
Stephen Jones, GTC 2019

CUDA NEW FEATURES AND BEYOND



2

A QUICK LOOK BACK
This Time Last Year...

concat

3x3

convolution

5x5

convolution

max

pool

ReLU

ReLU

ReLUinput

1x1

convolution

Asynchronous Task GraphsDGX-2 + Unified Memory

S9241 – All You Need To Know About Programming NVIDIA’s DGX-2, Wednesday March 20, 1-2PM



3
HPC Apps: AMBER, Chroma, GROMACS, GTC, LAMMPS, MILC, NAMD, QE, RTM, SPECFEM3D, VASP

0x

4x

8x

12x

16x

20x

24x

1 2 3 4 5

HPC Applications Speedup

CUDA 8
CUBLAS 8
CUFFT 8

CUDA 10
CUBLAS 10
CUFFT 10

2x Broadwell vs 4xP100 2x Broadwell vs 4xV100

2X
on same 
hardware

ACCELERATED COMPUTING
IS FULL-STACK OPTIMIZATION

2X More Performance With Software Optimizations Alone



4

APPS &
FRAMEWORKS

NVIDIA SDK
& LIBRARIES

TESLA UNIVERSAL ACCELERATION PLATFORM
Single Platform To Drive Utilization and Productivity

MACHINE LEARNING | RAPIDS

cuMLcuDF cuGRAPH

CUDA

DEEP LEARNING

cuDNN cuBLAS CUTLASS NCCL TensorRT

SUPERCOMPUTING

CuBLAS OpenACCCuFFT

+550 
Applications

Amber

NAMD

CUSTOMER 
USECASES

CONSUMER INTERNET

Speech Translate Recommender

SUPERCOMPUTING

Molecular 
Simulations

Weather
Forecasting

Seismic
Mapping

INDUSTRIAL APPLICATIONS

ManufacturingHealthcare Finance

TESLA GPUs 
& SYSTEMS

SYSTEM OEM CLOUDTESLA GPU NVIDIA HGXNVIDIA DGX FAMILYVIRTUAL GPU

https://aws.amazon.com/canada/


5

TECHNOLOGY DEVELOPMENT TOOLKITPLATFORM



6

NEW TURING GPU
GREATEST LEAP SINCE 2006 CUDA GPU



7

320 Turing Tensor Cores

2,560 CUDA Cores

65 FP16 TFLOPS  |  130 INT8 TOPS  |  260 INT4 TOPS

16GB |  320GB/s

70 W

Deep Learning Training & Inference

HPC Workloads

Video Transcode

Remote Graphics

TESLA T4
WORLD’S MOST ADVANCED SCALE-OUT GPU



8

TURING SM

TU102

INT32 64

FP32 64

Tensor Cores 8

RT Core 1

Register File 256 KB

L1 and shmem 96 KB

Max threads 1024

Compute Capability 75*

*Volta (cc70) code runs on Turing without JIT or 
recompile!



9

RT CORE POTENTIAL FOR ACCELERATION OF 
NUMERICAL ALGORITHMS

Geometry-Heavy Compute Applications Unstructured Algorithms

Neutron Transport
Credit: CERT, Texas A&M

RF Wave Propagation
Credit: COMSOL

Seismic Shear Wave Tracing
Credit: SERC, Carleton College Radiaton Transport

Credit: Greg Stewart / SLAC

                                   

 

   

   

   

   

   

   

   

   

   

 
      

 

   

   

   

   

   

   

   

   

   

 
      

R-Trees, Decision Trees
Credit: Wikimedia

Nearest Neighbor Search
Credit: Fortmann-Roe



10

LOCATING NEIGHBORS WITHIN A RANGE

For any arbitrary set of points

For a point P, find neighbors within a shape enclosed in a 
Bounding Box

Ray-based solution

1. Attach a box of width R to each point

2. Shoot one ray from P in arbitrary direction, t_max = 2*R

3. Neighbors boxes will have either entry/exit intersection but 
never both.

4. Refine result points to any shape within the box in SM.

Intersect Rays With Bounding Box Around Points Of Interest

P



11

RAY TRACED NEAREST NEIGHBOUR SEARCH
Using RT-Cores Through OptiX RTX



12

NEW TURING TENSOR CORE

MULTI-PRECISION FOR AI INFERENCE & SCALE-OUT TRAINING

65 TFLOPS FP16  |  130 TeraOPS INT8  |  260 TeraOPS INT4 



13

TURING TENSOR CORE

8-bit integer WMMA operations

▪ Turing (sm_75) only

▪ Signed & unsigned 8-bit input

▪ 32-bit integer accumulator

▪ Match input/output dimensions
with half

▪ 2048 ops per cycle, per SM

New 8-Bit & Sub-Byte Warp Matrix Functions In CUDA

= + 

A
32x16

B
16x8

C
32x8

D
32x8

WMMA 32x8x16

= + 

WMMA 8x32x16

A
8x16

B
16x32

C
8x32

D
8x32

= + 
A

16x16
B

16x16
C

16x16
D

16x16

WMMA 16x16x16



14

EXPERIMENTAL WARP MATRIX FUNCTIONS

Experimental Sub-Byte Operations

4-bit signed & unsigned input

1-bit input with custom matrix operations

32-bit accumulator output

Access via special namespace 
nvcuda::wmma::experimental

Turing Enables Experimental Sub-Byte Tensor Core Operations

namespace experimental { 

namespace precision { 

struct u4; // 4-bit unsigned 

struct s4; // 4-bit signed 

struct b1; // 1-bit 

} 

enum bmmaBitOp { bmmaBitOpXOR = 1 }; 

enum bmmaAccumulateOp { bmmaAccumulateOpPOPC = 1 }; 

}

Enables researchers to experiment with ultra low precision



15

BINARY TENSOR CORES

Concept

▪ Train neural networks on lower-precision data: faster compute, lower memory size

▪ Reduce data to positive / negative sign value – can fit in single bit (1 = +ve, 0 = -ve)

▪ 1-bit weight & activation calculations based only on sign of data

Example: Binarized Neural Networks

1-bit

Ref: Binarized Neural Networks: Training Neural Networks with Weights and Activations Constrained to +1 or −1, M. Coubariaux, I. Hubara, D. Soudry, R. El-Yaniv, Y Bengio, 2016

https://arxiv.org/pdf/1602.02830.pdf

https://arxiv.org/pdf/1602.02830.pdf


16

BINARY TENSOR CORE OPERATION

Bitwise

XOR +
Accumulated

32-bit Integer

Count

Previous

Accumulation

Other Row/Column Results

1-Bit Input Signal
Bitwise

XOR Operation

128-bit population 
count added to 
accumulator

32-bit Integer Output
Per Point



17

NEW TURING WARP MATRIX FUNCTIONS

Input Precision Output Supported Sizes Max Ops/Clock/SM

N
a
ti

v
e
 T

y
p
e
s

half * half or float
16 x 16 x 16

32 x 8 x 16

8 x 32 x 16

1024

char
integer (int32) 2048

unsigned char

E
x
p
e
ri

m
e
n
ta

l

precision::u4 (4-bit unsigned)

integer (int32)
8 x 8 x 32 4096

precision::s4 (4-bit signed)

precision::b1 (1-bit) 8 x 8 x 128 16384

* Also available on Volta sm_70. Note: WMMA requires recompilation for Turing sm_75 for peak performance



18

CUTLASS 1.3
GEMM kernels targeting Volta Tensor Cores natively with mma.sync

New in CUDA 10.1 & CUTLASS 1.3: mma.sync

PTX assembly instruction enables maximum efficiency of Volta Tensor Cores operation



19

INDEPENDENT THREAD SCHEDULING
Communicating Algorithms

Pascal: Lock-Free Algorithms Volta/Turing: Starvation Free Algorithms

Threads cannot wait for messages Threads may wait for messages



20

INDEPENDENT THREAD SCHEDULING

Ref: High Radix Concurrent C++, Olivier Giroux, CppCon 2018 - https://www.youtube.com/watch?v=75LcDvlEIYw

See Also: https://devblogs.nvidia.com/cuda-turing-new-gpu-compute-possibilities/

Enable Fast Mutexes For Concurrent Data Structures,
Replace Complex Lock-Free Algorithms

Multi-threading (CPU)

Acceleration (RTX 2070)

https://www.youtube.com/watch?v=75LcDvlEIYw
https://devblogs.nvidia.com/cuda-turing-new-gpu-compute-possibilities/


21

WARP IMPLEMENTATIONS

32 thread warp with independent scheduling

Volta/Turing

32 thread warp

Program 

Counter (PC) 

and Stack (S)

Pre-Volta

P
C
,S

P
C
,S

P
C
,S

P
C
,S

P
C
,S

P
C
,S

P
C
,S

P
C
,S

P
C
,S

P
C
,S

P
C
,S

P
C
,S

P
C
,S

P
C
,S

P
C
,S

P
C
,S

P
C
,S

P
C
,S

P
C
,S

P
C
,S

P
C
,S

P
C
,S

P
C
,S

P
C
,S

P
C
,S

P
C
,S

P
C
,S

P
C
,S

P
C
,S

P
C
,S

P
C
,S

P
C
,S

Convergence 

Optimizer



22

SYNCHRONIZING WARP FUNCTIONS

PC,

S

Pre-Volta

P
C

,S
P
C

,S

P
C

,S
P
C

,S

P
C

,S
P
C

,S

P
C

,S
P
C

,S

P
C

,S
P
C

,S
P
C

,S
P
C

,S
P
C

,S
P
C

,S
P
C

,S

P
C

,S

P
C

,S
P
C

,S
P
C

,S
P
C

,S
P
C

,S
P
C

,S
P
C

,S
P
C

,S

P
C

,S
P
C

,S

P
C

,S
P
C

,S

P
C

,S
P
C

,S

P
C

,S
P
C

,S

Volta & Turing

my_value = __shfl(thread, their_value)



23

SYNCHRONIZING WARP FUNCTIONS

PC,

S

Pre-Volta

P
C

,S
P
C

,S

P
C

,S
P
C

,S

P
C

,S
P
C

,S

P
C

,S
P
C

,S

P
C

,S
P
C

,S
P
C

,S
P
C

,S
P
C

,S
P
C

,S
P
C

,S

P
C

,S

P
C

,S
P
C

,S
P
C

,S
P
C

,S
P
C

,S
P
C

,S
P
C

,S
P
C

,S

P
C

,S
P
C

,S

P
C

,S
P
C

,S

P
C

,S
P
C

,S

P
C

,S
P
C

,S

Volta & Turing

my_value = __shfl(thread, their_value)



24

SYNCHRONIZING WARP FUNCTIONS

PC,

S

Pre-Volta

P
C

,S
P
C

,S

P
C

,S
P
C

,S

P
C

,S
P
C

,S

P
C

,S
P
C

,S

P
C

,S
P
C

,S
P
C

,S
P
C

,S
P
C

,S
P
C

,S
P
C

,S

P
C

,S

P
C

,S
P
C

,S
P
C

,S
P
C

,S
P
C

,S
P
C

,S
P
C

,S
P
C

,S

P
C

,S
P
C

,S

P
C

,S
P
C

,S

P
C

,S
P
C

,S

P
C

,S
P
C

,S

Volta & Turing

my_value = __shfl(thread, their_value)



25

SYNCHRONIZING WARP FUNCTIONS

PC,

S

Pre-Volta

P
C

,S
P
C

,S

P
C

,S
P
C

,S

P
C

,S
P
C

,S

P
C

,S
P
C

,S

P
C

,S
P
C

,S
P
C

,S
P
C

,S
P
C

,S
P
C

,S
P
C

,S

P
C

,S

P
C

,S
P
C

,S
P
C

,S
P
C

,S
P
C

,S
P
C

,S
P
C

,S
P
C

,S

P
C

,S
P
C

,S

P
C

,S
P
C

,S

P
C

,S
P
C

,S

P
C

,S
P
C

,S

Volta & Turing

my_value = __shfl_sync(thread_mask, thread, their_value)



26

SYNCHRONIZING WARP FUNCTIONS

__shfl_sync() and all other *_sync collective operations work on all GPU architectures

PC,

S

Pre-Volta

P
C

,S
P
C

,S

P
C

,S
P
C

,S

P
C

,S
P
C

,S

P
C

,S
P
C

,S

P
C

,S
P
C

,S
P
C

,S
P
C

,S
P
C

,S
P
C

,S
P
C

,S

P
C

,S

P
C

,S
P
C

,S
P
C

,S
P
C

,S
P
C

,S
P
C

,S
P
C

,S
P
C

,S

P
C

,S
P
C

,S

P
C

,S
P
C

,S

P
C

,S
P
C

,S

P
C

,S
P
C

,S

Volta & Turing

my_value = __shfl_sync(FULL_WARP, thread, their_value)



27

REMOVAL OF NON-SYNC WARP FUNCTIONS

Programs using old functions:

▪ Will no longer compile for sm_70 (Volta),
or sm_75 (Turing)

▪ Will still compile as older compute_60 (Pascal) 
architecture, but without support for any 
Volta or Turing features

To compile as compute_60, add the following 
arguments to your compile line:

-arch=compute_60 -code=sm_70

Functions Deprecated In CUDA 9.0: Now Removed In CUDA 10.1

Removed

Function

Replacement 

Function

__ballot() __ballot_sync()

__any() __any_sync()

__all() __all_sync()

__shfl() __shfl_sync()

__shfl_up() __shfl_up_sync()

__shfl_down() __shfl_down_sync()

__shfl_xor() __shfl_xor_sync()



28

CUDA 10.1 FOR TEGRA SYSTEMS

Platform Host OS Version Target OS Version
Compiler 

Support

L4T
16.04 LTS

18.04 LTS

18.04 LTS GCC 7.3

Android 16.04 LTS P (Pie) Clang 6.0

Auto 16.04 LTS

18.04 LTS GCC 7.3

QNX SDP 7.0.2 GCC 5.4

Yocto 2.5 GCC 7.3



29

DRIVE DEVELOPER WORKFLOW
Iterative Workflow

Developer
Lab PC 

with dGPU
DRIVE™ Xavier

Vehicle 
Integration

Iterative Testing

Fast iteration loop with PC, same CUDA code used across PC, DRIVE Dev Platform, and vehicle



30

CUDA 10.1 TEGRA SYSTEMS ENHANCEMENTS

NVIDIA-Direct™ RDMA

Third-party PCIe devices can communicate directly 
with the integrated GPU

User-Mode Submission on Linux-4-Tegra

Faster and more predictable work submission latency

Rich Error Reporting

Detailed error reporting from GPU execution faults 
(MMU, alignment, etc)



31

CUDA 10.1 PLATFORM SUPPORT
New OS and Host Compilers

PLATFORM OS VERSION COMPILERS

Linux

18.04.2 LTS

16.04.5 LTS

14.04.5 LTS

GCC 8.x

PGI 19.x

Clang 7.0.x

ICC 19

XLC 16.1.x (POWER)

7.6

7.6 POWER LE

SLES 15

29

Leap 15

Windows Windows Server

2019

2016

2012 R2

Microsoft 

Visual Studio 2017 (15.x)

Microsoft Visual Studio 2019 

(Previews)

Mac macOS 10.13.6 Xcode 10.1



32

TESLA DRIVERS AND COMPATIBILITY

Long Term Service Branch (LTSB)

One per GPU architecture (i.e. major CUDA 
release such as CUDA 10.0)

Supported for up to 3 years

R418 is the first LTSB

CUDA compatibility will be supported for the 
lifetime of the LTSB

Run New Versions Of CUDA Without Upgrading Kernel Drivers

Driver Branch
CUDA 10 

Compatible

CUDA 10.1 

Compatible

CUDA 9.0 Yes Yes

CUDA 9.1 No No

CUDA 9.2 No
Coming 

soon

CUDA 10.0 - Yes



33

CUDA CONTAINERS ON NVIDIA GPU CLOUD

CUDA containers available from NGC 
Registry at nvcr.io/nvidia/cuda

Three different flavors:

Base

Contains the minimum components required 
to run CUDA applications

Runtime

Contains base + CUDA libraries (e.g. cuBLAS, 
cuFFT)

Devel

Contains runtime + CUDA command line 
developer tools. Some devel tags also 
include cuDNN



34

INCREASING CUDA CAPABILITIES ON WINDOWS
Additions Since CUDA 9

GPU
0

GPU
1

Windows Peer-to-Peer

Compute Preemption (CILP) Support

CUDA Interop with Vulkan and DX12

S9957 – Using CUDA on Windows,
Wednesday 3-4pm



35

NEW GRAPHICS INTEROP

Buffer Texture

Memory Allocation

GL_EXT_external_objects

Import Allocation

Direct Native Resource Mapping + CUDA-OpenGL interop via Vulkan

Synchronization Object

GL_EXT_external_objects

Import Semaphore

Memory Allocation

device memory cuArray

Memory Allocation

VK_KHR_external_memory
ID3D12Heap, ID3D12Resource

Export Allocation

Buffer Image

Import Allocation

Synchronization Object

Synchronization Object

cudaExternalSemaphore_t
Export Semaphore

Import Semaphore

cudaExternalMemory_t

VK_KHR_external_semaphore
ID3D12Fence

Coming Soon



36

ASYNCHRONOUS TASK GRAPHS

Sequence of operations, connected by dependencies

Operations are one of:

Kernel Launch CUDA kernel running on GPU

CPU Function Call Callback function on CPU

Memcopy/Memset GPU data management

Sub-Graph Graphs are hierarchical

A Graph Node Is A CUDA Operation

A

B X

C D

E Y

End



37

THREE-STAGE EXECUTION MODEL

Define

A

B X

C D

E Y

End

Single Graph “Template”

Instantiate

Multiple “Executable Graphs”

A

B X

C D

E Y

End

A

B X

C D

E Y

End

A

B X

C D

E Y

End

Execute

Executable Graphs 
Running in CUDA Streams

s1 s2 s3

Created in host code
or built up from libraries

Snapshot of template
Sets up & initializes GPU 

execution structures
(create once, run many times)

Concurrency in graph
is not limited by stream



38

NEW EXECUTION MECHANISM
Graphs Can Be Generated Once Then Launched Repeatedly

for(int i=0; i<1000; i++) {
launch_graph( G );

}

A

B X

C D

E Y

End



39

WORKFLOW EXECUTION OPTIMIZATIONS
Reducing System Overheads Around Short-Running Kernels

Launch
Grid 

Initialization
2µs Kernel

Grid 

Initialization
2µs Kernel

Grid 

Initialization
2µs Kernel 53% Overhead

Breakdown of time spent during execution



40

WORKFLOW EXECUTION OPTIMIZATIONS
Reducing System Overheads Around Short-Running Kernels

53% Overhead

Breakdown of time spent during execution

CPU-side launch overhead reduction

Launch
Grid 

Initialization
2µs Kernel

Grid 

Initialization
2µs Kernel

Grid 

Initialization
2µs Kernel

46% Overhead



41

WORKFLOW EXECUTION OPTIMIZATIONS
Reducing System Overheads Around Short-Running Kernels

53% Overhead

46% Overhead

37% Overhead

Breakdown of time spent during execution

CPU-side launch overhead reduction

Device-side execution overhead reduction

Launch
Grid 

Initialization
2µs Kernel

Grid 

Initialization
2µs Kernel

Grid 

Initialization
2µs Kernel

26% shorter total time
with three 2µs kernels



42

FREE UP CPU RESOURCES
Release CPU Time For Lower Power, or Running Other Work

time

Launch 

A

Launch 

B

Launch 

C

Launch 

D

Launch 

E

A B C D E

CPU Idle

Build 

Graph

Launch 

Graph
CPU Idle

A B C D E

Stream
Launch

Graph
Launch



43

LAUNCH & EXECUTION SPEEDUP
Note: Reduction in System Overheads – Kernel Runtime is Not Affected

Launch of an already-created graph is 7-8x faster 
than launching the same kernels into a stream

GPU overhead when running kernels is 1.4x lower 
than equivalent work in a stream



44

SMALL-GRAPH PERFORMANCE

Fixed CPU/GPU transaction cost

▪ Is paid once for graph launch

▪ Is paid every kernel for streams

▪ Becomes insignificant when graph 
exceeds ~15 nodes

Speedup Decreases For Graphs Of <15 Nodes



45

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6

Th
ro

u
gh

p
u

t 
In

cr
ea

se
 O

ve
r 

St
re

am
-L

au
n

ch

Inference Execution Throughput Using Graphs
(TU104, Mobile Linux, Streams Throughput = 1)

Series1 Series2

MOBILE INFERENCE
Embedded System Inference Benchmarks (Turing TU104 GPU)

Embedded system launch times improve up to 11x Embedded system execution times improve up to 3x



46

CREATING AND USING GRAPHS
All CUDA Stream Work Already Forms A Graph

Graph of Dependencies

End

A

B X

C D

E Y

Any CUDA stream can be 
mapped to a graph

A

B

C

Wait

E

Wait

D

Wait

X

Y

Wait

CUDA Work in Streams



47

CAPTURE STREAM WORK INTO A GRAPH
Create A Graph With Two Lines Of Code

// Start by initating stream capture

cudaStreamBeginCapture(&stream, cudaStreamCaptureModeGlobal);

// Captures my kernel launches, recurse into library calls

X<<< ..., stream >>>();

libraryCall(stream); // Launches A, B, C, D

Z<<< ..., stream >>>();

// Now convert the stream to a graph

cudaStreamEndCapture(stream, &graph);

X

Z

A

D

B C

X

Z

D

B C

A

Resultant
graph

Launches by 
library also 
build graph

Library call



48

CREATE GRAPHS DIRECTLY
Map Graph-Based Workflows Directly Into CUDA

D

B C

A

// Define graph of work + dependencies

cudaGraphCreate(&graph);

cudaGraphAddNode(graph, kernel_a, {}, ...);

cudaGraphAddNode(graph, kernel_b, { kernel_a }, ...);

cudaGraphAddNode(graph, kernel_c, { kernel_a }, ...);

cudaGraphAddNode(graph, kernel_d, { kernel_b, kernel_c }, ...);

// Instantiate graph and apply optimizations

cudaGraphInstantiate(&instance, graph);

// Launch executable graph 1000 times

for(int i=0; i<1000; i++)

cudaGraphLaunch(instance, stream);

Graph from
framework



49

FOR IN-DEPTH INFORMATION

S9956 – Best Practices When Benchmarkinig CUDA Applications, Wednesday 2-3pm

S9957 – Using CUDA on Windows, Wednesday 3-4pm

S9241 – All You Need To Know About Programming NVIDIA’s DGX-2, Wednesday 1-2pm

S9329 – Synchronization Is Bad, But If You Must..., Thursday 9-10am

S9681 – Visualize Your Large Datasets, Wednesday 9-10am

S9768 – New Features in OptiX 6.0, Wednesday 1-2pm

See These Sessions This Week



50

NVCC ENHANCEMENTS

Warp Matrix Functions (new C++ namespace)

Extensible Whole Program (-ewp) mode compilation 
support

Efficient compilation with use of CUDA run-time
device library & with Cooperative Groups
grid/multi-grid synchronization

New address predicate functions
__isShared, __isConstant, __isLocal

Ongoing C++17 language support

Improving Efficiency

Efficient Code Generation for 
Chip Architecture



51

ENHANCED HALF-PRECISION FUNCTIONALITY

Half-precision atomic ADD 
(Volta+) (round-to-nearest mode)

Host-side conversion operators 
between float and half types

Host-side construction and 
assignment operators for 

half and half2 types

Includes Limited half Type Support For CPU Code

half atomicAdd(half *address, half val);

half2 atomicAdd(half2 *address, half2 val);

half pi = 3.1415f;

half also_pi = pi; // Assign half to half

half2 vector_pi(pi, also_pi); // Construct half2 from half

half pi = 3.1415f; // Convert float to half

float fPI = (float)hPI; // Convert half to float

NOTE: Half-precision arithmetic operations remain only available in device code



52

DIRECTIVE-BASED HPC PROGRAMMING
Who’s Using OpenACC?

160,000+ DOWNLOADS725 TRAINED EXPERTS 

5 OF 13 CAAR CODES3 OF TOP 5 HPC APPS ACCELERATED APPS

SLACK MEMBERS

102

326

846

1 2 3

53

100
116

194

1 2 3 4



53

CUDA Fortran Tensor Core Support

OpenACC printf()

OpenACC Deep Copy

OpenACC Auto-compare

OpenACC C++ Lambda

CUDA 10.x support

Full C++17 language

OpenMP 4.5 for CPUs

PGI in the Cloud 

Fortran, C and C++

for the Tesla Platform

pgicompilers.com/whats-new

http://www.pgicompilers.com/products/new-features.htm


54

THE FUTURE OF GPU PROGRAMMING 
Standard Languages | Directives | CUDA

Maximize GPU Performance 

with CUDA C++/Fortran

GPU Accelerated

C++17 and Fortran 2018

Incremental Performance 
Optimization with OpenACC

do concurrent (i = 1:n)
y(i) = y(i) + a*x(i)

enddo

#pragma acc data copy(x,y) {

...

std::for_each_n(POL, idx(0), n,
[=](Index_t i){

y[i] += a*x[i];
});

...

}

__global__ 

void saxpy(int n, float a, 

float *x, float *y) { 

int i = blockIdx.x*blockDim.x + 

threadIdx.x; 

if (i < n) y[i] += a*x[i]; 

} 

int main(void) { 

...

cudaMemcpy(d_x, x, ...);

cudaMemcpy(d_y, y, ...);

saxpy<<<(N+255)/256,256>>>(...); 

cudaMemcpy(y, d_y, ...);

std::for_each_n(POL, idx(0), n,
[=](Index_t i){

y[i] += a*x[i];
});



55

PGI SESSIONS AT GTC

S9279 - OpenACC Programming Model — User Stories, Vendor Reaction, Relevance, and Roadmap

with Duncan Poole and Michael Wolfe, Tuesday at 4:00 in room 210F

S9770 - C++17 Parallel Algorithms for NVIDIA GPUs with PGI C++

by David Olsen, Wednesday at 10:00 in room 210G

S9289 - PGI Compilers, The NVIDIA HPC SDK: Updates for 2019

by Michael Wolfe, Thursday at 10:00 in room 211A



56

SANITIZER: CODE ANALYSIS

Tracks API calls and memory accesses during 
CUDA kernel execution

Support for Windows, Linux, Mac

Samples available on GitHub

https://github.com/NVIDIA/compute-
sanitizer-samples

New APIs in CUDA 10.1

S9751 - Accelerate Your CUDA Development with Latest Debugging and Code Analysis Developer Tools

https://github.com/NVIDIA/compute-sanitizer-samples


57

NSIGHT SYSTEMS

Observe Application Behavior: CPU threads, GPU 
traces, Memory Bandwidth and more

Locate Optimization Opportunities: CUDA & 
OpenGL APIs, Unified Memory transfers, User 
Annotations using NVTX

Ready for Big Data: Fast GUI capable of visualizing 
in excess of 10 million events on laptops, Container 
support, Minimum user privileges

System-Wide Performance Analysis

https://developer.nvidia.com/nsight-systems

https://developer.nvidia.com/nsight-systems


58

NVIDIA NSIGHT COMPUTE

Interactive CUDA API debugging and kernel profiling

Fast Data Collection

Improved Workflow and Fully Customizable 
(Baselining, Programmable UI/Rules)

Command Line, Standalone, IDE Integration

Platform Support

OS: Linux (x86, ARM), Windows 

GPUs: Pascal, Volta, Turing

Next Generation Kernel Profiler Kernel 
Profile 

Comparisons 
with 

Baseline

Metric Data

Source 
Correlation



59

TOOLS SESSIONS AT GTC

Talks

S9503 - Using Nsight Tools to Optimize the NAMD Molecular Dynamics Simulation Program

S9345 - CUDA Kernel Profiling using NVIDIA Nsight Compute

S9751 - Accelerate Your CUDA Development with Latest Debugging and Code Analysis Developer Tools

S9661 - Nsight Graphics - DXR/Vulkan Profiling/Vulkan Raytracing

Connect with the Experts

CE9123 - Connect with Experts: CUDA & Graphics Developer Tools

CE9137 - Connect with Jetson Embedded Platform Experts

Devtools pod at NVIDIA booth on exhibition show-floor



60

CUDA MATH LIBRARIES
Major Initiatives

Functional Safety
Drive AV SW Stack

Extended Features
New libraries & APIs

Performance
Tuning + new 

algorithms

Multi-GPU
Strong/weak scaling

Single GPU
TC & low/mixed 

precision

= A BC *

cuTENSOR



61

cuTENSOR
A New High-Performance CUDA Library for Tensor Primitives

Tensor Contractions 

Elementwise operations

Pre-release version available 

= A BD +          + C

= A BD *          + C



62

CUTENSOR

Tensor transpositions:
• NCHW -> NHWC (FP16)
• Found in various DL networks

• AlexNet
• GoogleNet
• …

= α          + βA BC

HPTT (https://github.com/springer13/hptt)

= A BC *

TBLIS (https://github.com/devinamatthews/tblis)

Random tensor contractions: 3D to 6D 
tensors, increasing arithmetic Intensity

Tensor transpositions: NCHW -> NHWC

Increasing Arithmetic Intensity



63

cuBLASLt

New header and binary with lightweight context

Targets power GEMM users

Not a replacement for cuBLAS

Increased flexibility

Data layout

Input and Compute types

Algorithm choice and heuristics

Workspace enables new algorithms

Layout flexibility enables hardware optimization

New MATMUL Library with Full Algorithm Control



64

cuBLASLt

Average 2.8X, up to 3.9X Speedup with cuBLASLt Turing IMMA Support



65

cuFFTDx
New Library: cuFFT Device EXtention

Key Features

Device callable library

Retain and reuse on-chip data

Inline FFTs in user kernel

Combine FFT operations

Motivation

Performance 

FFTs are memory bound

CPU issued commands      PCIe latency

Size 

Entire library required for single size use

Customization

cuFFT launches own kernels

No opportunity to inline
When

Initial release mid 2019



66

cuSOLVER
Tensor Core Accelerated Dense Linear Solver Coming Soon

Results obtained on GV100 using MAGMA



67

nvJPEG
New Features

Batched Decoding

Baseline Encoding

Device and pinned memory control

Linux-Power ppc64Ie platform support

JPEG stream parsing

Hybrid decode API

ROI decoding
GPU Results obtained on GV100

CPU Results obtained with TJPEG on 2-socket Intel Xeon Gold 6140 



68

CUDA LIBRARIES SESSIONS AT GTC

S9593 - cuTENSOR: High-performance Tensor Operations in CUDA, Wednesday March 20, 1-2PM

S9226 - Fast Singular Value Decomposition on GPUs, Wednesday March 20, 2-3PM

CWE 9114 - Connect with the Experts: CUDA Libraries, Wednesday March 20, 5-6PM

S9257 - New FFT Library with Flexible C++ API, Thursday March 21, 3-4PM

Come learn more about CUDA Libraries



69

APPS &
FRAMEWORKS

NVIDIA SDK
& LIBRARIES

TESLA UNIVERSAL ACCELERATION PLATFORM
Single Platform To Drive Utilization and Productivity

MACHINE LEARNING | RAPIDS

cuMLcuDF cuGRAPH

CUDA

DEEP LEARNING

cuDNN cuBLAS CUTLASS NCCL TensorRT

SUPERCOMPUTING

CuBLAS OpenACCCuFFT

+550 
Applications

Amber

NAMD

CUSTOMER 
USECASES

CONSUMER INTERNET

Speech Translate Recommender

SUPERCOMPUTING

Molecular 
Simulations

Weather
Forecasting

Seismic
Mapping

INDUSTRIAL APPLICATIONS

ManufacturingHealthcare Finance

TESLA GPUs 
& SYSTEMS

SYSTEM OEM CLOUDTESLA GPU NVIDIA HGXNVIDIA DGX FAMILYVIRTUAL GPU

https://aws.amazon.com/canada/


70

ACCELERATING 
DISCOVERIES
WITH AI
New drugs typically take 12-14 years and $2.6 
billion to bring to market. BenevolentAI is using 
GPU deep learning to bring new therapies to 
market quickly and more affordably. They’ve 
automated the process of identifying patterns 
within large amounts of research data, enabling 
scientists to form hypotheses and draw conclusions 
quicker than any human researcher could. And 
using the NVIDIA DGX-1 AI supercomputer, they 
identified two potential drug targets for 
Alzheimer’s in less than one month.



71

AI-BUILD AI TO
FABRICATE
SUBATOMIC MATERIALS
To expand the benefits of deep learning for science, 

researchers need new tools to build high-performing 

neural networks that don’t require specialized knowledge. 

Scientists at Oak Ridge National

Laboratory used the MENNDL algorithm on 

Summit to develop a neural network that

analyzes electron microscopy data at the

atomic level. The team achieved a

speed of 152.5 petaflops across

3,000 nodes.



72

With the Earth's population at 7 billion and growing, 
understanding population distribution is essential to 
meeting societal needs for infrastructure, resources 
and vital services. Using GPUs and deep learning, Oak 
Ridge National Laboratory can quickly process high-
resolution satellite imagery to map human settlements 
and changing urban dynamics. With the ability to 
process a major city in minutes, ORNL can provide 
emergency response teams critical information that 
used to take days to create.

A 21st CENTURY 
PLANNING TOOL 
BUILT ON AI



73

In 2015 gravitational waves (GW) were observed for 

the first time by astronomers at the Laser 

Interferometer Gravitational-wave Observatory 

(LIGO) originating from a pair of merging Black 

Holes 1.3B light years away. “Seeing” gravity opens 

the door to new discoveries and a daunting new 

challenge: observing GW in parallel with 

electromagnetic waves, and analyzing the 

combined data in real-time.

Scientists at NCSA are using GPU-powered deep 

learning to make this computationally intensive 

approach possible. Using a deep Convolutional 

Neural Network (CNN), NCSA trained its system to 

process gravitational wave data more than 5000 

times faster than its previous machine learning 

methods — making real time analysis possible and 

putting us one step closer to understanding the 

universe’s oldest secrets.

“SEEING” GRAVITY 
IN REAL-TIME

Physics Letters B - Deep learning for real-time 
gravitational wave detection and parameter 
estimation: Results with advanced LIGO data
Daniel George, E.A. Huerta

https://www.sciencedirect.com/science/article/pii/S0370269317310390?via%3Dihub

