

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Filling the Performance Gap in Convolution Implementations for NVIDIA GPUs

Antonio J. Peña, Pedro Valero-Lara, Marc Jordà

GTC 2019 - San Jose

Agenda

- Intro
- Background
 - Convolutional Neural Networks
 - \odot Convolution operation
 - Common characteristics of CNNs
- cuDNN convolution algorithms survey
- Design
 - Data reuse present in conv layers
 - Data layout
 - Algorithm stages
- Performance evaluation
- Conclusions & ongoing work

Introduction

- Interest in neural networks resurged in recent years
 Deep Neural Networks (DNNs)
- Made possible by
 - \odot Availability of very large annotated datasets (e.g. imageNet)
 - High-throughput heterogeneous systems
- Convolutional Neural Networks (CNNs)
 - \odot High accuracy in image classification benchmarks
 - Several algorithms (Direct, GEMM, FFT, Winograd)

Our convolution implementation for NVIDIA GPUs

- \odot Based on direct application of the convolution formula
- Efficiently exploits in-core memories and global memory accesses

Convolutional Neural Networks (CNNs)

Inclusion of convolutional layers

Convolutional layer

- Weights are grouped in filters
- Filters are shared by several output elements
- Uses convolution operations as part of its computation
- Advantage over fully-connected layers
 - Storage and computational cost does not depend on input or output size
 - Number of filters and its size are a design choice
 - Translation invariance
 - Filters "see" different parts of the input
- Serves as automatic feature extractor
 - Filters are trained to detect relevant patterns

Fully-connected layer

 $Out_i = ActivationFunc(Sum_{i=0 \# ln}(W_{ii} \cdot In_i) + bias)$

Output (flattened)

Convolutional layer

Trained filters in the 1st convolutional layer of AlexNet

Convolution Operation

- Output elements are the scalar product of one filter and a subvolume of the input
 - $\ensuremath{\bigcirc}$ Input and filter depth are equal
 - Different input subvolume for each output element (Dark blue highlight)
- Output planes are the convolution of one input with one of the filters
 - Output depth = number of filters
 - \odot $\;$ Filter is translated over the X and Y dimensions
 - Convolution parameters
 - \circ # of inputs (aka batch size, N)
 - Input X, Y size (H, W)
 - # of filters (Nf)
 - Filter X, Y size (aka receptive field, Hf, Wf)

- Depth
- O Stride
- Padding
- Dilation

5

Convolution Operation - Example

- Example convolution with 1 input and 2 filters
 - 1 input of 5x5x3
 - 2 filters of 3x3x3
 - Stride X and Y = 1

1 output of 3x3x2 (output Z is the number of filters)

Output (3x3x2)

Filters (3x3x3)

• Parameters from 5 well-known CNNs

○ AlexNet, GoogleNet, Resnet50, SqueezeNet, VGG19

• Overall structure

- Initial layers have large input X/Y size, small depth
- Final layers have small input X/Y size, large depth

	GoogleNet	SqueezeNet	AlexNet	Resnet50	VGG19
# Distinct convolution configurations	42	21	4	12	9
Network input size	$224 \times 224 \times 3$				
Input size to last convolutional layer	$7 \times 7 \times 832$	$13 \times 13 \times 512$	$13 \times 13 \times 384$	$7 \times 7 \times 1024$	$14 \times 14 \times 512$
Convolution filters sizes (% of conv. configs.)	1×1 (57.2%)	1×1 (71.4%)	3×3 (75%)	1×1 (66.7%)	3×3 (100%)
	3×3 (23.8%)	3×3 (28.6%)	5×5 (25%)	3×3 (33.3%)	
	5×5 (19%)				

Inputs' shape at different layer levels of the CNN

- Parameters from 5 well-known CNNs
 - AlexNet, GoogleNet, Resnet50, SqueezeNet, VGG19
- Overall structure
 - Initial layers have large input X/Y size, small depth
 - Final layers have small input X/Y size, large depth
- Padding to maintain X/Y size
 - $\, \odot \,$ Input X/Y size reduction is done with pooling layers

- Parameters from 5 well-known CNNs
 - AlexNet, GoogleNet, Resnet50, SqueezeNet, VGG19

• Overall structure

- Initial layers have large input X/Y size, small depth
- Final layers have small input X/Y size, large depth
- Padding to maintain X/Y size
 - $\, \odot \,$ Input X/Y size reduction is done with pooling layers
- Stride = 1 for most convolutions
 - \odot 95% of all convolution configurations
- Filter sizes are small

iter sizes are small		GoogleNet	SqueezeNet	AlexNet	Resnet50	VGG19
○ 1x1, 3x3, 5x5,	# Distinct convolution configurations	42	21	4	12	9
	Network input size	$224 \times 224 \times 3$				
	Input size to last convolutional layer	$7 \times 7 \times 832$	$13 \times 13 \times 512$	$13 \times 13 \times 384$	$7 \times 7 \times 1024$	$14 \times 14 \times 512$
	Convolution filters sizes (% of conv. configs.)	1×1 (57.2%)	1×1 (71.4%)	3×3 (75%)	1×1 (66.7%)	3×3 (100%)
		3×3 (23.8%)	3×3 (28.6%)	5×5 (25%)	3×3 (33.3%)	
		5×5 (19%)				

Characteristics of convolutional layers with stride=1 in the selected CNNs

- Parameters from 5 well-known CNNs
 - AlexNet, GoogleNet, Resnet50, SqueezeNet, VGG19
- Overall structure
 - Initial layers have large input X/Y size, small depth
 - Final layers have small input X/Y size, large depth
- Padding to maintain X/Y size
 - $\, \odot \,$ Input X/Y size reduction is done with pooling layers
- Stride = 1 for most convolutions
 - \odot 95% of all convolution configurations
- Filter sizes are small
 - 1x1, 3x3, 5x5, ...
- Convolutions with 1x1 filters are a special case
 - Reduce the depth of inputs to reduce the computational cost of the following convolutional layer (with larger filters)

Convolution algorithms in cuDNN

GEMM-based Algorithm

- Generate two intermediate matrices, multiply them, and reshape the result
 - \circ Filters matrix \rightarrow flattened filters as rows
 - Inputs matrix → Elements of input subvolumes as columns (im2col in Matlab)

Pros

 Can exploit existing high-performance GEMM libs (MKL, cuBLAS, ...)

Cons

- Requires extra memory for intermediate matrices
- Inputs' intermediate matrix is larger than inputs themselves

				Im	age o	lata					_					
DO	D1	D2	2	D0	D1	D2		D0	D1	D2			D4	D5	D7	D
D3	D4	D5	5	D3	D4	D5		D3	D4	D5			D3	D4	D6	D7
D6	D7	D	3	D6	D7	D8		D6	D7	D8			D1	D2	D4	DS
D[0,0,:,:] D[0,1,:,:]				D[0,2,:,:]					D0	D1	D3	D4				
											D4	D5	D7	D		
Filter data										D3	D4	D6	D7			
F0 F1 F0 F1 F0 F1											D1	D2	D4	D5		
F2 F3 F2 F3 F2 F3											D0	D1	D3	D4		
F [0 ,:,:,:]									D4	D5	D7	D8				
G0 G1 G0 G1 G0 G1									D3	D4	D6	D7				
G2 G3 G2 G3 G2 G3									D1	D2	D4	D5				
F [1,:,:,:]									D0	D1	D3	D4				
FO	F1	F2	F3	FO	F1	F2	F3	FO	F1	F2	F3					
G0	G1	G2	G3	G0	G1	G2	G3	G0	G1	G2	G3					

Image from Chetlur et al., cuDNN: Efficient primitives for deep learning

Convolution algorithms in cuDNN

Arithmetic strength reduction approaches

- Algorithmic transformation to trade multiplications by additions
 - Additions are faster to execute than multiplications

Winograd

- $\odot~$ Used in fast FIR filter algorithms in signal processing
- Inputs: g, d
- Coefficient matrices: A, B, G

$$Y = A^T \left[[GgG^T] \cdot [B^T dB] \right] A$$

 $f * g = \mathcal{F}^{-1} \left\{ \mathcal{F} \{f\} \cdot \mathcal{F} \{g\}
ight\}$

• Fast Fourier Transform

○ FFT + Transformation + Inverse FFT

_

cuDNN Convolution Algorithms – Performance survey

As part of our study, we did a performance survey of cuDNN convolution algorithms

- 3 convolution algorithms
 - O GEMM, Winograd, FFT
 - Total of 7 variants: 3 of GEMM (1 explicit input transformation, 2 implicit), 2 of Winograd, and 2 of FFT
- Convolution configurations from well-known CNNs: AlexNet, GoogleNet, Resnet50, SqueezeNet, VGG19
- cuDNN 6 on V100-SXM2 (volta)
- Performance normalized to the best performing algorithm for each convolution configuration
 - Best algorithm is at Y=1
 - X axis labels are <inputXY>-<batch size>-<filter XY>-<#filters>-<depth>

cuDNN Convolution Algorithms – Performance survey

Convolution configurations with 1x1 filters (only GEMM variants support this filter size)

- The implicit variants clearly outperform explicit GEMM
 - Explicit GEMM is +1.5x slower for most of the configurations
- GEMM-implicit-precomp is better when the batch size is > 1

cuDNN Convolution Algorithms – Performance survey

Configurations with 3x3 filters

Winograd is clearly the best
 O Initially designed for this filter size

 GEMM-impl-precomp outperforms it when depth is small and input X&Y size large

Configurations with 5x5 filters

- GEMM-impl-precomp is the best performing
- FFT gets close in a few cases only
 - Better suited for larger filter sizes

Best is the other winograd variant, not shown to reduce clutter

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Design

Design – Data reuse

The convolutions of a convolutional layer expose two levels of data reuse

At the layer level

- A batch of inputs are convolved with all the layer filters
 - Each filter is used with all the inputs
 - Each input is used with all the filters

Design – Data reuse

The convolutions of a convolutional layer expose two levels of data reuse

At the layer level

- A batch of inputs are convolved with all the layer filters
 - $\, \odot \,$ Each filter is used with all the inputs
 - Each input is used with all the filters
- At the convolution level
 - Input elements reuse
 - $\, \odot \,$ Not constant: input z-rows in the center are reused more
 - Filter elements reuse
 - Each filter z-row is reused the same amount of times
 - Inputs are usually larger => more reuse of filter z-rows
 - If stride = 1 (common in CNNs), reuse is done by contiguous subvolume

Filter elements reuse: Input elements that reuse two example Z-rows of the filter (in matching colors) in a convolution with stride=1

Design – Data layout

Flattened representation of the 4-D tensors

- How are data stored in memory
- Denoted as a four letter acronym, one letter per dimension
 - Right-most dim elements are contiguous in memory
- Dimensions
 - N: batch
 - \circ C: depth
 - \circ W: width
 - \circ H: height
- Common layouts in CNNs
 - NCHW
 - NHWC

Design – Data layout

Considering data layout + data reuse + coalescing If we have

- NCHW layout
- Warps mapped along W dimension
- Stride = 1

We get

- Good coalescing loading inputs
 - Fully-coalesced warps
 - Some warps may have a gap (overhead similar to misaligned accesses)
 - $\odot~$ No need for layout transformations before the actual computation
- Threads in a warp reuse filter data
 - $\, \odot \,$ Exploit shared mem and shuffle instructions

O Faster mem access Barcelona Supercomputing Center Centro Recional de Supercomputación

Design – Algorithm

Computation is split into 2 stages:

- 1.- Compute the scalar products between input & filter Z-rows required for the convolutions
 - Exploits the reuse of filter elements in shared memory and registers

Design – Algorithm

Computation is split into 2 stages:

- 1.- Compute the scalar products between input & filter Z-rows required for the convolutions
 - Exploits the reuse of filter elements in shared memory and registers
- 2 .- Add the partial results matrices from the 1st stage to obtain each output X-Y plane.
 - Each output element is the sum of one element from each partial results matrix
 - Not necessary for convolutions with 1x1 filters
 - Output of 1st stage has to be stored in the correct layout

Experimental Evaluation

Evaluation dataset

- 602 convolution configurations (X & Y sizes, #filters, depth), from
 - $^{\odot}$ AlexNet, GoogleNet, Resnet50, SqueezeNet, VGG19
- Several input batch sizes: 1, 8, 16, 32, 64, 128, 256
- Total 4000+ configurations
- Single-precision floating point
- Average of 9 executions

Experimental platform

- IBM POWER9 server
- V100-SXM2 (Volta) GPU
- Red Hat Enterprise Linux Server 7.4
- CUDA 9.2

• cuDNN 7.1

- Overall, our implementation is faster than the best cuDNN variant in 8.31% of the tested configurations
 - Average speedup of 1.46x for these configurations
 - Mainly in smaller batch sizes (up to 16)
 - DL frameworks pick the best algorithm for each convolutional layer

- Insights from performance profiling
 - Our design better exploits thread block-level parallelism for small batch sizes
 - Too many thread blocks negatively impact our performance for large batch sizes
 - Compute & memory access units not fully utilized

Conclusions & Future work

Our implementation is competitive for certain parameter intervals

- Convolutions with 1x1 filters and small batch sizes
- Speedups of up to 2.29x

Improvements currently in progress

- Support for Tensor Cores for FP16 convolutions
 - Algorithm has to be adapted to the Tensor Cores matrix-matrix multiplication API
- Obtain a better work distribution among thread blocks
 - Work-fusion (e.g. thread coarsening) optimizations
 - Compute units utilization can increase (feedback from profiler)
 - $\ensuremath{\bigcirc}$ $\ensuremath{\mathsf{Improve}}$ performance for larger batch and filter sizes

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Filling the Performance Gap in Convolution Implementations for NVIDIA GPUs

For further info: marc.jorda@bsc.es

Antonio J. Peña, Pedro Valero-Lara, Marc Jordà

GTC 2019 - San Jose