AN \\]
=\,
Vi

9

Z
o
T
<
—V_.
=
T
a
O
9,
<
o
-
T
~~
<
T
—
O
>

4
(28]
o
()
wn
o
o
N
O
—
O
M’
-
>
=z
n,
o
c
4
o
=
%)
©
e
o}
L
=
O

Quick review of basic optimization guidelines

New features in Turing

AGEN DA . Using FP16 (case study)

. Profiling codes on Turing

2 NVIDIA

BACKGROUND

Little’s law - Need enough parallelism to saturate our resources

Need enough occupancy and Instruction Level Parallelism

Memory coalescing & access patterns & GTC’18
Avoid intra-warp divergence 581006
Volta Architecture and

Performance Optimization

Avoid shared memory bank conflicts

Overlap of computation / communication (streams, CUDA Graphs, MPS)

3

NVIDIA

TURING

Many new features, including:
Tensor Cores, now for FP16 and Integer
RT Core - Real-time Ray Tracing
Full speed FP16 (like P100 / V100)

Unified L1 cache (similar to Volta)

4 NVIDIA

VOLTA / TURING SM

V100 TU102

SMs
Compute Capability

(FP64
INT32
FP32
Tensor Cores
RT Core

Register File

Per SM <

L1 and shmem

\ Max threads

80
70

32

64

64
8

256 KB
128 KB
2048

72
75

2
64
64
8 (FP16 + Int)
1
256 KB
96 KB
1024

Volta binaries can run on Turing

Turing SM

Warp Scheduler + Dispatch (32 thread/clk) Warp Scheduler + Dispatch (32 thread/clk)

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

TENSOR
CORES

TENSOR

INT32 FP32 CORES

INT32 FP32

Warp Scheduler + Dispatch (32 thread/clk) Warp Scheduler + Dispatch (32 thread/clk)

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

TENSOR
CORES

TENSOR

INT32 FP32 CORES

INT32 FP32

96KB L1 Data Cache / Shared Memory

5

<ANVIDIA.

RT CORES & 59768

New features

New in Turing in Optix 6.0

Ray Tracing acceleration
Exposed in NVIDIA Optix

Easy interop with CUDA

Used also for non-raytracing problems

Docs and more: http://raytracing-docs.nvidia.com/optix/index.html

6 <A NVIDIA.

http://raytracing-docs.nvidia.com/optix/index.html

TENSOR CORES

New in Volta, Extended in Turing & 59926

Tensor Core Performance
The Ultimate Guide

GPU SMs Total Peak FP16 Peak INT8 Peak INT4 Peak INT1
V100 80 640 125 TFlops N.A. N.A. N.A.
TU102 72 576 130 TFlops 261 Tops 522 Tops 2088 Tops

half precision inputs = single precision or half precision accumulator

_ 8bit/4bit INT inputs > 32-bit INT accumulator
"M 3 1bit Binary inputs = 32-bit INT accumulator (XOR + POPC)

Used via CUBLAS, CUDNN, CUTLASS, TensorRT
Exposed in CUDA 10 (4bit INT and 1bit binary are experimental)

Volta binaries using Tensor Cores should be recompiled for Turing to achieve full throughput

7 <ANVIDIA.

MEMORY SUBSYSTEM

L1

SMEM

Volta / Turing

L1

SMEM

PCle

NVLINK

Up to 80 Streaming Multiprocessors
256KB register file per SM

Unified Shared Mem / L1 Cache

Up to 6 MB L2 Cache

Volta: HBM2, 16, 32 GB

Global Memory 1,0. GpDRé <= 48GB

8 <ANVIDIA.

TURING

L1 / Shared memory

Turing inherited the unified L1 introduced in Volta

Total L1+Shared 128 KB 96 KB
Max shared 96 KB 64 KB
Possible splits 6 2
Throughput 128 B/cycle 64 B/cycle

Default max shared memory = 48 KB.
Need to explicitly opt-in for > 48 KB on Volta and Turing

Volta binaries using more than 64 KB of shared memory won’t run on Turing

9

<ANVIDIA.

L1/SHM

Variable split

By default, the driver is using the configuration that will maximize occupancy

Configuration used

_ Volta 8 OKB Shared Mem 0 KB Shared 32KB Shared

96KB / 32KB 64 KB / 32 KB Other resources: L25 B L o K5 L
64KB / 64KB * 16 blocks /SM 16 blocks/SM
SRR AT 32 KB / 64 KB up to 16 blocks/SM

16KB / 112KB kernel_2

8KB / 120KB 40 KB Shared Mem 96 KB Shared 64 KB Shared
OKB /128 KB Other resources: 32 KB L1 32 KB L1

up to 4 blocks/SM 2 blocks / SM 1 block / SM

10 <ANVIDIA.

L1/SHM

When to change the default split

Already running kernel 1 (no shared memory), light load 1 block / SM,
Volta : Full L1, no shared memory
Turing: Max L1, 32 KB shared memory

SM Load

Time

Launching kernel_2 concurrently (40 KB shared/ block)
Not enough shared memory with current configuration

Kernel_2 runs after kernel_1 has completed

1 <ANVIDIA.

L1/SHM

When to change the default split

Forcing kernel_1 to run with max shared memory config:

cudaFuncSetAttribute (kernel 1,
cudaFuncAttributePreferredSharedMemoryCarveout,
cudaSharedmemCarveoutMaxShared) ;

kernel_1<<<blocks,threads,0,stream >>>()

SM Load

Time

Launching kernel_2 concurrently (40 KB shared/ block)
Kernel_2 can now run concurrently with kernel_1

Other possible reason: To run at a lower occupancy, less blocks, larger L1

12 <ANVIDIA.

FP64, FP32, FP16
:

mantissa

zmantissa_bits

I N N N TR T

Exponent bits

(_1)sign X pexponent s (1 +

Mantissa bits 52 23 10
Largest number =~ 1.7 x 10308 ~ 3.4 x 1038 65504.0
Smallest normal > 0 =2.2x10308 =12 x 1038 = 6.1 x 107

Smallest denormal > 0 =4.9x10324 =1.4x10% =~ 5.9 x 1078

13 <ANVIDIA.

CUDA FP16

CUDA provides and types and instrinsics in

Use for the best FP16 support:
CUDA 8: vl = hadd2 (vl, _ hadd2 (v2, _ hmul2 (v3, v3)));
CUDA 9.2: vl 4= v2 + (v3 * v3);

CUDA 10: Better support for half2, and atomics

FP16 is available on Pascal and newer GPUs.

Host side:
CUDA provides functions to values to FP16 on host.

14 NVIDIA

HALF VS HALF2

can only be achieved with
codes can still get ~2x speedup with

Not used V1 vl.y v1.x
Not used V2 vV2.y V2.X
Not used v1+v2 vl.y + v2.y v1.X + V2.X
\— — _/
~ ~
32-bit registers 32-bit registers
per instruction per instruction (SIMD)
Flops as FP32 Flops of FP32
Generates loads & stores Generates loads & stores

NVIDIA

FP16

3 levels of peak performance

Instruction type V100 Peak Typical use

Tensor Cores 125 TFlops Matrix products

Compute-bound

half2 31 TFlops kernels

Bandwidth-bound

half 15 TFlops kernels

16 <ANVIDIA.

2D FILTER

Case study

2D non-separable filter of radius r:

Outputli, j] 2 z coef|k,l] X input[i + k,j +]

k=—1rl=-7r

i
HEN

e

Radius 1

3x3 Filter Filter

coefs

Input

Output

ANALYSIS

For each point, a filter of diameter N on FP32 data:

Computation: Flops

Memory: 1 read, 1 write =
Assuming the halos can be cached / amortized

Arithmetic intensity = Flops / Byte

IIIIII

ARITHMETIC INTENSITY

Expected behavior on Volta

Volta V100 FP32 = 15.6 Tflops/s, BW = 0.9 TB/s = 17 Flops / Byte

Filter Size Flops Flops/Byte

3x3 17 2.1 A

5x5 49 6.1 > Bandwidth bound
7x7 97 12.1)

9x9 161 20.1 A

11x11 241 30.1 > Compute bound
13x13 337 42.1

GPU IMPLEMENTATION

Gather vs Scatter approaches

3x3 Filter

Gather approach: ~ Scatter approach:
9 input values needed 1 input value contributes
to compute 1 output value to 9 output values

Typically implemented
with shared memory

20

<ANVIDIA.

GPU IMPLEMENTATION

Each thread processes one column: Previous results
Each thread reads 3 input values, iR
contributing to 3 output values mtT
AEEER

* 0l
.
.
o

3 new input values

. | 3x3 Filter

0
....
. .

LT P

.' 3 partial results

(sliding window)

IIIIII

GPU IMPLEMENTATION

GPU IMPLEMENTATION

N2

GPU IMPLEMENTATION

N1

——__ Each thread block will process
a 2D tile

GPU IMPLEMENTATION

Looking at one thread

partial results

> Previous results
Current

}

r

HE HEE .
HEEEEEEEEEEE

HEEEEEEEEEEE
| I I | (O
NN

0l

ead

= ~O00000NSN
- OOOdoooooo
HEEEEE .

UO0O00000004da

Q00000000000
I O |
I O |
I O O | [|
T (Ooaooooic]s
£10000000m
) HEE .
OO00000m0
[| [

\ J

[l
[l
[l
L]
Ll

Previous inputs <

Current
input values

Output

GPU IMPLEMENTATION

Looking at one threadblock

1 threadblock

1 threadblock

{

{

Writing these results

(OOO0000NNNOO0]
OOOOO0O0NNNCCO
OOOOO0D0NNSNOING
OOOOO00NNNFE
OOOOO00NNNI
OOOO0O00NNNL

OOO0000NNNSO MO
OOO0000NNSOO0]
\O0O000O000NNSNO00]

(.
OO0O0000c]
OO0O0000c]
OO0O000C Mo
NN (.
fDDDDDDDIDDDD

Neighbor threads
sharing the same
input values
(L1 cache)

Output

Halo overhead

V100 RESULTS

16K x 16K input, FP32

V100
Filter Size Time (ms) TFlops BW (GB/s)
~6X more = 2.9 1.6 730) 80% k
Fl . 4. 7 4 ~ (0] p.ea
similaorpsime [9X3 3.0 3 Y > bandwidth
7x7 3.3 8.0 658)
9x9 3.6 12.1 599 A)
11x11 4.8 13.4 444 \ ~80% peak
TFlops
13x13 6.5 13.8 328)

V100 Peak = 15.6 FP32 Tflops, 900 GB/s

FP16 STRATEGIES

Very few code changes (float -> half)
Input data is converted to half

Filter coefficients in constant memory can be half or float

Expected results:
Speed up ~2x for the bandwidth-bound kernels

Similar time for the compute-bound kernels (same peak Flops performance)

28 NVIDIA

FLOAT TO HALF

Updating one partial result

FP32
Vis Via Vi Vi Vi Via Vi
Res, | += X X X X X X X
Ca C, C, Co C, C, C
FP16 half
Vis Via Vi1 Vi Vit Vi Vi
Res, | += X X X X X X X
Cs C, C. Co C, C, o

Transferring half the bytes to/from memory, same number of registers

29

<A NVIDIA.

V100 RESULTS

V100, 16K x 16K input,

Speedup compared to float

Great speedup for bandwidth-bound kernels

As expected,
no improvement for compute-bound kernels

30 NVIDIA

FP16 STRATEGIES

Running into typical “vectorization” issues.
Input data is converted to half2

Filter coefficients converted to half2
Expected results:

Speed up ~2x for the bandwidth-bound kernels

Speed up ~2x for the compute-bound kernels

31 NVIDIA

FP16 STRATEGIES

Float to Half2: Vectorization issues

How can we compute the partial result, with the inputs packed in half2?

Need to write the filter for 2-way SIMD

Viz | | Viz | Via Vi | Vier | | Viez | Vies | | Visa

Res; | Res.i | +=

°~J

32 <ANVIDIA.

Need additional registers
with permutations

Res;

Res;.

FP16 STRATEGIES

Float to Half2: SIMD version

Via | Vi Vi | Vier | | Viez | Vies | | Visa
/ A RN I
vi-3 vi-1 1 vi V1'+1 1+1 V1+2 1+2 1+3 1+3 V1'+4
X X X X X X + X
CalCsllcalc,llcile llGlcllcglagllcaglal] el c

Coefficients are duplicated in both halves of the half2

Low impact on register count and extra instructions.

33

<A NVIDIA.

V100 RESULTS

V100, 16K x 16K input,

Speedup of half2 compared to float

34 NVIDIA

V100 RESULTS

16K x 16K input, FP16 half2

V100
Filter Size Time TFlops BW (GB/s) Speedup
(ms) vs FP32
3x3 1.5 3.0 729 2.0x
5x5 1.5 8.6 704 2.0x
7x7 1.6 16.0 660 2.0x
9x9 1.8 23.6 588 1.96x
11x11 2.5 25.6 426 1.92x
13x13 3.4 27.0 320 1.95x

V100 Peak = 31.2 FP16 Tflops, 900 GB/s

35 <ANVIDIA.

FP16

Takeaways

Use half2 (or Tensor Cores) for compute-bound codes
(scalar) half can be good enough for bandwidth-bound kernels
Speedups of ~2x on compute and data transfers

Memory footprint reduced by 2x

Now available on many GPUs

How much precision does your problem require?

PROFILING

Profiling Tools for Turing
&~ 59345

CUDA Kernel Profiling Using
NVIDIA Nsight Compute

CUDA 10+ supports Turing

nvvp / nvprof Full support Full support

Nsight Compute Full support Full support

Nsight Compute CLI: /usr/local/cuda-10.1/NsightCompute-2019.1/nv-nsight-cu-cli
Nsight Compute GUI: /usr/local/cuda-10.1/NsightCompute-2019.1/nv-nsight-cu

37 <ANVIDIA.

NSIGHT COMPUTE

X| NVIDIA Nsight Compute
File Connection Debug Profile Tools Window Help

= Connect = & S nn» ¢

' half2.nsight-cuprof-report X
Page: |Details ~ | Launch: |4- 441-filter_kernel ~ || Add Baseline |+

[current 441 - filter kernel (8192, 256, 1) Time: 3.62 msecond Cycles: 4,752,034 Regs: 48 GPU: Graphics Device SM Frequency: 1.31 Ghz €C: 7.0

< GPU Speed Of Light

SOL SM [%] 82.36 | Duration [msecond]
SOL Memory [%] 56.44 |Elapsed Cycles [cycle]
SOL TEX [%] 11.61|SM Frequency [Ghz]
SOL L2 [%] 7.15 |Memory Frequency [Mhz]

SOL FB [%] 56.44

GPU Utilization

SM [%]

wemory 1<)

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0
Speed Of Light [%]

> Compute Workload Analysis

Executed Ipc Elapsed [inst/cycle] 3.29|sM Busy [%]

Executed Ipc Active [inst/cycle] 3.33|Issue Slots Busy [%]
Issued Ipc Active [issue/cycle] 3.33

> Memory Workload Analysis

Memory Throughput [Gbyte/second] 472.49 | Mem Busy [%]

L1 Hit Rate [%] 76.23|Max Bandwidth [%]

L2 Hit Rate [%] 58.49 | Mem Pipes Busy [%]

o Scheduler Statistics

Active Warps Per Scheduler [warp/cycle] 9.50| Instructions Per Active Issue Slot [inst/issuel
Eligible Warps Per Scheduler [warp/cycle] 4.40|No Eligible [%]

Issued Warp Per Scheduler [issue/cycle] 0.83|0ne or More Eligible [%]

b Warp State Statistics

Warp Cycles Per Issued Instruction [cycle/issue] 7.23|Avg. Active Threads Per Warp [thread/inst]

Warp Cycles Per Issue Active [cycle/issuel 7.23|Avg. Not Predicated Off Threads Per Warp [thread/inst]
Warp Cycles Per Executed Instruction [cycle/inst] 7.23

o Instruction Statistics

Executed Instructions [inst] 1,251,936,512|Avg. Executed Instructions Per Scheduler [inst]
Issued Instructions [inst] 1,252,313,461 [Avg. Issued Instructions Per Scheduler [inst]

b Launch Statistics

Grid Size 8,192

Registers Per Thread [register/thread]
Block Size 25

6|Static Shared Memory Per Block [byte/block]
Threads [thread] 2,097,152 |Dynamic Shared Memory Per Block [byte/block]
Waves Per SM 20.48|Shared Memory Configuration Size [Kbyte]

b Occupancy

Theoretical Occupancy [%] 62.50 |Block Limit Registers [register]
Theoretical Active Warps per SM [warp/cycle] 40|Block Limit Local Mem [byte]

Achieved Occupancy [%] 59.92|Block Limit Warps [warp]

Achieved Active Warps Per SM [warp/cycle] 38.35 |Block Limit SM [block]

Copy as Image |~

o

3.62
4,752,034.83
1.31

877.87

90.0 100.0

82.36
83.33

56.44
56.44
8.89

1
16.71
83.29

31.97

3,912,301.60
3,913,479.57

48
0
0

48

38

<ANVIDIA.

TURING NEW FEATURES SUMMARY

Binary compatible with Volta

Unified L1

Up to 64 KB Shared Memory per threadblock
Full speed FP16

Tensor Cores for FP16, Int8, Int4, Int1

RT Cores (Optix)

IIIIII

