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NEW TOOLS 

FOR SCIENCE

NVIDIA GPUs are powering modern supercomputers

Using them effectively is increasingly important

Modern AI is a perfect fit for GPUs

AI + GPUs provides a powerful new set of tools for science

OVERVIEW

GPU AI
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OVERVIEW

DETECTION
Tropical Storm Detection

ENHANCEMENT
Slow Motion Satellite Loop

EMULATION
Model Acceleration Without Porting

PARAMETRIZATION
More Accurate Physics from Data

TRANSLATION
Inverse Modeling for Data Assimilation
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ARTIFICIAL
INTELLIGENCE 
ON GPUS
CPU performance growth has 

stalled and NVIDIA GPUs are 

powering current and next 

generation supercomputers. It is 

important for researchers and 

practitioners to learn to use 

these resources effectively. 

Artificial intelligence is a natural 

solution. It makes effective use 

of GPUs and has the potential to 

improving all aspects of 

scientific

computing.
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GPUS ARE DRIVING PERFORMANCE GROWTH
The performance gap between CPUs and GPUs is growing rapidly

• Dennard scaling has come to an end
• CPU growth has slowed to 10% per year

• GPU performance is growing at 150% per year
• 1000x performance gap projected by 2025
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MODERN SUPERCOMPUTERS ARE GPU MACHINES
Most high end supercomputers are loaded with NVIDIA Volta GPUs

• Supercomputing centers recognize the advantage of GPUS
• Most high end supercomputers are now GPU machines

• This trend is likely to continue 
• Important to learn to use GPUs effectively
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AI IS PERFECTLY SUITED FOR GPUS
ImageNet 2012: A Revolution in Computer Vision

• Luckily, AI is a perfect fit for GPUs
• Alex Krizhevsky demonstrated this in 2012 @ Imagenet

• His simple DNN defeated the best expert coded solutions
• Deep learning has been growing like wildfire since
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EXPERT SYSTEMS 

EXECUTE HAND-WRITTEN 

ALGORITHMS AT HIGH SPEED 

Accelerate with

GPU accelerated Libraries

OpenACC Directives

CUDA Kernels

INCREASING COMPLEXITY AND AUTONOMY OVER TIME

EXPERT SYSTEMS 

EXECUTE HAND-WRITTEN 

ALGORITHMS AT HIGH SPEED 

THREE ROADS TO AI
There are three main flavors of AI, and each can be GPU accelerated 

• There are 3 main types of AI
• Expert systems accelerated through libraries, OpenACC, CUDA

• ML is accelerated with NVIDIA’s RAPIDS
• DL is accelerated via cuDNN in most DL frameworks
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EXPERT SYSTEM
GARY KASPAROV 
VS DEEP BLUE 1997

Deep Blue: an expert system 

for playing chess

Experts hand-coded heuristics 

for pieces and positions

High speed search enabled 

super-human performance

Defeated world chess 

champion in 1997
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DEEP LEARNING
LEE SEDOL 
VS ALPHA-GO 2016

Go is much too large to be 

beaten by brute force.

A game of human intuition

Unbeatable by machines…

AlphaGo: Deep 

reinforcement learning 

and self competition

Defeated top world Go 

champions in 2016-2017

Also world champion in 

Chess and Shogi



NWP IS AN EXPERT SYSTEM
Expert knowledge encoded as software, executed at high speed.

PARAMETRIZATIONDYNAMICSCOLLECTION ASSIMILATION

3DVAR

THINNING FORECASTING

• Encodes knowledge of experts as algorithms
• So familiar, most people don’t think of it as AI

• Deep learning provides a new set of tools
• All stages of NWP may be augmented by deep learning
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DEEP LEARNING: 
A NEW SET OF TOOLS 
FOR SCIENCE

Deep learning provides a new 

approach for building complex 

software components, by constructing 

functions automatically from a large 

set of examples. This approach 

complements  traditional algorithm 

development, providing a means of 

devising algorithms too complex, 

subtle, or unintuitive to code by 

hand. 
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Mix freely with conventional 
software and algorithms

SOFTWARE BY EXAMPLE
Supervised deep Learning builds functions from input/output pairs

Functions are the building 
blocks of software. DL can 
approximate any function.

Some functions are too challenging to code by hand.
DL builds complex functions from a set of examples.

Hurricane

Not Hurricane

HURRICANE

DETECTOR

Neural 
network

𝑷𝒉 = 𝒇(obs)

Optimizer
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Deep learning automatically finds feature hierarchies

Input data (pixels values) low-level features mid-level features high-level features

DL LEARNS FEATURES FROM DATA

Input Output

Example: face detection

Learns lines, noses, faces

Returns 𝑃𝑓𝑎𝑐𝑒 = 𝐹(pixels)

Greater depth → greater 
abstraction

1000s of subtly different 
feature detectors

Different data produces a 
different algorithm

output

𝑷𝒇𝒂𝒄𝒆
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Frame repair
Sequence repair
• Slow motion
Super-resolution
Cloud removal
Data augmentation

ENHANCEMENT

• Data Assimilation
Forecast verification
Model inter-comparison
Common data formatting
Colorization
Digital Elevation from Imagery

TRANSLATION

Uncertainty prediction
Storm track
Storm intensity
Fluid motion
Now casting
Satellite frame prediction

PREDICTION

• Tropical storms
Extra-tropical cyclones
Atmospheric rivers
Cyclogenesis events
Convection initiation
Change detection

DETECTION

Physics Acceleration
Turbulence
• Radiation
Convection
Microphysics
Dynamics Acceleration

EMULATION

New parametrizations
From higher resolution model
• From observational data

PARAMETRIZATION
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SELECTED DEEP LEARNING EXAMPLES

REGION OF INTEREST 

DETECTION

DATA THINNING

DATA-TO-DATA

TRANSLATION

DATA ASSIMILATION

SLOW MOTION 

ENHANCEMENT

ERROR CORRECTION

CRTM EMULATION

ACCELERATION

SOIL MOISTURE 

PARAMETRIZATION

BETTER PHYSICS
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1. STORM DETECTION:
AI ASSISTED 
DATA ANALYSIS
The quantity of data produced by 

models, satellites and other 

sensors has become impractical to 

analyze manually. AI can help by 

detecting important features, 

tends, and anomalies. 

Applications include storm 

tracking, data thinning, advanced 

warning systems, search and 

rescue, route planning, and more.

IMAGE CREDIT: NOAA NESDIS

HURRICANE: CAT 2

HURRICANE: CAT 1
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STORM 
DETECTION

Some events have a large impact 
on the weather

Detect such events automatically

• Tropical Cyclones

• Extra-tropical cyclones

• Atmospheric Rivers

• Storm Fronts

• Convection Initiation

• Cyclogenesis

Automatically locate and 
classify significant weather 

events
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LOCATE KNOWN STORMS

Use expert labeled IBTrACS database to locate storms in model data
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EXTRACT TRAINING AND TEST EXAMPLES

Extract storm/no-storm examples for supervised learning

Positive 
Examples

Negative 
Examples
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TRAIN: SEARCH FOR FUNCTION THAT FITS THE DATA
Training phase

0

0

0

0

0

1

1

1

1

1

Input: batch of 
water vapor 

concentrations

Output: 
Probability that image

is a storm
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CONVOLUTION EXAMPLE: SOBEL FILTER

𝐺𝑥 =
−1 0 1
−2 0 2
−1 0 1

𝐺𝑦 =
−1 −2 −1
0 0 0
1 2 1

𝐺 = 𝐺𝑥
2 + 𝐺𝑦

2

Image source: https://en.wikipedia.org/wiki/Sobel_operator
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𝐺𝑥 =
−1 0 1
−2 0 2
−1 0 1

𝐺𝑦 =
−1 −2 −1
0 0 0
1 2 1

𝐺 = 𝐺𝑥
2 + 𝐺𝑦

2

Image source: https://en.wikipedia.org/wiki/Sobel_operator

CONVOLUTION EXAMPLE: SOBEL FILTER
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Source 

Pixel

Convolution kernel 

(Feature) 

New pixel value 

(destination pixel)

Center element of the kernel is placed over 

the source pixel. The source pixel is then 

replaced with a weighted sum of itself and 

nearby pixels.

CONVOLUTIONAL NEURAL NETWORK
Network of convolutional filters assigned automatically from data

The values of the filter/feature/kernel are 

parameters determined during DNN training. 
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U-NET: CONVOLUTIONAL NEURAL NETWORK
Image segmentation at multiple scales
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TROPICAL STORMS 
GFS MODEL DATA

Jebb Stewart, Christina Bonfonti, 
Mark Govett NOAA, David Hall 

NVIDIA

Automatically detect future storms. No need to define precise heuristics. Storms defined implicitly by example. 

INPUT GFS PWAT + IBTRACKS

OUTPUT DETECTION CONFIDENCE

TRAINING SET 2010-2015

TEST SET 2016

NETWORK U-NET

Ground Truth

Prediction
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TROPICAL STORMS 
GOES SATELLITE

Jebb Stewart, Christina Bonfonti, 
Mark Govett NOAA, David Hall 

NVIDIA

Ground Truth

Prediction

INPUT GOES UPPER TROPO WV

OUTPUT DETECTION CONFIDENCE

TRAINING SET 2010-2013

TEST SET 2015

NETWORK U-NET

• Uses only upper tropo water vapor • Accurate near image center • Has some trouble Earth’s limb
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EXTRATROPICAL 
CYCLONES GFS 
MODEL DATA

Christina Bonfonti , Jebb Stewart, 
Mark Govett NOAA, David Hall 

NVIDIA

Ground Truth

Prediction

INPUT GFS PWAT + HEURISTIC

OUTPUT DETECTION CONFIDENCE

TRAINING SET 2011-2014

TEST SET 2015

NETWORK U-NET

• Data labelled using a heuristic (T,P,wind) • Trained network needs only water-vapor • Fast and simple detection
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GPU VS CPU TRAINING
GPUs enabled a 300x speedup in training time

Task: NOAA ESRL, Tropical Storm Detection

100 Fine Grain Nodes:

Two 10-core Haswell, 256GB / node

8 Telsa P100 GPUs / node

CPU training time: 500 hours

GPU training time: 1.5 hrs (8 GPUs)

NOAA’s Theia Supercomputer
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DETECTION AT 
SCALE: GORDON 

BELL PRIZE

Segmentation of Tropical Storms and Atmospheric Rivers on Summit using convolutional neural networks.
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Nearly perfect weak scaling up to 25k GPUS. 1 Exa-flop of performance. 100 years of climate model data in hours
Demonstrates the power of this approach for large-scale data analysis

DETECTION AT 
SCALE: GORDON 

BELL PRIZE
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2. TRANSLATION:
IMPROVED DATA
ASSIMILATION VIA
INVERSE MODELING

GOES-16 CIRA GEO COLOR / GOES-15 RED BAND

Deep learning can automatically 

construct maps between any two 

related coordinate systems. This 

can be used to convert satellite 

observations into model 

variables, with applications to 

data assimilation. It also has the 

potential to enable us to combine 

information from multiple models 

or satellites into a single dataset 

of greater accuracy and 

completeness.
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IMAGE TO IMAGE TRANSLATION

Conditional GANS can translate one type of image into another
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MAP: MODEL TO SATELLITE (FORWARD OPERATOR)

Model analyses to satellite observations

SATELLITE RADIANCES MODEL VARIABLES

Maps from 3d fields to 3d fields, rather than one column at a time
Can use spatial patterns to guide predictions 

Convolutional Neural Network
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MAP: SATELLITE TO MODEL (INVERSE OPERATOR)

Satellite observations to model analyses

SATELLITE RADIANCES MODEL VARIABLESConvolutional Neural Network

Hard to construct an inverse model by hand, but no more difficult for a 
neural network than the forward model.
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RESULTS: REGRESSION

Example of incomplete information: upper-tropo WV to total column WV

L1 output is average of multiple plausible states

Not consistent with any single realizable state

Adding bands can more fully constrain the output

One-to-many map results in ‘regression to the mean’

INPUT: GOES-15 band3 OUTPUT: L1 NORM TARGET: GFS PWAT

INPUT
OUTPUT TARGETSINPUT
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RESULTS: 
CONDITIONAL GAN

Adversarial model outputs a 
physically plausible state

Like an ensemble member from 
uncertain initial conditions

Both forward and inverse maps

For data assimilation and forecast 
verification

Physically plausible state 
from incomplete data

OBSERVATION GOES-15 band 3

MODEL VAR GFS Precipitable water

Training 2014-2016

Test 2013

INPUT: GOES-15 GENERATED TARGET: GFS

INPUT: GFS GENERATED TARGET: GOES-15
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APPLICATIONS TO DATA ASSIMILATION

• 3DVAR: Iterate to minimize loss J(x). H is expensive!

𝐽 𝒙 = 𝒙 − 𝒙𝑏
𝑇𝑩−1 𝒙 − 𝒙𝑏 + 𝒚 − 𝑯[𝒙] 𝑇𝑹−1 𝒚 − 𝑯[𝒙

1. Accelerate H by replacing it with DL forward map

2. Apply DL inverse map, then solve for x directly!

𝐽 𝒙 = 𝒙 − 𝒙𝑏
𝑇𝑩−1 𝒙 − 𝒙𝑏 + 𝒙 − 𝒙𝑜

𝑇෩𝑹−1 𝒙 − 𝒙𝑜

Accelerate forward and/or inverse models

X

y

H minimize

𝑱(𝒙, 𝒚)

MODEL

OBSERVATIONS

Background state Observations Forward Operator Background

Error Covariances

Observation

Error Covariances

𝒙𝑏 𝒚 𝑯[𝒙] 𝑩 𝑹
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NEED FOR UNCERTAINTY QUANTIFICATION

Some pixels are certain, others are are completely uncertain

Mean of Possible 
Outputs

One specific 
output

Confiden
ce

Need pixel-level variances and covariances to combine with other data sources

Use Bayesian neural networks to explicitly model uncertainties

Or use “Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles”
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3. ENHANCEMENT: 
SLOW MOTION 
SATELLITE LOOPS

Deep learning may be used to 

enhance satellite data by 

learning to intelligently 

interpolate it in time. We can 

also repair damage data by 

imputing missing pixels, missing 

channels, or even dropped 

frames. More ambitiously, deep 

learning has the potential to 

learn the underlying dynamics 

directly from observations, 

Which may then be used to 

estimate future satellite 

observations directly.
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NVIDIA SUPER SLOW-MOTION
Deep learning for temporal interpolation
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OPTICAL FLOW FROM MODEL WINDS
Estimate motion vectors from upper tropospheric model winds

20m/sOptical Flow u-component of wind
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SLOW MOTION 
SATELLITE LOOP

David Hall NVIDIA

Ground Truth

Prediction

Applications:

• Visualization

• Data Augmentation

• Replace dropped frames

• Reduce storage requirements

INPUT GOES-15 band 3, GFS winds

OUTPUT Interpolated GOES-15

INPUT FREQ 1 every 3 hours

OUTPUT FREQ 1 every 18 minutes

11 input images

110 output frames
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PARAMETER INFERENCE

Improve estimate of advective winds

Treat model winds as an initial guess

Advect observations forward from frame n

Compute a loss function using frame n+1

Back-propagate to obtain gradient

Optimize to fine tune wind speeds

Fine tune winds from observations
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MODEL INFERENCE

Use robust ODE solver for time integration

Represent derivatives via a neural net

Compute loss function following RK-NN paper

Obtain gradients via Adjoint Sensitivity 

Automatically learn dynamics from data

Learn both the winds and the ODE from observations
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IMPUTE MISSING DATA

Train a conditional GAN to reconstruct missing pixels

DAMAGED OBSERVATION COMPLETE OBSERVATION

Missing data can potentially be reconstructed from information in the other bands

Conditional GAN
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INTERPOLATION + IMPUTATION
Interpolate in time to provide additional information for imputation

INTERPOLATED

DAMAGED

CORRECTED IMAGE
Interpolate to 
approximate 
missing pixels

Combine with 
known pixels to 

improve 
imputation

Conditional GAN

(Or map from the interpolated images to the real images, to improve interpolated image quality)
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“Clockwork” by Mackenzie Bentley

4. ACCELERATION VIA
NEURAL NET EMULATION
Deep neural networks can produce high 

fidelity approximations of expensive 

functions through supervised training on 

a large number of input-output data 

pairs. The resulting emulation can be 

multiple orders of magnitude faster 

than the original. It’s similar to a 

lookup table, but with feature-aware 

interpolation in high dimensional 

spaces. This approach enables GPU 

acceleration of arbitrarily complex 

functions without labor intensive code 

porting. 
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ACCELERATION VIA EMULATION

An alternate route to GPU acceleration

Accelerates conventional routines

Complimentary to OpenACC and CUDA

Replace expensive routines with DNNs

Train on 1000s of input/output pairs

No need to port original code to GPU

Orders of magnitude faster at runtime

Examples: 

• Ocean wave-wave interactions

• Radiation parametrization

• Cloud super-parametrization

• Particle collider simulations 

Do the same thing, but do it much faster

SLOW
PROCESS

ITS FASTER 
REPLACEMENT



53

EMULATION: AN AI POWERED LOOKUP-TABLE
Precompute expensive values, and interpolate intelligently

• Imagine it takes a day to compute a single value

• Do you ever want to repeat that calculation?

• What if you want a value that is almost the same?

• Deep learning emulation fits a custom curve 

comprised of features learned from your data.

• It interpolates but can’t extrapolate.

It took a day to compute each value! I’d better cache them.

Interpolate linearly? We can do better.
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EMULATION: CAM SUPER-PARAMETRIZATION (20X)

A) Mean heating rate B) Mean temp and biases C) Top of atmosphere fluxes, and precipitation

SPCAM is a 2d cloud-resolving parameterization for greater accuracy
NNCAM emulates SP-CAM, with 20x speedup
Details: 9 fully connected layers, 567k params, 8 hours training time on a single NVIDIA GTX 1080

Stephan Rasp, Michael Pritchard, UC Irvine    Pierre Gentine, Columbia University

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2018GL078202
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EMULATION: MIIDAPS-AI (1400X)

Multi-Instrument Inversion and Data Assimilation Preprocessing System
Sid Boukabara NOAA/NESDIS   Eric Maddy, Adam Neiss Riverside Technology Inc

MIIDAPS-AI  TPW

Inverse operator for multiple IR and microwave satellites.
Iteratively uses CRTM radiative transfer model

5 seconds vs 2 hrs to process one day
1400x speedup.
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EMULATION: RRTMG (10X)
Rapid Radiative Transfer Model for GCMs

Matthew Norman, Pal Anikesh, ORNL

Surface Net SW Flux (RRTMG). Mean = 161.91 W/m2 Surface Net SW Flux (Emulation). Mean = 161.91 W/m2

Emulation of radiative transfer parametrization
E3SM global climate model
Speedup of 8-10x over original. 
Details: 3778 inputs, fully connected, 3 hidden layers, 6million training samples
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HYBRID EMULATION MODEL

• Fast emulation at run-time

• Discriminator ensures 
quality

• For new use cases:

• Discriminator flags errors

• Original routine is applied

• New output pairs cached

• Emulator weights are fine-
tuned

One approach to address the quality / coverage issues

Fast 99%

Slow 1%

High Quality
Output

Emulator (GPU)

Original Routine (CPU)

Updates

Discriminator
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STOCHASTIC EMULATIONS

Emulation via regression leads to artificially 
smoothed output (regression to the mean)

Use conditional GANs to stochastically sample 
the distribution of realizable states

More faithfully emulates the original function

Discriminator provides a natural mechanism for 
detecting errors

Generative Adversarial Networks produce better emulations



59

5. IMPROVED PHYSICAL
PARAMETRIZATIONS
FROM DATA
Physical parametrizations represent 

unresolved physics in climate and 

weather models. They need to be 

simple to be fast, and are often 

inaccurate approximations, hand 

coded by domain experts. Using 

deep learning, we can create more 

accurate parametrization directly 

from observational data, or from 

high resolution simulations.
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HOW WE USUALLY BUILD PARAMETERIZATIONS
Expert guided physical approximation

High resolution simulations 
or observations

Mad Scientist Low Order Parametrization
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UNIFIED PHYSICS PARAMETERIZATION
Prognostic Validation of a Neural Network Unified Physics

Noah Brenowitz and Cristopher Bretherton, University of Washington, May 2018

Improved parametrization for global climate model

Trained on near-global aqua-planet simulation

Predicts heating and moistening tendencies

Loss function minimizing accumulated error over 

several days is accurate and stable

3 layer fully connected network, 256 neurons each
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UNIFIED PHYSICS 
PARAMETERIZATION

Prognostic Validation of 
a Neural Network 
Unified Physics

Noah Brenowitz and Cristopher 
Bretherton, University of 

Washington, May 2018

• More accurate than CAM

• Improves forecast accuracy
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UNIFIED PHYSICS PARAMETERIZATION

Prognostic Validation of a Neural Network Unified Physics
Noah Brenowitz and Cristopher Bretherton, University of Washington, May 2018

Exhibits loss of stochasticity. (Fix using stochastic sampling based on conditional GAN)
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IMPROVED SOIL MOISTURE IN HRRR
Lidia Trailovik and Isadora Jankov NOAA ESRL

Soil moisture is important 
for convection initiation

Current parametrization in 
HRR is inadequate

Create a better 
parametrization from field 
observations

Use surface measurements  
to infer sub-surface state

Mesonet weather station 
network provides ground 
truth
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SUMMARY

dhall@nvidia.com

Using GPUs is critical to 

achieving performance gains on 

modern supercomputers.

Deep learning provides a new general 

purpose set of tools which are well 

suited for GPUs.

Use DL to construct functions by 

example, and freely mixed with 

traditional code.

Scale trained networks up on 

very large systems, to analyze 

enormous data volumes

Build software too complex 

or unintuitive to code by 

hand (like AlphaGo)

Emulate expensive routines, without 

porting code, to achieve 10x-1000x 

speedup (ex. inverse modeling)

Construct superior physical 

parameterizations directly from 

high resolution simulations or data

These examples are just the 

tip of the AI iceberg

AI
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DEEP LEARNING VS. MACHINE LEARNING
When should I use deep learning vs classical ML?

CLASSICAL ML
Random forests, SVM, K-means, Logistic Regression

Features hand-crafted by experts
Small set of features: 10s or 100s
Dataset is too small for deep learning
NVIDIA RAPIDS: orders of magnitude speedup

DEEP LEARNING
CNN, RNN, LSTM, GAN, Variational Auto-encoders
Finds features automatically
High dimensional data: images, sounds, speech
Large set of training data (10k+ examples)

NVIDIA CU-DNN: accelerates DL frameworks
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SCIENTIFIC CHALLENGES
Barriers to acceptance of deep learning as a tool for science

• Interpretability: Can I understand what the neural-net is doing? (Explainable AI)

• Robustness: Will it always give me the right answer? (GAN discriminator)

• Conservation: Does it conserve mass, momentum, energy? (Lagrange multiplier)

• Coverage: How much training data do I need? (Hybrid solution)

• Convergence: How can I ensure that training will converge? (regress then GAN)

• Uncertainty: How certain can I be of the answers? (Measure covariance)

SCIENTIFIC CHALLENGES


