ratio = 18.4%
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NAÏVE 3D STENCIL PROGRAM
How Well Does The Simplest Possible Stencil Perform?

Slope = 25%
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BANDWIDTH & OVERHEAD LIMITS

Example: LULESH stencil CFD code

Expect to lose performance when off-
chip bandwidth exceeds NVLink 
bandwidth:

NVLink = 120 GB/sec

HBM2 = 880 GB/sec

Ratio = 18.4%
18.4%
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BONUS FOR NINJAS: ONE-SIDED COMMUNICATION

NVLink achieves higher bandwidth for
writes than for reads:

Read requests consume inbound 
bandwidth at remote node

Difference is ~9%
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WORK STEALING
Weak Scaling Mechanism: GPUs Compete To Process Data

Producers feed work
into FIFO queue

Any consumer can pop head of queue
whenever it needs more work
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DESIGN OF A FAST FIFO QUEUE
Basic Building Block For Many Dynamic Scheduling Applications

TailHead

Push Operation: Adds data to head of queue
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DESIGN OF A FAST FIFO QUEUE
Basic Building Block For Many Dynamic Scheduling Applications

Head

Advance head pointer to claim more space1

Push Operation: Adds data to head of queue

Tail
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DESIGN OF A FAST FIFO QUEUE
Basic Building Block For Many Dynamic Scheduling Applications

Advance head pointer to claim more space1

Push Operation: Adds data to head of queue

Write new data into space2

Head Tail



64

DESIGN OF A FAST FIFO QUEUE
Basic Building Block For Many Dynamic Scheduling Applications

Pop Operation: Extracts data from tail of queue

Head Tail
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DESIGN OF A FAST FIFO QUEUE
Basic Building Block For Many Dynamic Scheduling Applications

Tail

Advance tail pointer to next item1

Pop Operation: Extracts data from tail of queue

Head
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DESIGN OF A FAST FIFO QUEUE
Basic Building Block For Many Dynamic Scheduling Applications

Advance tail pointer to next item1

Pop Operation: Extracts data from tail of queue

Read data from new location2

Head Tail
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DESIGN OF A FAST FIFO QUEUE
Basic Building Block For Many Dynamic Scheduling Applications

Head

Advance head pointer to claim more space1

Push Operation: Adds data to head of queue

Write new data into space2

Tail

Advance tail pointer to next item1

Pop Operation: Extracts data from tail of queue

Read data from new location2
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DESIGN OF A FAST FIFO QUEUE
Problem: Concurrent Access Of Empty Queue

Tail

Head

Empty Queue: When Head == Tail
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DESIGN OF A FAST FIFO QUEUE
Problem: Concurrent Access Of Empty Queue

TailHead

Advance head pointer to claim more space1

Push Operation: Adds data to head of queue
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DESIGN OF A FAST FIFO QUEUE
Problem: Concurrent Access Of Empty Queue

Tail

Head

Advance head pointer to claim more space1

Push Operation: Adds data to head of queue

Advance tail pointer to next item1

Pop Operation: Extracts data from tail of queue
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DESIGN OF A FAST FIFO QUEUE
Problem: Concurrent Access Of Empty Queue

Tail

Head

Advance head pointer to claim more space1

Push Operation: Adds data to head of queue

Advance tail pointer to next item1

Pop Operation: Extracts data from tail of queue

Read data from new location2
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DESIGN OF A FAST FIFO QUEUE
Solution: Two Head (& Tail) Pointers For Thread-Safety

Tail

Inner
Head

Outer
Head
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DESIGN OF A FAST FIFO QUEUE
Solution: Two Head (& Tail) Pointers For Thread-Safety

Tail

Inner
Head

Advance outer head pointer1

Push Operation: Adds data to head of queue

Outer
Head
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DESIGN OF A FAST FIFO QUEUE
Solution: Two Head (& Tail) Pointers For Thread-Safety

Tail

Inner
Head

Advance outer head pointer1

Push Operation: Adds data to head of queue

Outer
Head

While “tail” == “inner head”, do nothing1

Pop Operation: Extracts data from tail of queue

1
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DESIGN OF A FAST FIFO QUEUE
Solution: Two Head (& Tail) Pointers For Thread-Safety

Tail

Inner
Head

Advance outer head pointer1

Push Operation: Adds data to head of queue

Outer
Head

While “tail” == “inner head”, do nothing1

Pop Operation: Extracts data from tail of queue

Write new data into space2
1
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DESIGN OF A FAST FIFO QUEUE
Solution: Two Head (& Tail) Pointers For Thread-Safety

Tail

Inner
Head

Advance outer head pointer1

Push Operation: Adds data to head of queue

Outer
Head

While “tail” == “inner head”, do nothing1

Pop Operation: Extracts data from tail of queue

Write new data into space2

Advance inner head pointer3

1
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DESIGN OF A FAST FIFO QUEUE
Solution: Two Head (& Tail) Pointers For Thread-Safety

Tail

Inner
Head

Advance outer head pointer1

Push Operation: Adds data to head of queue

Outer
Head

While “tail” == “inner head”, do nothing1

Pop Operation: Extracts data from tail of queue

Write new data into space2

Advance inner head pointer3

Advance tail pointer to next item2
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DESIGN OF A FAST FIFO QUEUE
Solution: Two Head (& Tail) Pointers For Thread-Safety

Inner
Head

Advance outer head pointer1

Push Operation: Adds data to head of queue

Outer
Head

While “tail” == “inner head”, do nothing1

Pop Operation: Extracts data from tail of queue

Write new data into space2

Advance inner head pointer3

Advance tail pointer to next item2

Read data from new location3
Tail
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DESIGN OF A FAST FIFO QUEUE
Thread-Safe Multi-Producer / Multi-Consumer Operation

Outer
Tail

Outer
Head

Inner
Head

Inner
Tail

Basic Rules

1. Use inner/outer head to avoid underflow

2. Use inner/outer tail to avoid overflow

3. Access all pointers atomically to allow 
multiple push/pop operations at once

4. NVLink carries atomics – this would be 
much, much harder over PCIe
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SCALE EASILY BY ADDING MORE CONSUMERS
Limit Is Memory Bandwidth Between Queue & Consumers
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SCALING OUT TO LOTS OF GPUS
It Works! Here’s an Incredibly Boring Graph To Prove It
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QUEUE CONTENTION LIMITATION

Why are more consumers worse?

▪ Large number of consumers 
accessing a single queue

▪ Saturates memory system at 
queue head

▪ Loss of throughput even 
though bandwidth is available

When Consumers Are Consuming Too Quickly



83

MEMORY CONTENTION LIMITATION

Mitigations

▪ Contention arises when many 
consumers are available for 
work

▪ Apply backoff delay between 
queue requests

▪ BUT: Unnecessary backoff 
increases latency 

▪ Full-queue management still 
adds overhead

Throttling requests restores throughput, but costs latency
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GUIDANCE AND GOTCHAS

You can mostly ignore NVLink – it’s just like memory thanks to NVSwitch

BUT

2TB/sec is combined bandwidth, for many-to-many access patterns

If everyone accesses a single GPU, they share 137GB/sec

NVSwitch Is The Secret Sauce
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GUIDANCE AND GOTCHAS

You can mostly ignore NVLink – it’s just like memory thanks to NVSwitch

BUT

2TB/sec is combined bandwidth, for many-to-many access patterns

If everyone accesses a single GPU, they share 137GB/sec

ALSO

Sometimes NVLink bandwidth is not the limiting factor

High contention at a single memory location hurt you

You have 2.6 million threads – contention can get very high

NVSwitch Is The Secret Sauce
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KEEPING PERFORMANCE HIGH

Spread your data across all GPUs

To avoid colliding memory requests at 
the “storage” GPU

Spread threads and data across all GPUs to use the most hardware

Spread your threads across all GPUs

To avoid all traffic congesting at the 
“computing” GPU

“All the wires, all the time”

GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6

GPU8 GPU9 GPU10 GPU11 GPU12 GPU13 GPU14

GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6

GPU8 GPU9 GPU10 GPU11 GPU12 GPU13 GPU14
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GUIDANCE: RELY ON DGX-2 HARDWARE

Unified virtual memory gives you a simple memory model for spanning multiple GPUs

At maximum performance

Remote memory traffic uses L1 cache

Volta has a 128 KB cache for each SM

Not coherent, use fences to ensure consistency after writes

Explicit management of local & remote memory accesses may improve performance

How much tuning is needed?
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CONCLUSIONS

The fabric makes DGX-2 more than just 16 GPUs – it’s not just a mining rig

DGX-2 is a superb strong scaling machine in a time-to-solution sense

Overhead of Multi-GPU programming is low

Naïve code behaves well – great effort/reward ratio

Linearization of addresses through UVM provides a familiar model for free


