
GTC 2019 - San Jose

Filling the Performance Gap in
Convolution Implementations for NVIDIA

GPUs

Antonio J. Peña, Pedro Valero-Lara,
Marc Jordà

www.bsc.es

Agenda

2

● Intro
● Background

○ Convolutional Neural Networks
○ Convolution operation
○ Common characteristics of CNNs

● cuDNN convolution algorithms survey
● Design

○ Data reuse present in conv layers
○ Data layout
○ Algorithm stages

● Performance evaluation
● Conclusions & ongoing work

Introduction

3

AlexNet Structure

● Interest in neural networks resurged in recent years
○ Deep Neural Networks (DNNs)

● Made possible by
○ Availability of very large annotated datasets (e.g. imageNet)
○ High-throughput heterogeneous systems

● Convolutional Neural Networks (CNNs)
○ High accuracy in image classification benchmarks
○ Several algorithms (Direct, GEMM, FFT, Winograd)

● Our convolution implementation for NVIDIA GPUs
○ Based on direct application of the convolution formula
○ Efficiently exploits in-core memories and global memory accesses

Convolutional Neural Networks (CNNs)

4

● Inclusion of convolutional layers
● Convolutional layer

○ Weights are grouped in filters
○ Filters are shared by several output elements
○ Uses convolution operations as part of its

computation

Trained filters in the 1st convolutional layer of AlexNet

● Advantage over fully-connected layers
○ Storage and computational cost does not depend

on input or output size
 - Number of filters and its size are a design choice

○ Translation invariance
 - Filters “see” different parts of the input

● Serves as automatic feature extractor
○ Filters are trained to detect relevant patterns

Fully-connected layer

Weights

Input (flattened)

Output
(flattened)

Outi = ActivationFunc(Sumj=0..#In(Wi,j · Inj) + bias)

=*
*

*

Convolutional layer
Output = ActivationFunc(ConvolutionOps(Input,

Filters) + bias)

Convolution Operation

5

● Output elements are the scalar product of one filter
and a subvolume of the input

○ Input and filter depth are equal
○ Different input subvolume for each output element

(Dark blue highlight)

● Output planes are the convolution of one input
with one of the filters

○ Output depth = number of filters
○ Filter is translated over the X and Y dimensions

● Convolution parameters
○ # of inputs (aka batch size, N)
○ Input X, Y size (H, W)
○ # of filters (Nf)
○ Filter X, Y size (aka receptive field, Hf, Wf)

○ Depth
○ Stride
○ Padding
○ Dilation

Convolution Operation - Example

6

Input (5x5x3)

* =

Filters (3x3x3)

Output (3x3x2)

● Example convolution with 1 input and 2 filters
○ 1 input of 5x5x3
○ 2 filters of 3x3x3
○ Stride X and Y = 1

1 output of 3x3x2 (output Z is the number of filters)

Convolution parameter values in CNNs

7

● Parameters from 5 well-known CNNs
○ AlexNet, GoogleNet, Resnet50, SqueezeNet, VGG19

● Overall structure
○ Initial layers have large input X/Y size, small depth
○ Final layers have small input X/Y size, large depth

… … …

Inputs’ shape at different layer levels of the CNN

Convolution parameter values in CNNs

8

● Parameters from 5 well-known CNNs
○ AlexNet, GoogleNet, Resnet50, SqueezeNet, VGG19

● Overall structure
○ Initial layers have large input X/Y size, small depth
○ Final layers have small input X/Y size, large depth

● Padding to maintain X/Y size
○ Input X/Y size reduction is done with pooling layers

Zero-padding of half
of the filter size keeps
output X&Y size equal

to input

* =

Wf

2

Wf

=

Pooling of 2x2 tiles
halves the X & Y size

Pooling applies a reduction operation
(e.g. avg, max,…) to each tile

Convolution parameter values in CNNs

9

● Parameters from 5 well-known CNNs
○ AlexNet, GoogleNet, Resnet50, SqueezeNet, VGG19

● Overall structure
○ Initial layers have large input X/Y size, small depth
○ Final layers have small input X/Y size, large depth

● Padding to maintain X/Y size
○ Input X/Y size reduction is done with pooling layers

● Stride = 1 for most convolutions
○ 95% of all convolution configurations

● Filter sizes are small
○ 1x1, 3x3, 5x5, …

Characteristics of convolutional layers with stride=1 in the selected CNNs

Convolution parameter values in CNNs

10

● Parameters from 5 well-known CNNs
○ AlexNet, GoogleNet, Resnet50, SqueezeNet, VGG19

● Overall structure
○ Initial layers have large input X/Y size, small depth
○ Final layers have small input X/Y size, large depth

● Padding to maintain X/Y size
○ Input X/Y size reduction is done with pooling layers

● Stride = 1 for most convolutions
○ 95% of all convolution configurations

● Filter sizes are small
○ 1x1, 3x3, 5x5, …

● Convolutions with 1x1 filters are a special case
○ Reduce the depth of inputs to reduce the computational

cost of the following convolutional layer (with larger
filters)

concat

1x1 pool

1x1

1x1
1x1

3x3 5x5

Inception module from GoogleNet

Convolution algorithms in cuDNN

11

GEMM-based Algorithm

● Generate two intermediate matrices, multiply them,
and reshape the result

○ Filters matrix → flattened filters as rows
○ Inputs matrix → Elements of input subvolumes as

columns (im2col in Matlab)
● Pros

○ Can exploit existing high-performance GEMM libs
(MKL, cuBLAS, …)

● Cons
○ Requires extra memory for intermediate matrices
○ Inputs’ intermediate matrix is larger than inputs

themselves

0

0 0
Image from Chetlur et al., cuDNN: Efficient

primitives for deep learning

Convolution algorithms in cuDNN

12

Arithmetic strength reduction approaches

● Algorithmic transformation to trade multiplications
by additions

○ Additions are faster to execute than multiplications

● Winograd
○ Used in fast FIR filter algorithms in signal processing
○ Inputs: g, d
○ Coefficient matrices: A, B, G

● Fast Fourier Transform
○ FFT + Transformation + Inverse FFT

As part of our study, we did a performance survey of cuDNN convolution algorithms
● 3 convolution algorithms

○ GEMM, Winograd, FFT
○ Total of 7 variants: 3 of GEMM (1 explicit input transformation, 2 implicit), 2 of Winograd, and 2 of FFT

● Convolution configurations from well-known CNNs: AlexNet, GoogleNet, Resnet50, SqueezeNet, VGG19
● cuDNN 6 on V100-SXM2 (volta)
● Performance normalized to the best performing algorithm for each convolution configuration

○ Best algorithm is at Y=1
○ X axis labels are <inputXY>-<batch size>-<filter XY>-<#filters>-<depth>

cuDNN Convolution Algorithms – Performance survey

13

1

2

1x1 3x3 5x5

cuDNN Convolution Algorithms – Performance survey

14

Convolution configurations with 1x1 filters (only GEMM variants support this filter size)
● The implicit variants clearly outperform explicit GEMM

○ Explicit GEMM is +1.5x slower for most of the configurations

● GEMM-implicit-precomp is better when the batch size is > 1

cuDNN Convolution Algorithms – Performance survey

15

5x53x3

Best is the other winograd
variant, not shown to reduce

clutter

Configurations with 3x3 filters
● Winograd is clearly the best

○ Initially designed for this
filter size

● GEMM-impl-precomp
outperforms it when depth is
small and input X&Y size large

Configurations with 5x5 filters
● GEMM-impl-precomp is the

best performing
● FFT gets close in a few cases

only
○ Better suited for larger

filter sizes

Design

The convolutions of a convolutional layer expose two levels of data reuse

Design – Data reuse

17

At the layer level
● A batch of inputs are convolved with all the layer filters

○ Each filter is used with all the inputs
○ Each input is used with all the filters

Inputs

Filters Outputs

* =

The convolutions of a convolutional layer expose two levels of data reuse

Design – Data reuse

18

At the convolution level
● Input elements reuse

○ Not constant: input z-rows in the center are reused more
● Filter elements reuse

○ Each filter z-row is reused the same amount of times
○ Inputs are usually larger => more reuse of filter z-rows
○ If stride = 1 (common in CNNs), reuse is done by

contiguous subvolume

At the layer level
● A batch of inputs are convolved with all the layer filters

○ Each filter is used with all the inputs
○ Each input is used with all the filters

Filter elements reuse: Input elements that reuse two
example Z-rows of the filter (in matching colors) in a
convolution with stride=1

Design – Data layout

19

Flattened representation of the 4-D tensors
● How are data stored in memory
● Denoted as a four letter acronym, one letter per dimension

○ Right-most dim elements are contiguous in memory
● Dimensions

○ N: batch
○ C: depth
○ W: width
○ H: height

● Common layouts in CNNs
○ NCHW
○ NHWC

Design – Data layout

20

Considering data layout + data reuse + coalescing
If we have

● NCHW layout
● Warps mapped along W dimension
● Stride = 1

We get
● Good coalescing loading inputs

○ Fully-coalesced warps
○ Some warps may have a gap (overhead similar to misaligned

accesses)
○ No need for layout transformations before the actual computation

● Threads in a warp reuse filter data
○ Exploit shared mem and shuffle instructions
○ Faster mem access

Example with warp size = 4

Computation is split into 2 stages:

Design – Algorithm

21

1 .- Compute the scalar products between input & filter Z-rows
required for the convolutions

● Exploits the reuse of filter elements in shared memory and
registers

0

0

0

0

Scalar products

Computation is split into 2 stages:

Design – Algorithm

22

1 .- Compute the scalar products between input & filter Z-rows
required for the convolutions

● Exploits the reuse of filter elements in shared memory and
registers

2 .- Add the partial results matrices from the 1st stage to obtain each
output X-Y plane.

● Each output element is the sum of one element from each
partial results matrix

● Not necessary for convolutions with 1x1 filters
○ Output of 1st stage has to be stored in the correct layout

0

Evaluation dataset
● 602 convolution configurations (X & Y sizes, #filters, depth), from

○ AlexNet, GoogleNet, Resnet50, SqueezeNet, VGG19
● Several input batch sizes: 1, 8, 16, 32, 64, 128, 256
● Total 4000+ configurations
● Single-precision floating point
● Average of 9 executions

Experimental platform
● IBM POWER9 server
● V100-SXM2 (Volta) GPU
● Red Hat Enterprise Linux Server 7.4
● CUDA 9.2
● cuDNN 7.1

Experimental Evaluation

23

Results

24

● Overall, our implementation is faster than the best
cuDNN variant in 8.31% of the tested configurations

○ Average speedup of 1.46x for these configurations
○ Mainly in smaller batch sizes (up to 16)
○ DL frameworks pick the best algorithm for each

convolutional layer

● Insights from performance profiling
○ Our design better exploits thread block-level

parallelism for small batch sizes
○ Too many thread blocks negatively impact our

performance for large batch sizes
○ Compute & memory access units not fully utilized

2

1

0

Speedup vs. Best cuDNN variant

Our implementation is competitive for certain parameter intervals
● Convolutions with 1x1 filters and small batch sizes
● Speedups of up to 2.29x

Improvements currently in progress
● Support for Tensor Cores for FP16 convolutions

○ Algorithm has to be adapted to the Tensor Cores matrix-matrix multiplication API
● Obtain a better work distribution among thread blocks

○ Work-fusion (e.g. thread coarsening) optimizations
○ Compute units utilization can increase (feedback from profiler)
○ Improve performance for larger batch and filter sizes

Conclusions & Future work

25

GTC 2019 - San Jose

Filling the Performance Gap in
Convolution Implementations for NVIDIA

GPUs

Antonio J. Peña, Pedro Valero-Lara,
Marc Jordà

www.bsc.es

For further info:
marc.jorda@bsc.es

