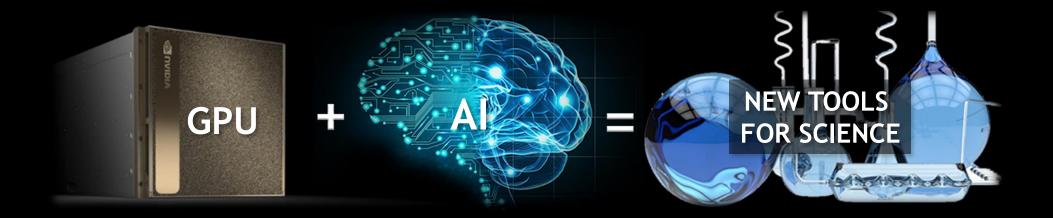


AI FOR SCIENCE NUMERICAL WEATHER PREDICTION - OVERVIEW

David Hall Senior Solutions Architect, NVIDIA GTC March 2019 dhall@nvidia.com

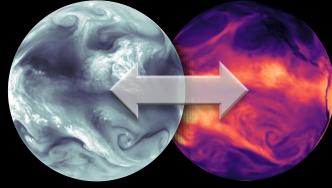
OVERVIEW

NVIDIA GPUs are powering modern supercomputers Using them effectively is increasingly important Modern AI is a perfect fit for GPUs AI + GPUs provides a powerful new set of tools for science



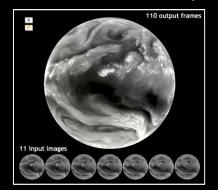
OVERVIEW

TRANSLATION Inverse Modeling for Data Assimilation



ENHANCEMENT

Slow Motion Satellite Loop



EMULATION Model Acceleration Without Porting



PARAMETRIZATION More Accurate Physics from Data

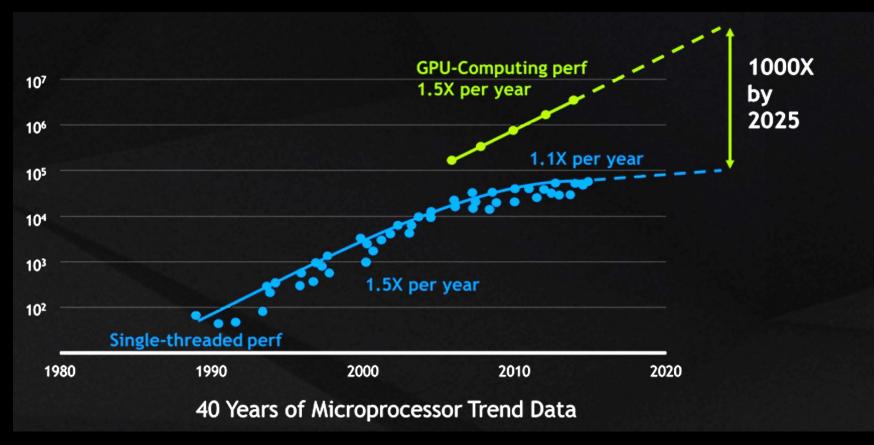
ARTIFICIAL INTELLIGENCE ON GPUS

CPU performance growth has stalled and NVIDIA GPUs are powering current and next generation supercomputers. It is important for researchers and practitioners to learn to use these resources effectively. Artificial intelligence is a natural solution. It makes effective use of GPUs and has the potential to improving all aspects of scientific

computing.

GPUS ARE DRIVING PERFORMANCE GROWTH

The performance gap between CPUs and GPUs is growing rapidly

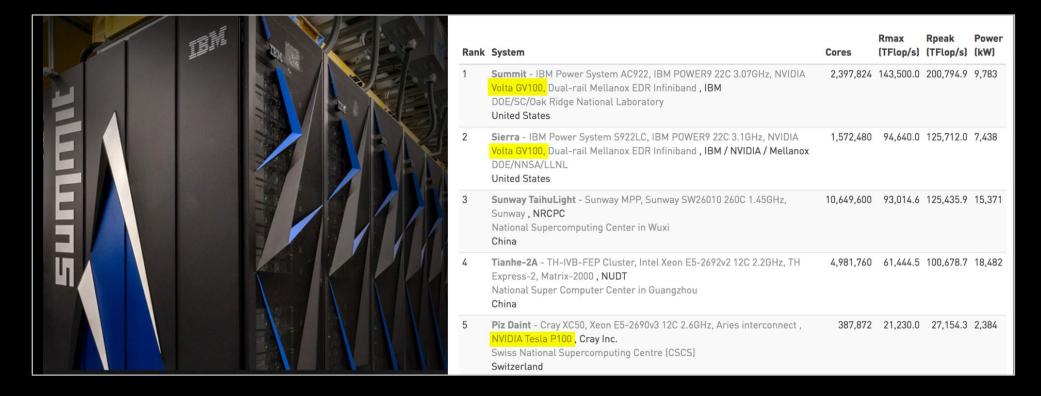


- Dennard scaling has come to an end
- CPU growth has slowed to 10% per year

- GPU performance is growing at 150% per year
- 1000x performance gap projected by 2025

MODERN SUPERCOMPUTERS ARE GPU MACHINES

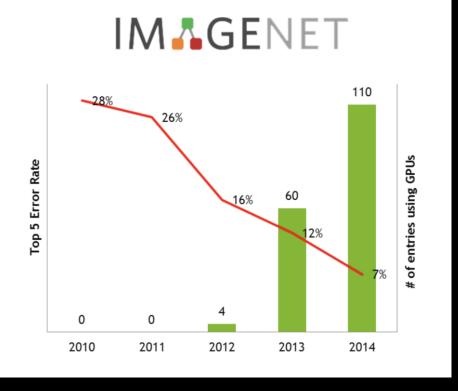
Most high end supercomputers are loaded with NVIDIA Volta GPUs



- Supercomputing centers recognize the advantage of GPUS
- Most high end supercomputers are now GPU machines
- This trend is likely to continue
- Important to learn to use GPUs effectively

AI IS PERFECTLY SUITED FOR GPUS

ImageNet 2012: A Revolution in Computer Vision



ImageNet Classification with Deep Convolutional Neural Networks

Alex Krizhevsky University of Toronto kriz@cs.utoronto.ca Ilya Sutskever University of Toronto ilya@cs.utoronto.ca hi

Geoffrey E. Hinton University of Toronto hinton@cs.utoronto.ca

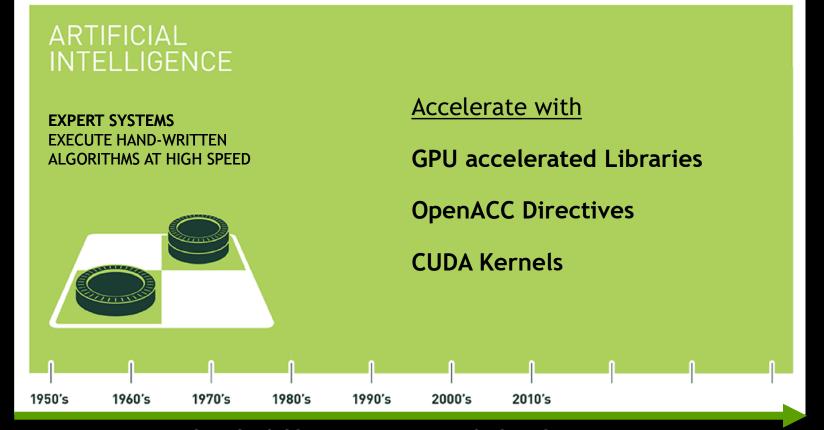
Abstract

We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0% which is considerably better than the previous state-of-the-art. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax. To make training faster, we used non-saturating neurons and a very efficient GPU implementation of the convolution operation. To reduce overfitting in the fully-connected layers we employed a recently-developed regularization method called "dropout" that proved to be very effective. We also entered a variant of this model in the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%, compared to 26.2% achieved by the second-best entry.

- Luckily, AI is a perfect fit for GPUs
- Alex Krizhevsky demonstrated this in 2012 @ Imagenet
- His simple DNN defeated the best expert coded solutions
- Deep learning has been growing like wildfire since

THREE ROADS TO AI

There are three main flavors of AI, and each can be GPU accelerated

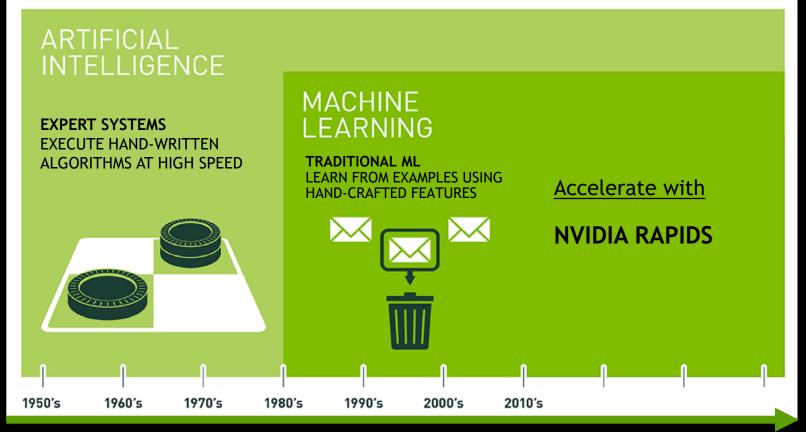


INCREASING COMPLEXITY AND AUTONOMY OVER TIME

- There are 3 main types of AI
- Expert systems accelerated through libraries, OpenACC, CUDA DL is accelerated via cuDNN in most DL frameworks
- ML is accelerated with NVIDIA's RAPIDS

THREE ROADS TO AI

There are three main flavors of AI, and each can be GPU accelerated

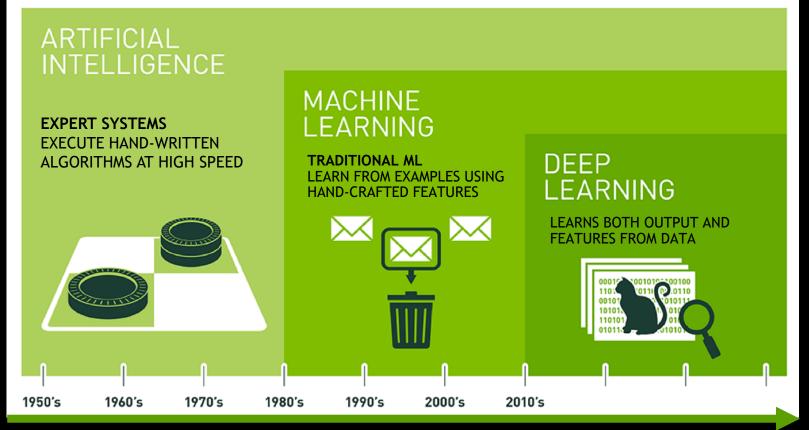


INCREASING COMPLEXITY AND AUTONOMY OVER TIME

- There are 3 main types of AI
- Expert systems accelerated through libraries, OpenACC, CUDA DL is accelerated via cuDNN in most DL frameworks
- ML is accelerated with NVIDIA's RAPIDS

THREE ROADS TO AI

There are three main flavors of AI, and each can be GPU accelerated



INCREASING COMPLEXITY AND AUTONOMY OVER TIME

- There are 3 main types of AI
- Expert systems accelerated through libraries, OpenACC, CUDA DL is accelerated via cuDNN in most DL frameworks
- ML is accelerated with NVIDIA's RAPIDS

EXPERT SYSTEM GARY KASPAROV VS DEEP BLUE 1997

Deep Blue: an expert system for playing chess

Experts hand-coded heuristics for pieces and positions

High speed search enabled super-human performance

Defeated world chess champion in 1997

DEEP LEARNING LEE SEDOL VS ALPHA-GO 2016

Go is much too large to be beaten by brute force.

A game of human intuition

Unbeatable by machines...

AlphaGo: Deep reinforcement learning and self competition

Defeated top world Go champions in 2016-2017

Also world champion in Chess and Shogi

NWP IS AN EXPERT SYSTEM Expert knowledge encoded as software, executed at high speed.

Encodes knowledge of experts as algorithms
So familiar, most people don't think of it as Al

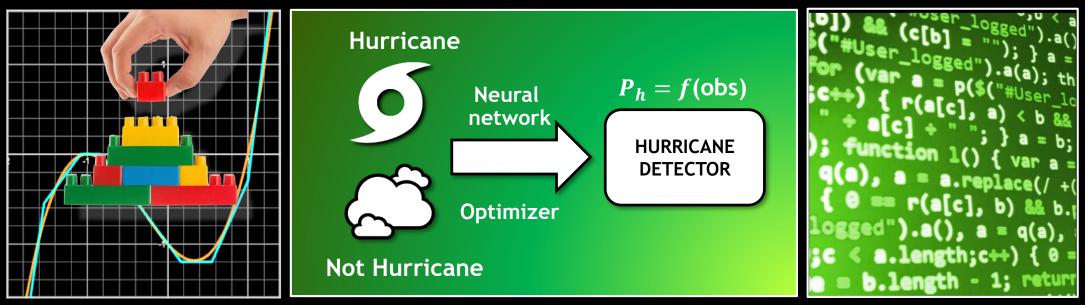
- Deep learning provides a new set of tools
- All stages of NWP may be augmented by deep learning

DEEP LEARNING: A NEW SET OF TOOLS FOR SCIENCE

Deep learning provides a new approach for building complex software components, by constructing functions automatically from a large set of examples. This approach complements traditional algorithm development, providing a means of devising algorithms too complex, subtle, or unintuitive to code by hand.

SOFTWARE BY EXAMPLE

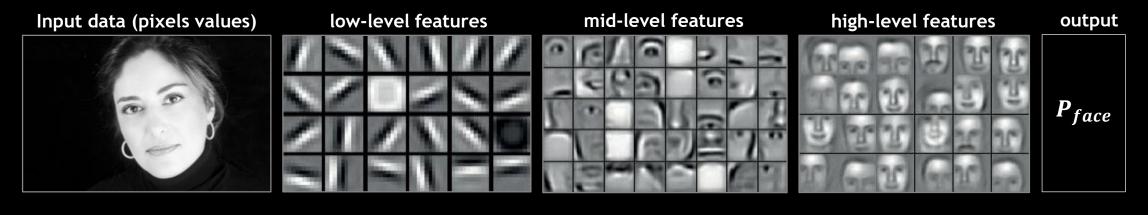
Supervised deep Learning builds functions from input/output pairs



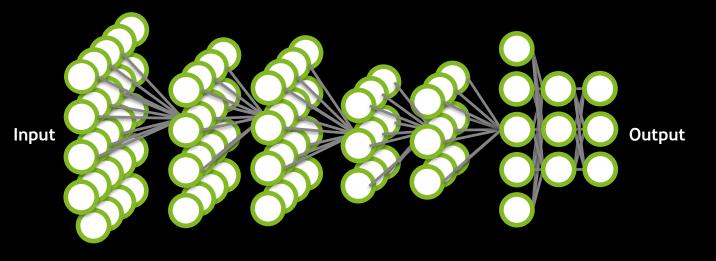
Functions are the building blocks of software. DL can approximate any function.

Some functions are too challenging to code by hand. DL builds complex functions from a set of examples. Mix freely with conventional software and algorithms

DL LEARNS FEATURES FROM DATA Deep learning automatically finds feature hierarchies



- Example: face detection
- Learns lines, noses, faces
- Returns $P_{face} = F(pixels)$
- Greater depth → greater abstraction
- 1000s of subtly different feature detectors
- Different data produces a different algorithm

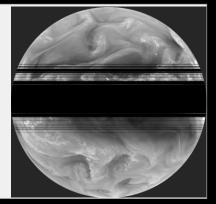


DETECTION

• **Tropical storms** Extra-tropical cyclones Atmospheric rivers Cyclogenesis events Convection initiation Change detection

ENHANCEMENT

Frame repair Sequence repair • Slow motion Super-resolution Cloud removal Data augmentation



TRANSLATION

• Data Assimilation Forecast verification Model inter-comparison Common data formatting Colorization Digital Elevation from Imagery

EMULATION

Physics Acceleration
Turbulence
Radiation
Convection
Microphysics
Dynamics Acceleration

PREDICTION

Uncertainty prediction Storm track Storm intensity Fluid motion Now casting Satellite frame prediction

PARAMETRIZATION

New parametrizations From higher resolution model

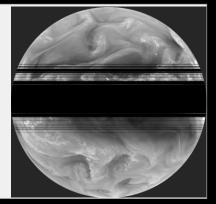
From observational data

DETECTION

• **Tropical storms** Extra-tropical cyclones Atmospheric rivers Cyclogenesis events Convection initiation Change detection

ENHANCEMENT

Frame repair Sequence repair • Slow motion Super-resolution Cloud removal Data augmentation



TRANSLATION

• Data Assimilation Forecast verification Model inter-comparison Common data formatting Colorization Digital Elevation from Imagery

EMULATION

Physics Acceleration
Turbulence
Radiation
Convection
Microphysics
Dynamics Acceleration

PREDICTION

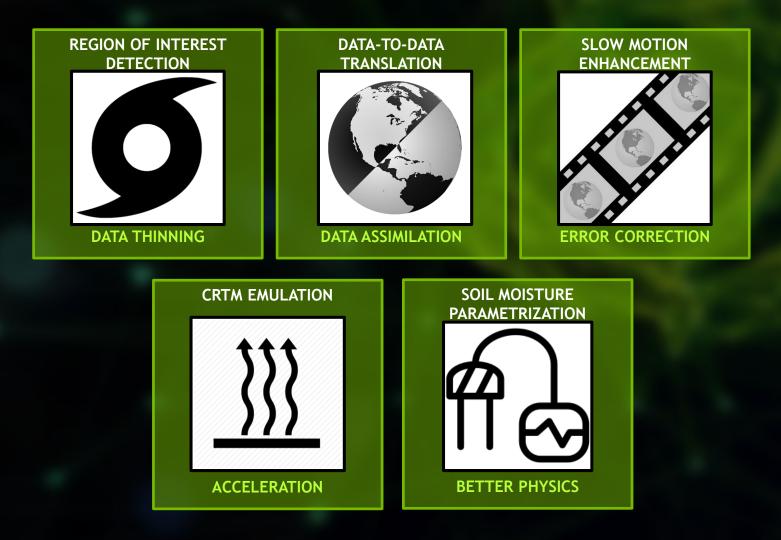
Uncertainty prediction Storm track Storm intensity Fluid motion Now casting Satellite frame prediction

PARAMETRIZATION

New parametrizations From higher resolution model

From observational data

SELECTED DEEP LEARNING EXAMPLES



1. STORM DETECTION: AI ASSISTED DATA ANALYSIS

The quantity of data produced by models, satellites and other sensors has become impractical to analyze manually. AI can help by detecting important features, tends, and anomalies. Applications include storm tracking, data thinning, advanced warning systems, search and rescue, route planning, and more.

HURRICANE: CAT 2

IMAGE CREDIT: NOAA NESDIS

HURRICANE: CAT 1

STORM DETECTION

Automatically locate and classify significant weather events

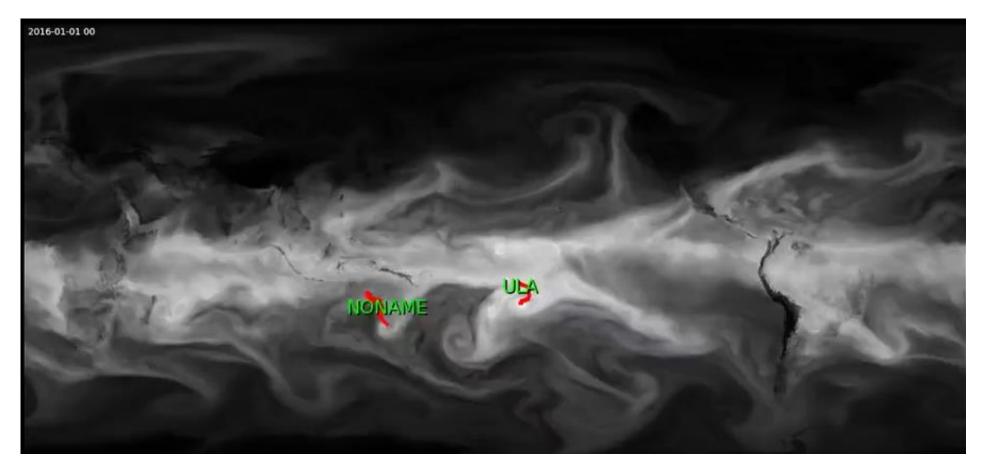
Some events have a large impact on the weather

Detect such events automatically

- Tropical Cyclones
- Extra-tropical cyclones
- Atmospheric Rivers
- Storm Fronts
- Convection Initiation
- Cyclogenesis

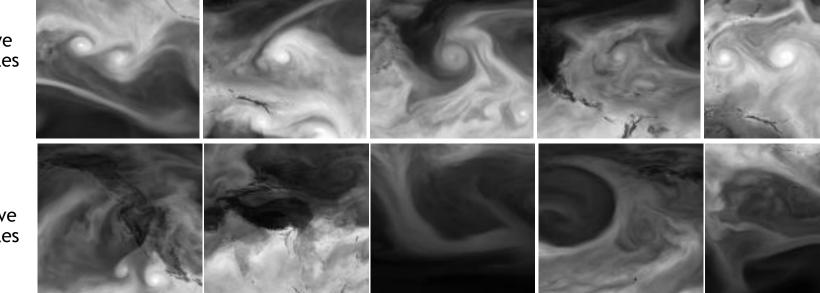
LOCATE KNOWN STORMS

Use expert labeled IBTrACS database to locate storms in model data



EXTRACT TRAINING AND TEST EXAMPLES

Extract storm/no-storm examples for supervised learning

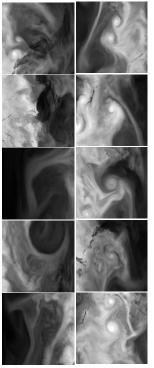


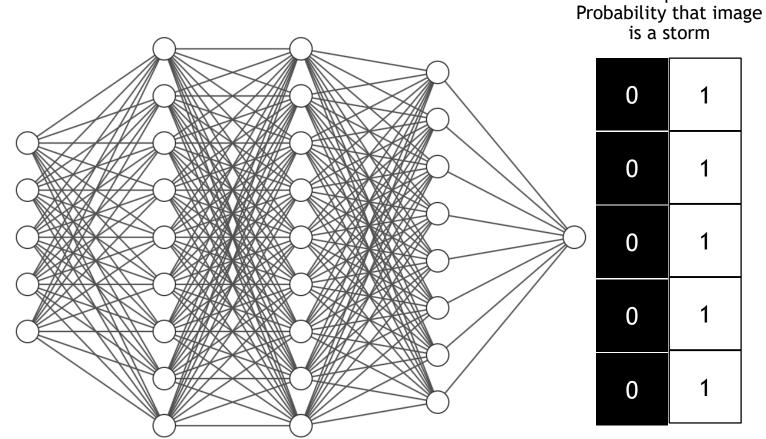
Positive Examples

Negative Examples

TRAIN: SEARCH FOR FUNCTION THAT FITS THE DATA Training phase

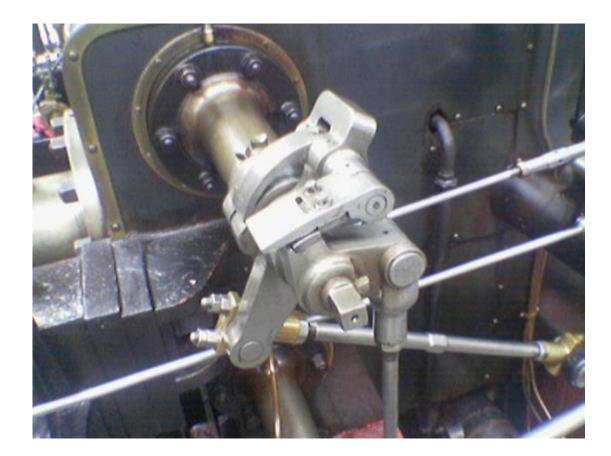
Input: batch of water vapor concentrations





Output:

CONVOLUTION EXAMPLE: SOBEL FILTER



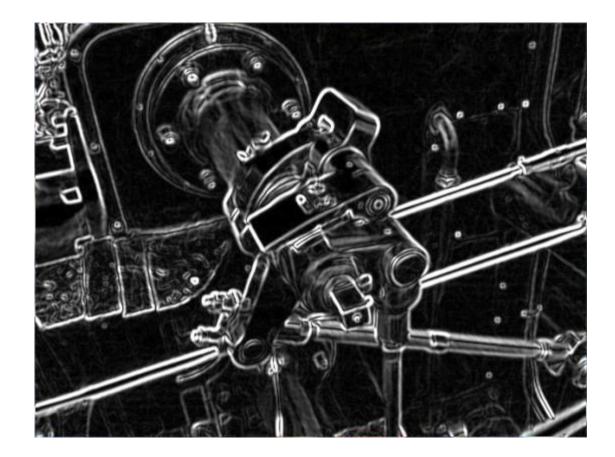
$$G_{x} = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$

$$G_y = \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix}$$

 $G = \sqrt{{G_x}^2 + {G_y}^2}$

Image source: https://en.wikipedia.org/wiki/Sobel_operator

CONVOLUTION EXAMPLE: SOBEL FILTER



 $G_{\chi} = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$

 $G_y = \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix}$

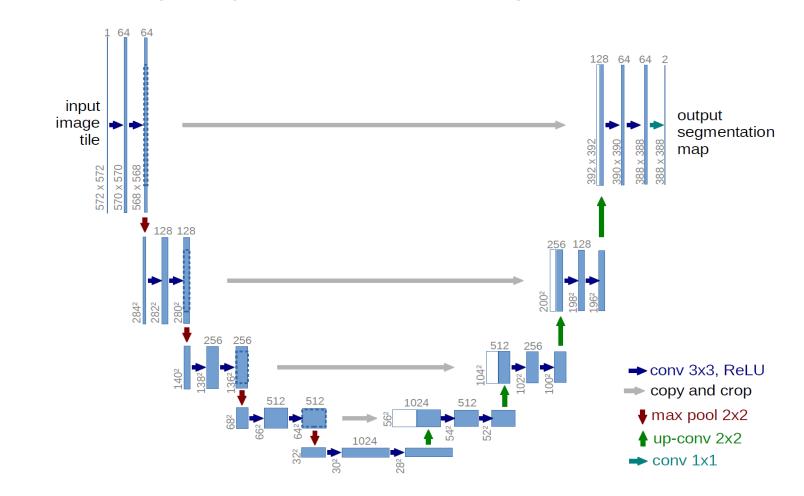
 $G = \sqrt{{G_x}^2 + {G_y}^2}$

CONVOLUTIONAL NEURAL NETWORK Network of convolutional filters assigned automatically from data Center element of the kernel is placed over the source pixel. The source pixel is then replaced with a weighted sum of itself and nearby pixels. Source ſ Pixel -8 Convolution kernel (Feature) New pixel value (destination pixel)

The values of the filter/feature/kernel are parameters determined during DNN training.

U-NET: CONVOLUTIONAL NEURAL NETWORK

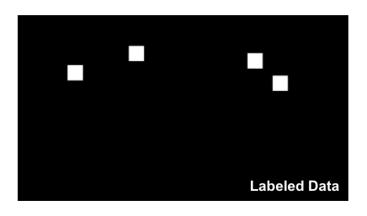
Image segmentation at multiple scales



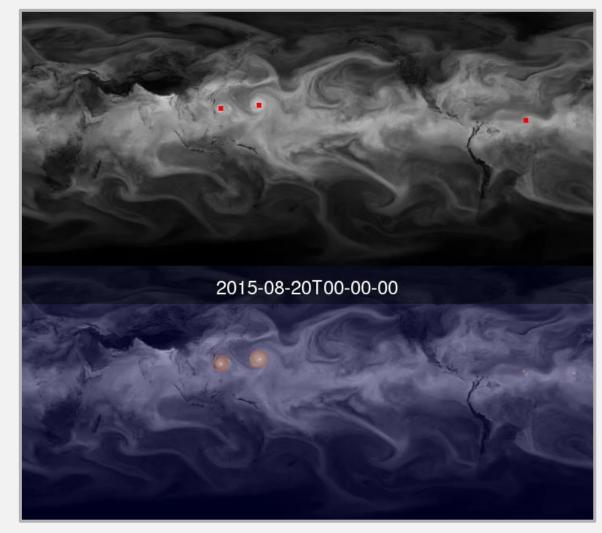
TROPICAL STORMS GFS MODEL DATA

Jebb Stewart, Christina Bonfonti, Mark Govett NOAA, David Hall NVIDIA

INPUT	GFS PWAT + IBTRACKS
OUTPUT	DETECTION CONFIDENCE
TRAINING SET	2010-2015
TEST SET	2016
NETWORK	U-NET



Ground Truth



Prediction

Automatically detect future storms.

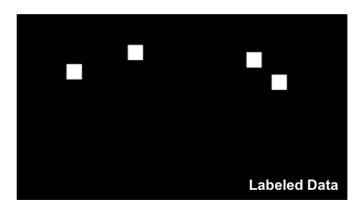
No need to define precise heuristics.

Storms defined implicitly by example.

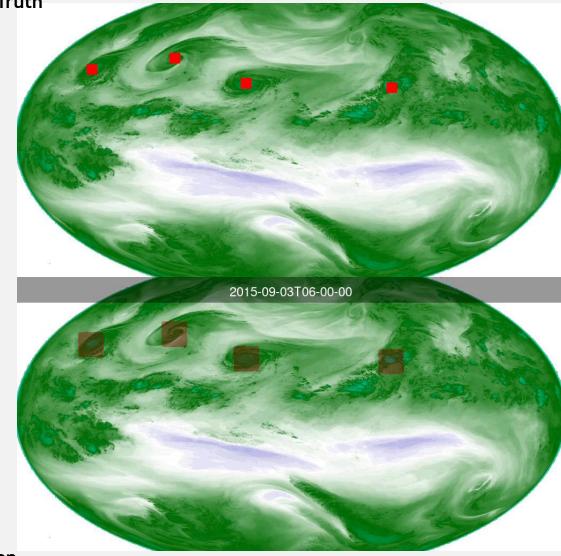
TROPICAL STORMS GOES SATELLITE

Jebb Stewart, Christina Bonfonti, Mark Govett NOAA, David Hall NVIDIA

INPUT	GOES UPPER TROPO WV
OUTPUT	DETECTION CONFIDENCE
TRAINING SET	2010-2013
TEST SET	2015
NETWORK	U-NET



Ground Truth



Prediction

• Uses only upper tropo water vapor

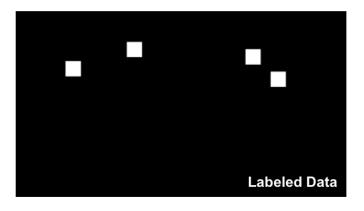
• Accurate near image center

• Has some trouble Earth's limb

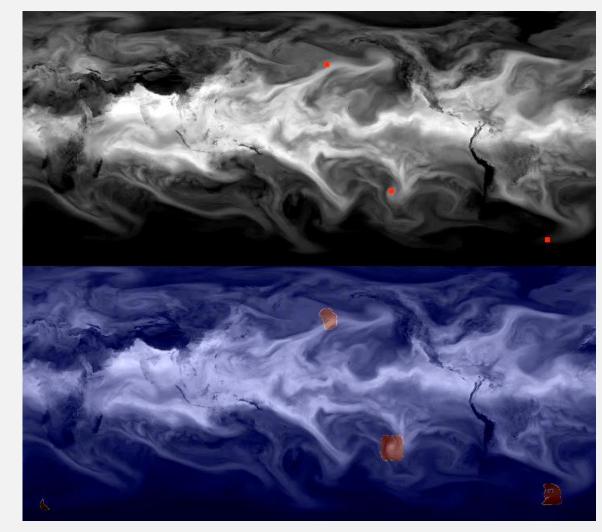
EXTRATROPICAL CYCLONES GFS MODEL DATA

Christina Bonfonti , Jebb Stewart, Mark Govett NOAA, David Hall NVIDIA

INPUT	GFS PWAT + HEURISTIC
OUTPUT	DETECTION CONFIDENCE
TRAINING SET	2011-2014
TEST SET	2015
NETWORK	U-NET



Ground Truth



Prediction

• Data labelled using a heuristic (T,P,wind)

• Trained network needs only water-vapor

• Fast and simple detection

GPU VS CPU TRAINING

GPUs enabled a 300x speedup in training time

NOAA's Theia Supercomputer

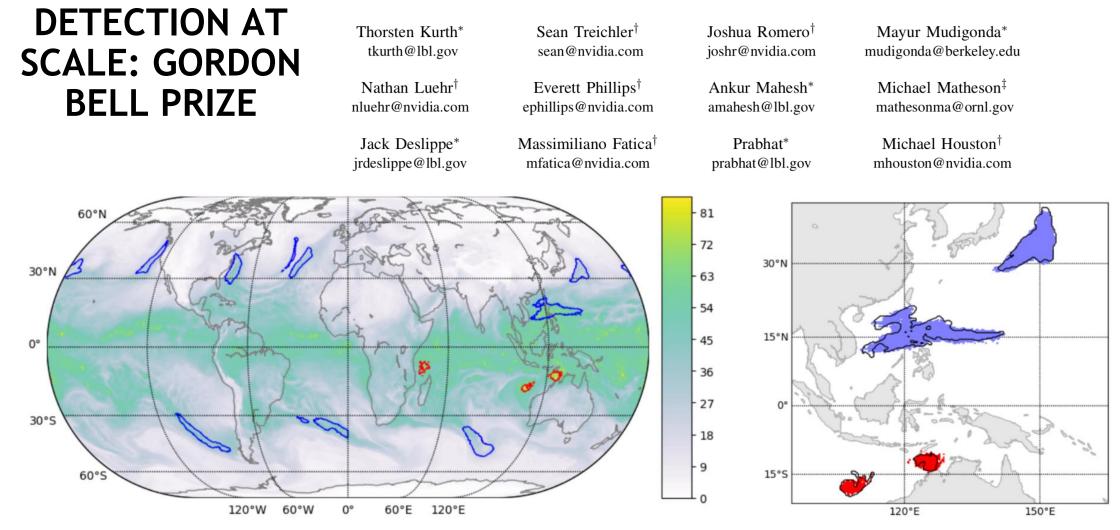
Task: NOAA ESRL, Tropical Storm Detection

100 Fine Grain Nodes:

Two 10-core Haswell, 256GB / node

8 Telsa P100 GPUs / node CPU training time: 500 hours GPU training time: 1.5 hrs (8 GPUs)

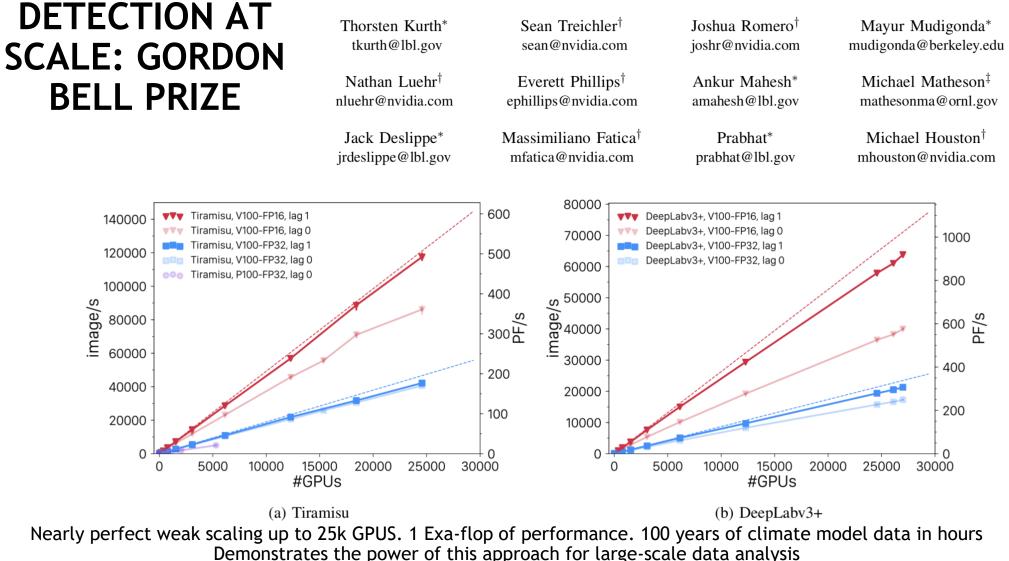
Exascale Deep Learning for Climate Analytics



Segmentation of Tropical Storms and Atmospheric Rivers on Summit using convolutional neural networks.

33 📀

Exascale Deep Learning for Climate Analytics



34 📀

2. TRANSLATION: IMPROVED DATA ASSIMILATION VIA INVERSE MODELING

Deep learning can automatically construct maps between any two related coordinate systems. This can be used to convert satellite observations into model variables, with applications to data assimilation. It also has the potential to enable us to combine information from multiple models or satellites into a single dataset of greater accuracy and completeness.

IMAGE TO IMAGE TRANSLATION

Conditional GANS can translate one type of image into another

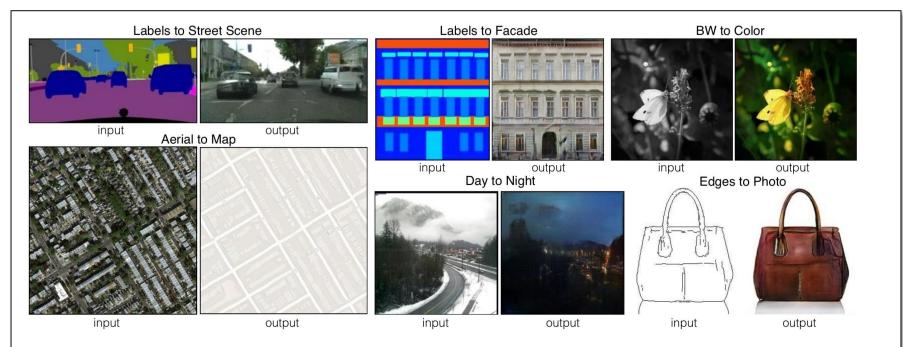
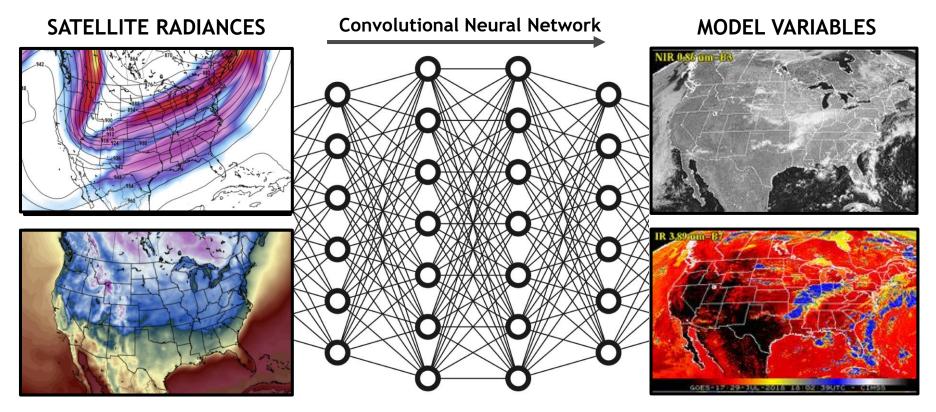


Figure 1: Many problems in image processing, graphics, and vision involve translating an input image into a corresponding output image. These problems are often treated with application-specific algorithms, even though the setting is always the same: map pixels to pixels. Conditional adversarial nets are a general-purpose solution that appears to work well on a wide variety of these problems. Here we show results of the method on several. In each case we use the same architecture and objective, and simply train on different data.

MAP: MODEL TO SATELLITE (FORWARD OPERATOR)

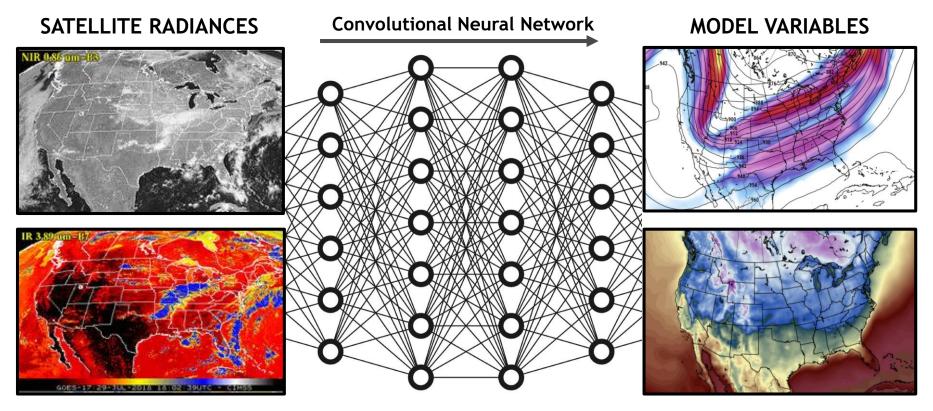
Model analyses to satellite observations



Maps from 3d fields to 3d fields, rather than one column at a time Can use spatial patterns to guide predictions

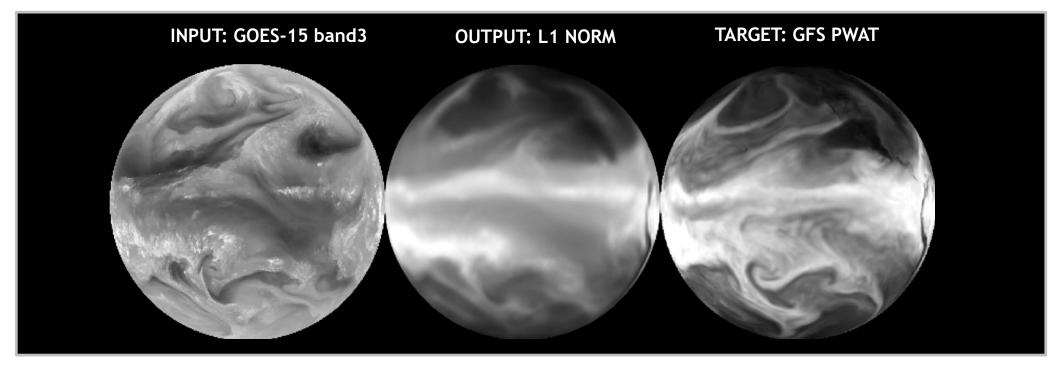
MAP: SATELLITE TO MODEL (INVERSE OPERATOR)

Satellite observations to model analyses



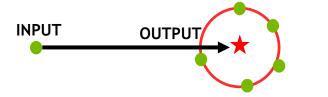
Hard to construct an inverse model by hand, but no more difficult for a neural network than the forward model.

RESULTS: REGRESSION One-to-many map results in 'regression to the mean'



Example of incomplete information: upper-tropo WV to total column WV

L1 output is *average* of multiple plausible states Not consistent with any single realizable state Adding bands can more fully constrain the output



RESULTS: CONDITIONAL GAN

Physically plausible state from incomplete data

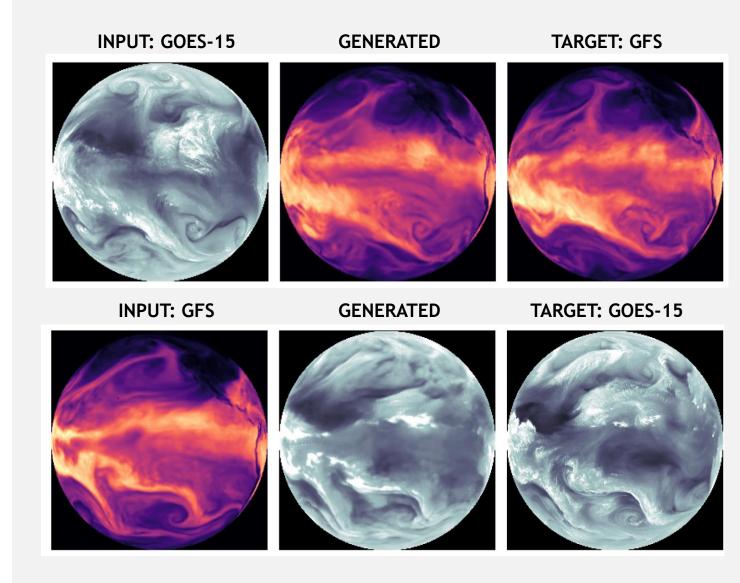
OBSERVATION	GOES-15 band 3
MODEL VAR	GFS Precipitable water
Training	2014-2016
Test	2013

Adversarial model outputs a physically plausible state

Like an ensemble member from uncertain initial conditions

Both forward and inverse maps

For data assimilation and forecast verification



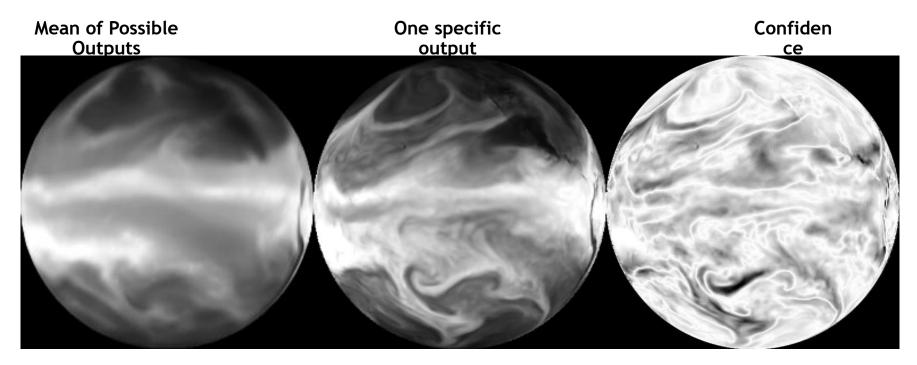
APPLICATIONS TO DATA ASSIMILATION

Accelerate forward and/or inverse models

Background state	Observations	Forward Operator	Background Error Covariances	Observation Error Covariances
x_b	У	H[x]	В	R
 3DVAR: Iterate to minimize loss J(x). H is expensive! J(x) = (x - x_b)^TB⁻¹(x - x_b) + (y - H[x])^TR⁻¹(y - H[x) 1. Accelerate H by replacing it with DL forward map 2. Apply DL inverse map, then solve for x directly! J(x) = (x - x_b)^TB⁻¹(x - x_b) + (x - x_o)^TR⁻¹(x - x_o) 		Н	EVATIONS x minimize J(x, y) x DEL	

NEED FOR UNCERTAINTY QUANTIFICATION

Some pixels are certain, others are are completely uncertain



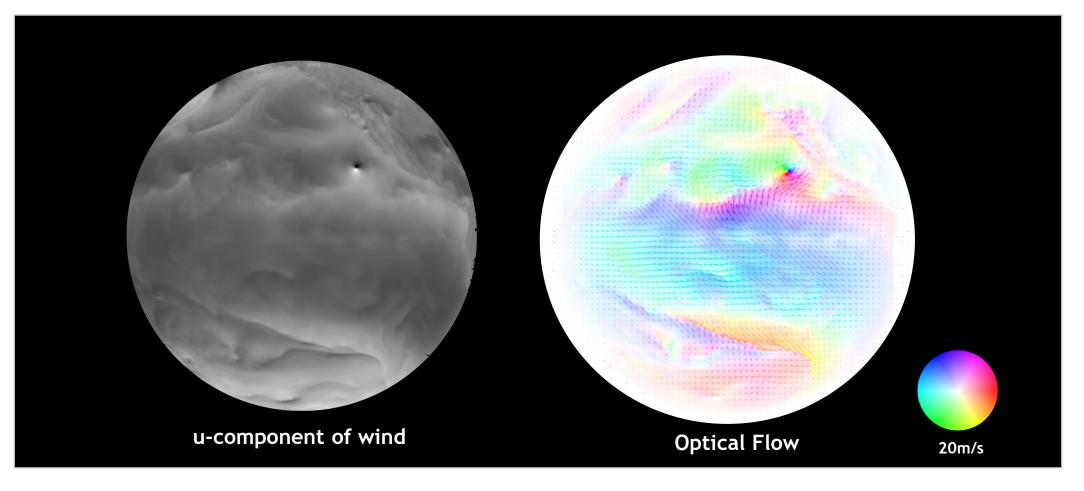
Need pixel-level variances and covariances to combine with other data sources Use Bayesian neural networks to explicitly model uncertainties Or use "Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles"

3. ENHANCEMENT: SLOW MOTION SATELLITE LOOPS

Deep learning may be used to enhance satellite data by learning to intelligently interpolate it in time. We can also repair damage data by imputing missing pixels, missing channels, or even dropped frames. More ambitiously, deep learning has the potential to learn the underlying dynamics directly from observations, Which may then be used to estimate future satellite observations directly.

NVIDIA SUPER SLOW-MOTION Deep learning for temporal interpolation

OPTICAL FLOW FROM MODEL WINDS Estimate motion vectors from upper tropospheric model winds



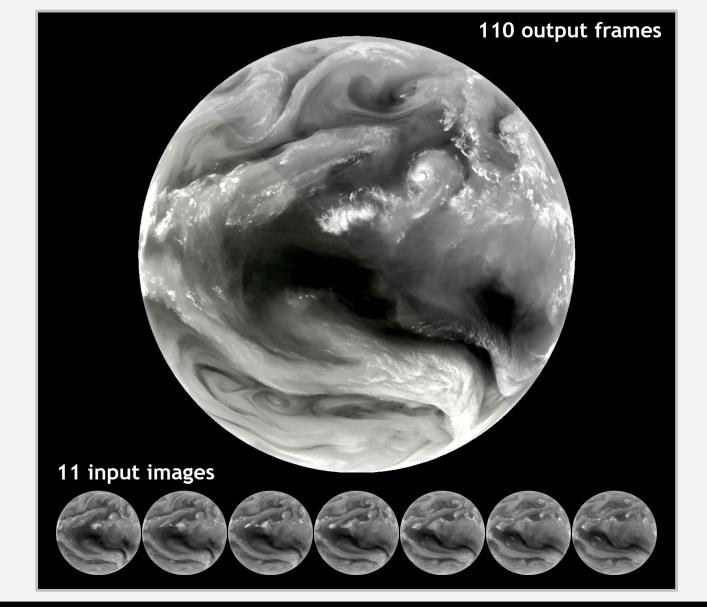
SLOW MOTION SATELLITE LOOP

David Hall NVIDIA

INPUT	GOES-15 band 3, GFS winds
OUTPUT	Interpolated GOES-15
INPUT FREQ	1 every 3 hours
OUTPUT FREQ	1 every 18 minutes

Applications:

- Visualization
- Data Augmentation
- Replace dropped frames
- Reduce storage requirements



PARAMETER INFERENCE Fine tune winds from observations

Improve estimate of advective winds Treat model winds as an initial guess Advect observations forward from frame n Compute a loss function using frame n+1 Back-propagate to obtain gradient Optimize to fine tune wind speeds

MODEL INFERENCE Learn both the winds and the ODE from observations

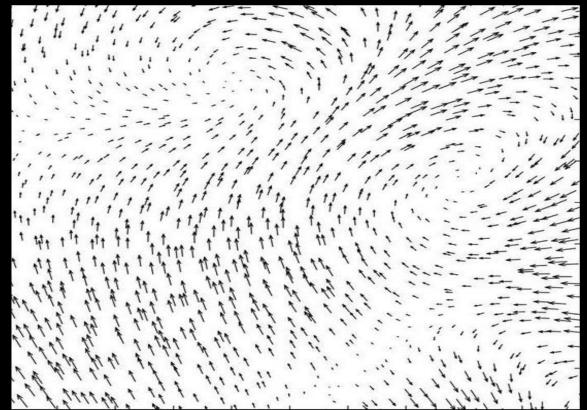
Use robust ODE solver for time integration

Represent derivatives via a neural net

Compute loss function following RK-NN paper

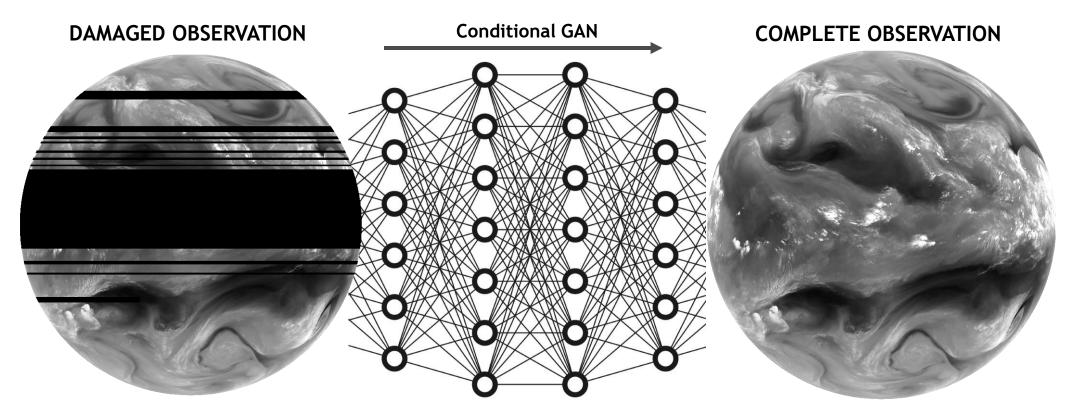
Obtain gradients via Adjoint Sensitivity

Automatically learn dynamics from data



IMPUTE MISSING DATA

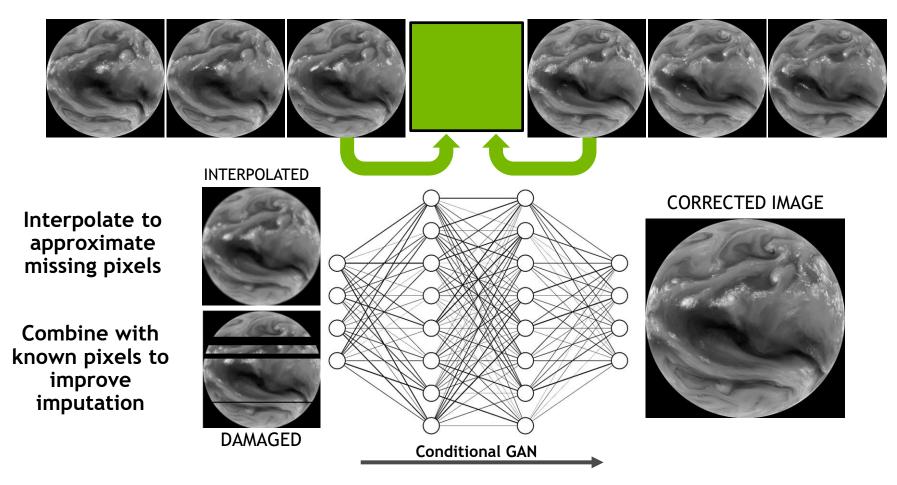
Train a conditional GAN to reconstruct missing pixels



Missing data can potentially be reconstructed from information in the other bands

INTERPOLATION + IMPUTATION

Interpolate in time to provide additional information for imputation



(Or map from the interpolated images to the real images, to improve interpolated image quality)

4. ACCELERATION VIA NEURAL NET EMULATION

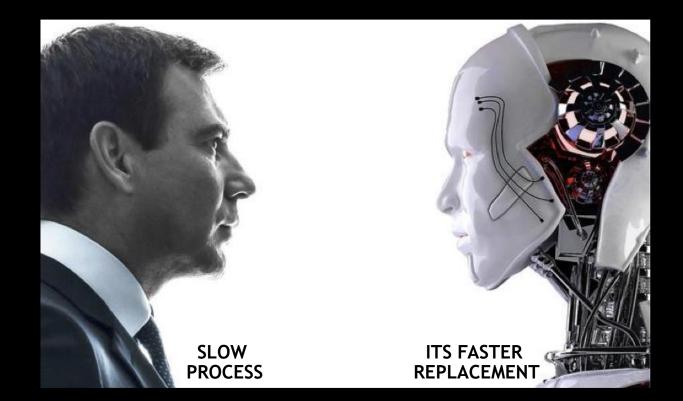
Deep neural networks can produce high fidelity approximations of expensive functions through supervised training on a large number of input-output data pairs. The resulting emulation can be multiple orders of magnitude faster than the original. It's similar to a lookup table, but with feature-aware interpolation in high dimensional spaces. This approach enables GPU acceleration of arbitrarily complex functions without labor intensive code porting.

ACCELERATION VIA EMULATION Do the same thing, but do it much *faster*

An alternate route to GPU acceleration Accelerates conventional routines Complimentary to OpenACC and CUDA Replace expensive routines with DNNs Train on 1000s of input/output pairs No need to port original code to GPU Orders of magnitude faster at runtime

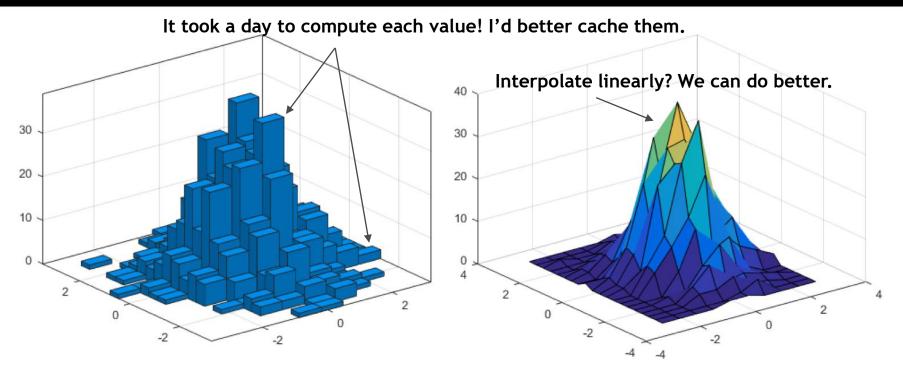
Examples:

- Ocean wave-wave interactions
- Radiation parametrization
- Cloud super-parametrization
- Particle collider simulations



EMULATION: AN AI POWERED LOOKUP-TABLE

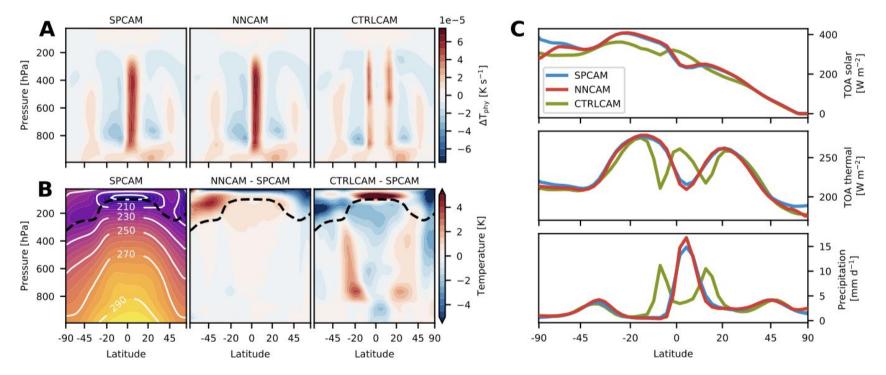
Precompute expensive values, and interpolate intelligently



- Imagine it takes a day to compute a single value
- Do you ever want to repeat that calculation?
- What if you want a value that is *almost the same*?
- Deep learning emulation fits a custom curve comprised of features learned from your data.
- It interpolates but can't extrapolate.

EMULATION: CAM SUPER-PARAMETRIZATION (20X)

Deep learning to represent sub-grid processes in climate models Stephan Rasp, Michael Pritchard, UC Irvine Pierre Gentine, Columbia University



A) Mean heating rate B) Mean temp and biases C) Top of atmosphere fluxes, and precipitation

SPCAM is a 2d cloud-resolving parameterization for greater accuracy

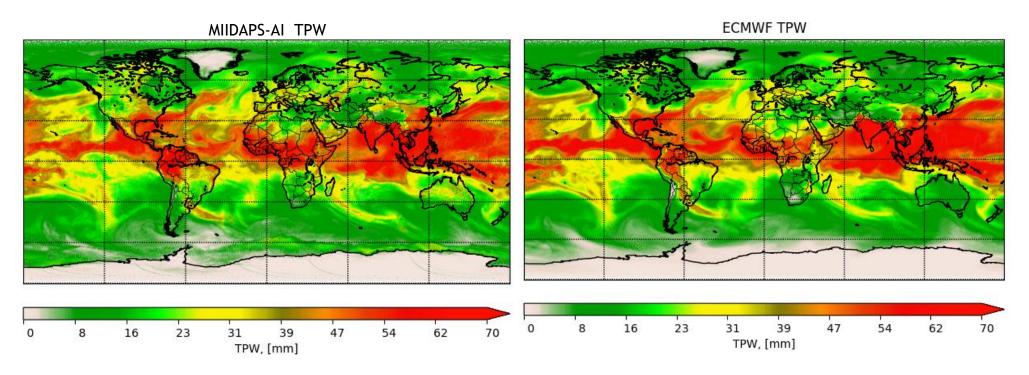
NNCAM emulates SP-CAM, with 20x speedup

Details: 9 fully connected layers, 567k params, 8 hours training time on a single NVIDIA GTX 1080

EMULATION: MIIDAPS-AI (1400X)

Multi-Instrument Inversion and Data Assimilation Preprocessing System

Sid Boukabara NOAA/NESDIS Eric Maddy, Adam Neiss Riverside Technology Inc

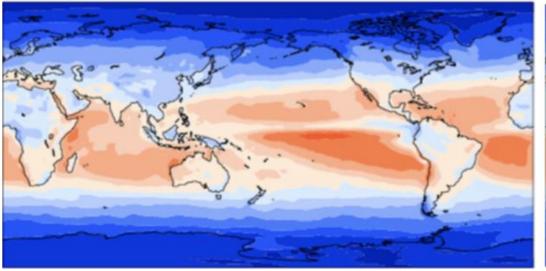


Inverse operator for multiple IR and microwave satellites. Iteratively uses CRTM radiative transfer model 5 seconds vs 2 hrs to process one day 1400x speedup.

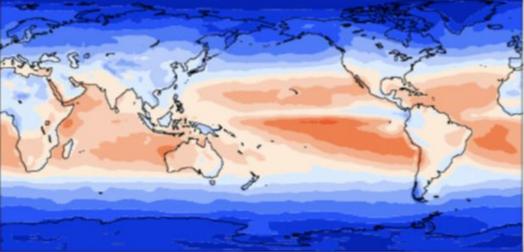
EMULATION: RRTMG (10X) Rapid Radiative Transfer Model for GCMs

Matthew Norman, Pal Anikesh, ORNL

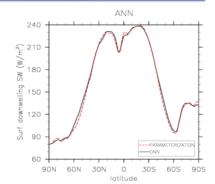
Surface Net SW Flux (RRTMG). Mean = 161.91 W/m²



Surface Net SW Flux (Emulation). Mean = 161.91 W/m²

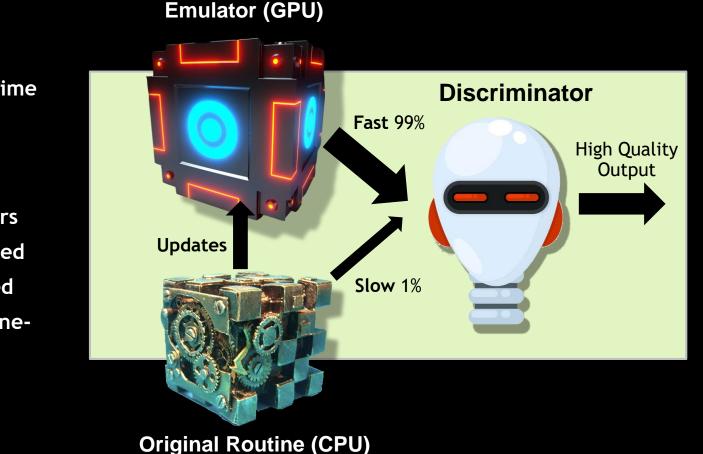


Emulation of radiative transfer parametrization E3SM global climate model Speedup of 8-10x over original. Details: 3778 inputs, fully connected, 3 hidden layers, 6million training samples



HYBRID EMULATION MODEL

One approach to address the quality / coverage issues



- Fast emulation at run-time
- Discriminator ensures quality
- For new use cases:
- Discriminator flags errors
- Original routine is applied
- New output pairs cached
- Emulator weights are finetuned

STOCHASTIC EMULATIONS

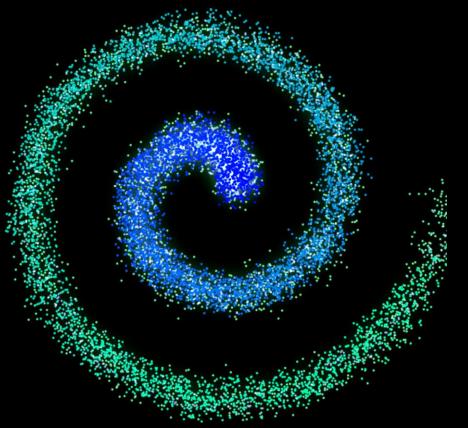
Generative Adversarial Networks produce better emulations

Emulation via regression leads to artificially smoothed output (regression to the mean)

Use conditional GANs to stochastically sample the distribution of realizable states

More faithfully emulates the original function

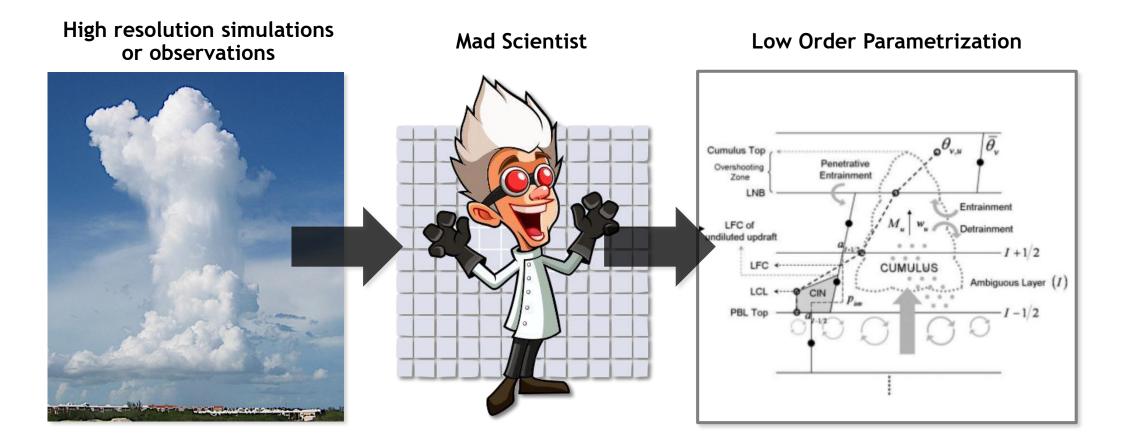
Discriminator provides a natural mechanism for detecting errors



5. IMPROVED PHYSICAL PARAMETRIZATIONS FROM DATA

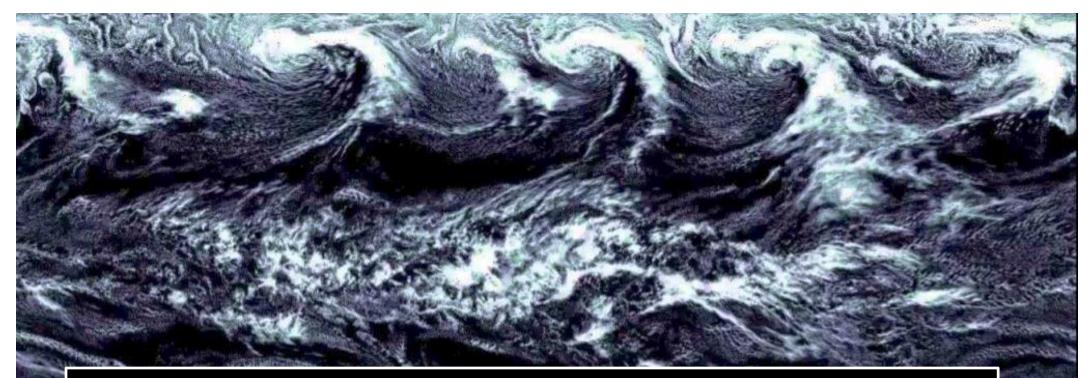
Physical parametrizations represent unresolved physics in climate and weather models. They need to be simple to be fast, and are often inaccurate approximations, hand coded by domain experts. Using deep learning, we can create more accurate parametrization directly from observational data, or from high resolution simulations.

HOW WE USUALLY BUILD PARAMETERIZATIONS Expert guided physical approximation



UNIFIED PHYSICS PARAMETERIZATION Prognostic Validation of a Neural Network Unified Physics

Noah Brenowitz and Cristopher Bretherton, University of Washington, May 2018



Improved parametrization for global climate model Trained on near-global aqua-planet simulation Predicts heating and moistening tendencies Loss function minimizing accumulated error over several days is accurate and stable 3 layer fully connected network, 256 neurons each

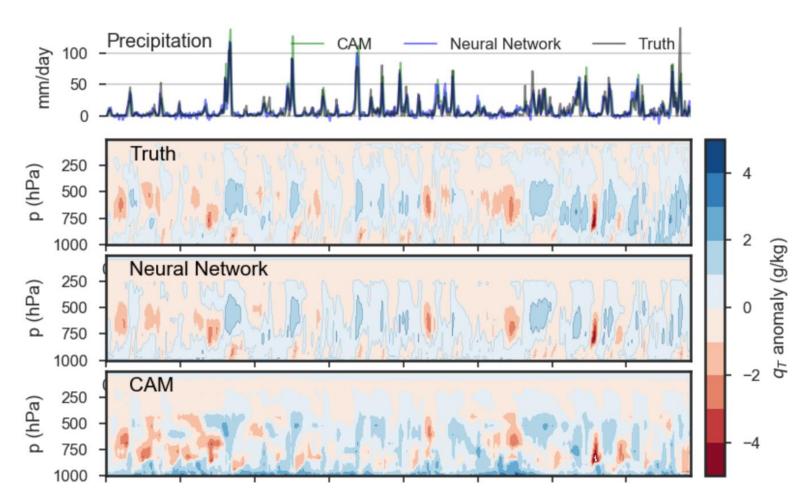
51 💿

UNIFIED PHYSICS PARAMETERIZATION

Prognostic Validation of a Neural Network Unified Physics

Noah Brenowitz and Cristopher Bretherton, University of Washington, May 2018

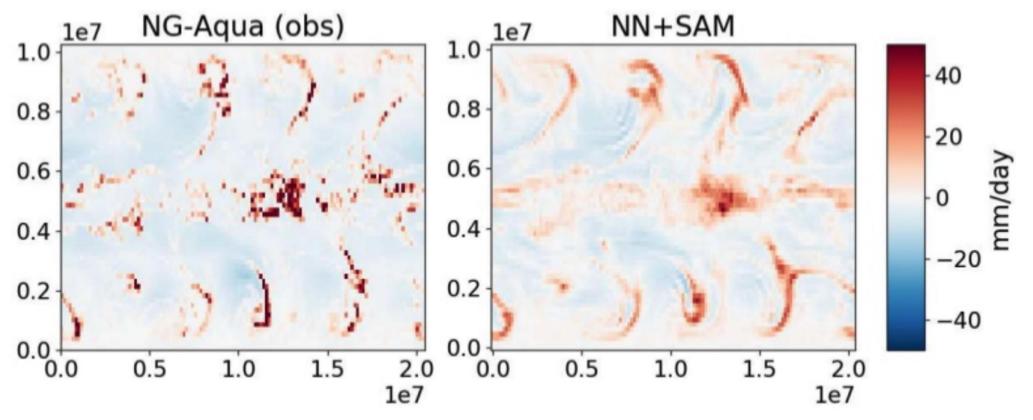
- More accurate than CAM
- Improves forecast accuracy



UNIFIED PHYSICS PARAMETERIZATION

Prognostic Validation of a Neural Network Unified Physics

Noah Brenowitz and Cristopher Bretherton, University of Washington, May 2018

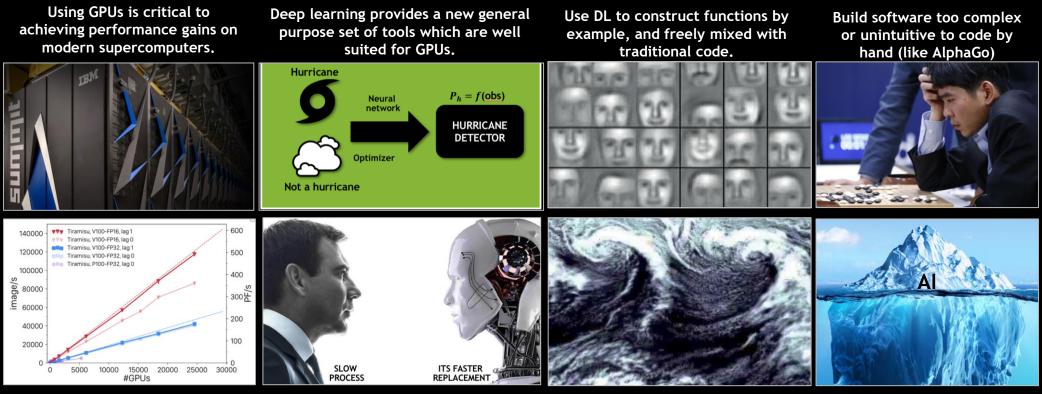


Exhibits loss of stochasticity. (Fix using stochastic sampling based on conditional GAN)

IMPROVED SOIL MOISTURE IN HRRR Lidia Trailovik and Isadora Jankov NOAA ESRL

- Soil moisture is important for convection initiation
- Current parametrization in HRR is inadequate
- Create a better parametrization from field observations
- Use surface measurements to infer sub-surface state
- Mesonet weather station network provides ground truth

SUMMARY



Scale trained networks up on very large systems, to analyze enormous data volumes

Emulate expensive routines, without porting code, to achieve 10x-1000x speedup (ex. inverse modeling)

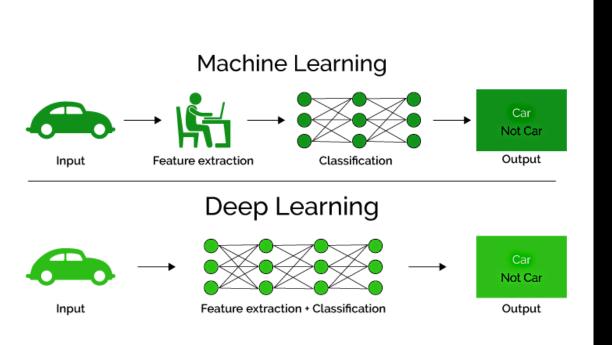
Construct superior physical parameterizations directly from high resolution simulations or data

These examples are just the tip of the AI iceberg

dhall@nvidia.com

DEEP LEARNING VS. MACHINE LEARNING

When should I use deep learning vs classical ML?



CLASSICAL ML

Random forests, SVM, K-means, Logistic Regression Features hand-crafted by experts Small set of features: 10s or 100s Dataset is too small for deep learning NVIDIA RAPIDS: orders of magnitude speedup

DEEP LEARNING CNN, RNN, LSTM, GAN, Variational Auto-encoders Finds features automatically High dimensional data: images, sounds, speech Large set of training data (10k+ examples) NVIDIA CU-DNN: accelerates DL frameworks

SCIENTIFIC CHALLENGES

Barriers to acceptance of deep learning as a tool for science

- Interpretability:
 - **Robustness:**
 - **Conservation:**
 - Coverage:
 - **Convergence:**
 - **Uncertainty:**

- **Can I understand what the neural-net is doing?** (Explainable AI) Will it always give me the right answer? (GAN discriminator) **Does it conserve mass, momentum, energy?** (Lagrange multiplier) How much training data do I need? (Hybrid solution)
- How can I ensure that training will converge? (regress then GAN) How certain can I be of the answers? (Measure covariance)