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General Singular Value Decomposition

▪ The standard form is 
்

▪ LAPACK GESVD is most popular routine based on QR iteration

▪ cuSOLVER library provides two SVD routines 
- GESVD: same algorithm as LAPACK
- GESVDJ: two-sided Jacobi method  

▪ Tall skinny SVD is a common use case in data analytics
- singular vectors are required
- only requires few large singular values
- typical size: 1.e+6 rows, 100 columns 
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Strategy of GESVD
▪ QR factorization: preprocess of tall skinny matrix  ( m >> n) 
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▪ SVD on square matrix (GEBRD + BDSQR + ORGBR)
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▪ GPU does not perform well on tall skinny QR factorization

▪ GPU does not perform well on QR iteration for small matrix
4



Review performance on square matrix

n cusolver
SGESVD

cusolver
SGESVDJ

MKL
SGESVD

SGEMM

32    0.04  0.12   0.11 1

64    0.13  0.45   0.12 7

128    0.48  1.63   1.16 74

256    1.31  4.84   2.80 558

512    5.22 13.56 10.26 2,828

1024  18.97 27.73   8.33 8,586

2048 63.15 40.90 19.80 12,514

4096 152.07 58.08 8.03 13,366

8192 264.11 49.19 5.52 13,956

▪ The formula of flops is ଷ, same as 
SGEMM

▪ The bigger, the faster

▪ The runtime of SGESVD is about 50x of 
SGEMM

▪ Jacobi method (GESVDJ) is faster than 
QR iteration (GESVD) when matrix size 
is less than 1024

CPU: Intel(R) Core(TM) i9-7900X CPU @ 3.30GHz
MKL: compilers_and_libraries_2018.0.128 with 8 cores

GPU: V100
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Review performance on tall skinny matrix

M SGEQRF (sec) SGESVDJ (sec) QR ratio

1,000 0.00021 0.00128 0.17

10,000 0.00058 0.00147 0.40

100,000 0.00524 0.00654 0.80

1,000,000 0.05897 0.06336 0.93

▪ N = 32, M varies from 1,000 to 1e+6

▪ SGEQRF (QR factorization) is proportional to M because complexity is 
ଶ flops

▪ QR factorization is the bottleneck in SVD when M becomes bigger and bigger
(QR ratio from 0.17 to 0.93)

N is fixed to 32 6



Weakness of QR factorization

N SGEQRF 
(Gflops)

32 32.6

64 66.3

128 116.6

256 159.5

512 338.1

1024 627.6

2048 990.8

4096 2487.6

▪ M = 8192, N varies from 32 to 4096 

▪ Complexity of SGEQRF is ଶ flops, however 
the runtime is proportional to N

▪ Only trailing matrix uses BLAS-3, it is negligible 
on tall skinny matrix, the runtime is dominated 
by panel factorization, which is mainly BLAS-1

M is fixed to 8192

Panel factorization

Trailing matrix
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Goal and strategy

▪ Tall skinny matrix
- Up to millions of rows
- Up to hundreds of columns 

▪ Few large singular values

▪ Left and right singular vectors

▪ QR factorization is not good on tall 
skinny matrix 

▪ Jacobi method is faster than QR 
iteration on small matrix

▪ SGEMM is much faster 

𝐴்𝐴 = 𝑉𝑆ଶ𝑉்

QR factorization GEMM + EIG

Goal Pros and Cons

strategy
𝐴 = 𝑈𝑆𝑉்
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Technical issues

▪ Rounding error
் has rounding error proportional to ଶ, so high precision 

GEMM is used to control rounding error

▪ Performance 
் is N-by-N, a small matrix compared to tall skinny A

regular GEMM does not perform well
Need special GEMM to improve the performance

Jacobi method to compute eigen-pair of ( ் ) because it is 
faster than QR iteration on small matrix 
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GESVDA: approximate SVD

▪ ் by DGEMM
DGEMM can reduce rounding errors

▪ (S,V) = eig(B) by DSYEVJ (Jacobi method)
adjust stopping criteria to improve the performance

▪ ିଵ by DGEMM and scaling
left singular vector is not accurate when singular value is small
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Quality of solution

▪ right singular vector is always accurate up to 1.e-6

▪ Singular values and left singular vectors depend on M and N

For those numerical singular values bounded below by 


ିଷ

ி

The singular value and singular vectors are accurate up to 1.e-6

Example: Largest singular value  ி is accurate up to 1.e-6
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Performance of GESVDA

M SGEQRF (sec) SGESVDJ (sec) SGESVDA (sec) QR ratio speedup

1,000 0.00021 0.00128 0.00077 0.17 1.67

10,000 0.00058 0.00147 0.00078 0.40 1.89

100,000 0.00524 0.00654 0.00118 0.80 5.55

1,000,000 0.05897 0.06336 0.00376 0.93 16.84

▪ N = 32, M varies from 1,000 to 1.e+6

▪ Runtime of eigenvalue solver is independent of M

▪ Runtime of GESVDA is determined by GEMM
it is up to 16x faster than GESVDJ  

▪ The speedup comes from replacing QR factorization by GEMM

N is fixed to 32 12



GESVDA Breakdown

M DGEMM (sec) DSYEVJ (sec) Compute U (sec) Residual (sec)

1,000 0.13 0.78 0.03 0.10

10,000 0.15 0.74 0.03 0.10

100,000 0.33 0.46 0.13 0.10

1,000,000 0.40 0.16 0.35 0.11

▪ DGEMM is ଶ, DSYEVJ is ଷ , others are 

▪ DGEMM is very efficient, only 40% of total time 

▪ The cost of DSYEVJ is independent of M, so it decreases as M increases

▪ “compute U” is slower than “Residual” because it requires ‘double 
precision”

N is fixed to 32

Ratio of each component in GESVDA
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Performance of batched GESVDA

M batchSize SGESVDJ (sec) SGESVDA (sec) speedup

16,384 1 0.0022 0.0012 1.77

16,384 32 0.0562 0.0076 7.41

65,536 1 0.0051 0.0015 3.41

65,536 32 0.0977 0.0141 6.94

1,048,576 1 0.0770 0.0062 12.45

1,048,576 16 0.5329 0.0775 6.87

▪ SGESVDJ is performed by OpenMP

▪ SGESDVA is performed by multi-stream

▪ OpenMP can run “batchSize” GEQRF in parallel (GEQRF is 40%+ of GESVD), so 
speedup of batchSize 32 is not significant 

N is fixed to 35 14



Batched GESVDA breakdown

M batchSize DGEMM (sec) DSYEVJ (sec) Compute U (sec) Residual (sec)

16,384 32 0.21 0.50 0.13 0.15

65,536 32 0.32 0.22 0.29 0.17

1,048,576 16 0.36 0.03 0.43 0.17

▪ DGEMM is ଶ, DSYEVJ is ଷ , others are 

▪ DGEMM is less than 40% of total time

▪ The cost of DSYEVJ shrinks to 3% because of inhouse batched design
it is no longer kernel launch limited

▪ “compute U” becomes bottleneck

N is fixed to 35

Ratio of each component in batched GESVDA

15



M DGEQRF (sec) DGEMM / QR LGEMM / QR

1,000 0.00023 1.49 0.38

10,000 0.00077 7.39 0.96

100,000 0.00822 26.19 1.88

1,000,000 0.08447 14.53 5.34

N is fixed to 32

double-double (fp128) GEMM ?
▪ Question: low-rank SVD with accuracy up to 1.e-14 ?

▪ N = 32, M varies from 1,000 to 1.e+6

▪ QD package (http://crd-legacy.lbl.gov/~dhbailey/mpdist/)

▪ LGEMM: C (dd) += A (d) * B (dd) 

▪ LGEMM is only useful when M > 100,000
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Conclusions 

▪ GESVDA replaces SGEQRF by DGEMM to gain the speedup up 
to 16x

▪ GESVDA has inhouse batched eigenvalue solver to avoid 
limitation of kernel launches

▪ GESVDA can deliver good quality of singular values and 
singular vectors in common use case 

▪ GESVDA is delivered in cuda 10.1 with batched API
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Low-rank approximation of A

▪ Low-rank approximation of a given matrix A.

▪ Fixed precision.

▪ Fixed rank.

▪ Truncation of SVD gives best rank-k approximation [Eckart-Young-Mirsky]

▪ Huge cost. Time complexity is O(n^3)
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Randomized SVD

▪ Compute top-k eigenpairs to sufficient accuracy.
▪ Data analytics, PCA, clustering: 1e-2 could be enough

▪ Physics simulations: 1e-2 may be useless

▪ Highlights:
▪ Reduced time and space complexity.

▪ Preserve sparsity of A

▪ One-pass or streaming algorithms (touch A once)
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Core idea of Randomized LA

▪ C is a n-by-O(k) matrix that ensures with high probability:

Halko et Al "Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions." SIAM review 53.2 (2011)
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Time complexity
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Sketching matrix

▪ m-by-order(k) matrix which:

▪ Captures column space of A

▪ Easy to construct

▪ Easy to apply.

▪ Some options:

▪ Gaussian projection

▪ Subsampled Randomized Hadamard Transform

▪ Count sketch

▪ Leverage-score subsampling (sparse cases)
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SVDR, Randomized SVD

▪ Provided rounding error on SVD:
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Numerical experiments. Error metric

▪ Do not look at

▪ But instead
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Spectral norm estimator

▪ Bottom line: 6 iters estimate norm of A within a factor of 10.

Magdon-Ismail, Malik. "A Note On Estimating the Spectral Norm of A Matrix Efficiently." arXiv preprint arXiv:1104.2076 (2011).
25



Numerical experiments. Test cases.
▪ Accuracy depends on spectral gap

▪ Three test cases:

▪ Fast decay

▪ S-shape

▪ Slow decay
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Numerical experiments. Accuracy.

27



Numerical experiments. Accuracy.
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Numerical experiments. Accuracy.
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Numerical experiments. Rank-10
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Numerical experiments. Rank-20
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Conclusions SVDR
▪ Concern: lack of error estimator for accuracy of spectrum

▪ Bounds very pessimistic in practice.

▪ SVDR provides good accuracy for top-k eigenvalues.
▪ Works out of the box for k<10 in practice

▪ Good alternative PCA, not substitute of GESVD.
▪ Can get impressive performance if you know your data

▪ Internal research project, not included in CUDA 10.1

▪ We’d love feedback from you!
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