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OVERVIEW

NVIDIA GPUs are powering modern supercomputers
Using them effectively is increasingly important
Modern Al is a perfect fit for GPUs
Al + GPUs provides a powerful new set of tools for science
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OVERVIEW

DETECTION TRANSLATION ENHANCEMENT

Tropical Storm Detection Inverse Modeling for Data Assimilation Slow Motion Satellite Loop
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ARTIFICIAL x
INTELLIGENCE o~
ON GPUS 2

stalled and NVIDIA GPUs are >

CPU performance growth has
X -
powering current and next e
generation supercomputers. It is -
\

important for researchers and

practitioners to learn to use
these resources effectively.
Artificial intelligence is a natural
solution. It makes effective use
of GPUs and has the potential to
improving all aspects of
scientific
computing.




GPUS ARE DRIVING PERFORMANCE GROWTH

The performance gap between CPUs and GPUs is growing rapidly

L

-~
-
: GPU-Computing perf -~ 5 1000X
10 1.5X per year o by
108 / 2025
1.1X per year ¥
e e T T e e o W o
104
103 &
°o® 1.5X per year
102 @
o0
Single-threaded perf
1980 1990 2000 2010 2020
40 Years of Microprocessor Trend Data
» Dennard scaling has come to an end * GPU performance is growing at 150% per year
» CPU growth has slowed to 10% per year * 1000x performance gap projected by 2025
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MODERN SUPERCOMPUTERS ARE GPU MACHINES
Most high end supercomputers are loaded with NVIDIA Volta GPUs
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United States

, NRCPC

Switzerland

, Cray Inc.

, IBM / NVIDIA / Mellanox

» Supercomputing centers recognize the advantage of GPUS < This trend is likely to continue

* Most high end supercomputers are now GPU machines

Cores

2,397,824

1,572,480

10,649,600

4,981,760

387,872

* Important to learn to use GPUs effectively

Rmax Rpeak
(TFlop/s) (TFlop/s)

143,500.0 200,794.9

94,640.0 125,712.0

93,014.6 125,435.9

61,444.5 100,678.7

21,230.0 27,1543

Power
(kw)

9,783

7,438

15,371

18,482

2,384
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Al IS PERFECTLY SUITED FOR GPUS

ImageNet 2012: A Revolution in Computer Vision

ImageNet Classification with Deep Convolutional
Neural Networks

Alex Krizhevsky /a Sutskev Geoftrey E. Hinton
University of Toronto f
kri to
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fully-connected layers with a final 1000-w ‘tmax. To make trai
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» Luckily, Al is a perfect fit for GPUs » His simple DNN defeated the best expert coded solutions
» Alex Krizhevsky demonstrated this in 2012 @ Imagenet » Deep learning has been growing like wildfire since

GANVIDIA.



THREE ROADS TO Al

There are three main flavors of Al, and each can be GPU accelerated

EXPERT SYSTEMS Accelerate with

EXECUTE HAND-WRITTEN . .
ALGORITHMS AT HIGH SPEED GPU accelerated Libraries

OpenACC Directives

CUDA Kernels

1950's 1960°s 1970's 1980's 1990°s 2000's 2010's

INCREASING COMPLEXITY AND AUTONOMY OVER TIME
* There are 3 main types of Al * ML is accelerated with NVIDIA’s RAPIDS

» Expert systems accelerated through libraries, OpenACC, CUDA + DL is accelerated via cuDNN in most DL frameworks
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THREE ROADS TO Al

There are three main flavors of Al, and each can be GPU accelerated

EXPERT SYSTEMS
EXECUTE HAND-WRITTEN

ALGORITHMS AT HIGH SPEED TRADITIONAL ML
LEARN FROM EXAMPLES USING

HAND-CRAFTED FEATURES
LEARNS BOTH OUTPUT AND

Q FEATURES FROM DATA
“m

1950's 1960°s 1970's 1980's 1990's 2000's 2010°s

INCREASING COMPLEXITY AND AUTONOMY OVER TIME

* There are 3 main types of Al * ML is accelerated with NVIDIA’s RAPIDS
» Expert systems accelerated through libraries, OpenACC, CUDA + DL is accelerated via cuDNN in most DL frameworks



EXPERT SYSTEM
GARY KASPAROV
VS DEEP BLUE 1997

Deep Blue: an expert system
for playing chess

Experts hand-coded heuristics
for pieces and positions

High speed search enabled
super-human performance

Defeated world chess
champion in 1997




DEEP LEARNING
LEE SEDOL
VS ALPHA-GO 2016

Go is much too large to be
beaten by brute force.

A game of human intuition
Unbeatable by machines...

AlphaGo: Deep
reinforcement learning
and self competition

Defeated top world Go
champions in 2016-2017

Also world champion in
Chess and Shogi




NWP IS AN EXPERT SYSTEM

Expert knowledge encoded as software, executed at high speed.

SAT SUN MON TUE WED THU
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Mostly Mostly Storms Storms Storms Mostly
5 5 Sunn

Sunny Sunny Y

88° 86° 88° 88° 90° 84°
73° 72° 75° 75° 73° 68°

COLLECTION THINNING ASSIMILATION DYNAMICS PARAMETRIZATION FORECASTING

* Encodes knowledge of experts as algorithms » Deep learning provides a new set of tools
» So familiar, most people don’t think of it as Al + All stages of NWP may be augmented by deep learning



DEEP LEARNING:
A NEW SET OF TOOLS
FOR SCIENCE

Deep learning provides a hew
approach for building complex
software components, by constructing
functions automatically from a large
set of examples. This approach
complements traditional algorithm
development, providing a means of
devising algorithms too complex,
subtle, or unintuitive to code by
hand.




SOFTWARE BY EXAMPLE

Supervised deep Learning builds functions from input/output pairs

/

Functions are the building
blocks of software. DL can
approximate any function.

HURRICANE

DETECTOR

Some functions are too challenging to code by hand.
DL builds complex functions from a set of examples.

Mix freely with conventional
software and algorithms




Input data (pixels values)

DL LEARNS FEATURES FROM DATA
Deep learning automatically finds feature hierarchies

Example: face detection
Learns lines, noses, faces
Returns P, = F(pixels)

Greater depth — greater
abstraction

1000s of subtly different
feature detectors

Different data produces a
different algorithm

low-level features

Input

mid-level features

high-level features

output

Pface




» Tropical storms
Extra-tropical cyclones
Atmospheric rivers
Cyclogenesis events
Convection initiation
Change detection

» Data Assimilation

Forecast verification

Model inter-comparison
Common data formatting
Colorization

Digital Elevation from Imagery

Uncertainty prediction
Storm track

Storm intensity

Fluid motion

Now casting

Satellite frame prediction

Frame repair
Sequence repair

* Slow motion
Super-resolution
Cloud removal
Data augmentation

Physics Acceleration
Turbulence

» Radiation
Convection
Microphysics

Dynamics Acceleration

New parametrizations

From higher resolution model
* From observational data
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SELECTED DEEP LEARNING EXAMPLES

REGION OF INTEREST DATA-TO-DATA SLOW MOTION
DETECTION TRANSLATION ENHANCEMENT

DATA THINNING DATA ASSIMILATION ERROR CORRECTION
CRTM EMULATION SOIL MOISTURE
PARAMETRIZATION

ACCELERATION BETTER PHYSICS




1. STORM DETECTION:

Al ASSISTED
DATA ANALYSIS

The quantity of data produced by
models, satellites and other
sensors has become impractical to
analyze manually. Al can help by
detecting important features,
tends, and anomalies.
Applications include storm
tracking, data thinning, advanced
warning systems, search and
rescue, route planning, and more.
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STORM
DETECTION

Automatically locate and
classify significant weather
events

Some events have a large impact
on the weather

Detect such events automatically
» Tropical Cyclones

- Extra-tropical cyclones

« Atmospheric Rivers

« Storm Fronts

« Convection Initiation

* Cyclogenesis




LOCATE KNOWN STORMS

Use expert labeled IBTrACS database to locate storms in model data




EXTRACT TRAINING AND TEST EXAMPLES

Extract storm/no-storm examples for supervised learning

Positive
Examples

’ -

Negative
Examples



TRAIN: SEARCH FOR FUNCTION THAT FITS

Training phase

Input: batch of
water vapor
concentrations
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Output:
Probability that image
is a storm
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CONVOLUTION EXAMPLE: SOBEL FILTER

-1 0 1
Gx=[—202‘
-1 0 1
-1 -2 -1
G,=[0 0 o0
1 2 1

Image source: https://en.wikipedia.org/wiki/Sobel_operator



CONVOLUTION EXAMPLE: SOBEL FILTER
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CONVOLUTIONAL NEURAL NETWORK

Network of convolutional filters assigned automatically from data

Center element of the kernel is placed over
the source pixel. The source pixel is then
replaced with a weighted sum of itself and
nearby pixels.
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U-NET: CONVOLUTIONAL NEURAL NETWORK

Image segmentation at multiple scales

input
image
tile

572 x 572
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copy and crop

¥ max pool 2x2
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Ground Truth

TROPICAL STORMS
GFS MODEL DATA

Jebb Stewart, Christina Bonfonti,
Mark Govett NOAA, David Hall
NVIDIA

INPUT GFS PWAT + IBTRACKS
OUTPUT DETECTION CONFIDENCE
TRAINING SET  2010-2015

TEST SET 2016

NETWORK U-NET

2015-08-20T00-00-00

Labeled Data
Prediction

Automatically detect future storms. No need to define precise heuristics. Storms defined implicitly by example.



Ground Truth

TROPICAL STORMS
GOES SATELLITE

Jebb Stewart, Christina Bonfonti,
Mark Govett NOAA, David Hall

NVIDIA
INPUT GOES UPPER TROPO WV
OUTPUT DETECTION CONFIDENCE
TRAINING SET 2010-2013 -
TEST SET 2015 2015-09-03T06-00-00
NETWORK U-NET 3 :

Labeled Data

Prediction

* Uses only upper tropo water vapor + Accurate near image center * Has some trouble Earth’s limb




Ground Truth

EXTRATROPICAL
CYCLONES GFS
MODEL DATA

Christina Bonfonti , Jebb Stewart,
Mark Govett NOAA, David Hall

NVIDIA
INPUT GFS PWAT + HEURISTIC
OUTPUT DETECTION CONFIDENCE
TRAINING SET 2011-2014
TEST SET 2015
NETWORK U-NET

Labeled Data
Prediction

» Data labelled using a heuristic (T,P,wind) « Trained network needs only water-vapor « Fast and simple detection




GPU VS CPU TRAINING

GPUs enabled a 300x speedup in training time
NOAA’s Theia Supercomputer

A

Task NOAA ESRL, Tropical Storm Detect10n ..
100 Fine Grain Nodes: =

Two 10-core Haswell, 256GB / node
8 Telsa P100 GPUs / node '

CPU training time: 500 hours
.5 hr

GPU training time:

k! SANVIDIA.



DETECTION AT

Exascale Deep Learning for Climate Analytics

Mayur Mudigonda”®
mudigonda@berkeley.edu

Michael Matheson*
mathesonma@ornl.gov

Michael Houston'
mhouston@nvidia.com

Thorsten Kurth* Sean Treichler! Joshua Romero!
S C A L E ° G O RD O N tkurth@lbl.gov sean @nvidia.com joshr@nvidia.com
)
Nathan Luehr! Everett PhillipsT Ankur Mahesh*
B E L L P RI Z E nluehr @nvidia.com ephillips @nvidia.com amahesh@lbl.gov
Jack Deslippe* Massimiliano Fatica' Prabhat*
jrdeslippe @Ibl.gov mfatica@nvidia.com prabhat@lbl.gov
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Segmentation of Tropical Storms and Atmospheric Rivers on Summit using convolutional neural networks.
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Exascale Deep Learning for Climate Analytics

D ET E CTI O N AT Thorsten Kurth* Sean Trc?ic.hlerf .Joshua R_O_memT M?.yur Mudigonda*
S CA L E : G O RD 0 N turth@Ibl.gov sean@nvidia.com joshr@nvidia.com mudigonda@berkeley.edu

Nathan Luehrf Everett Phillips’ Ankur Mahesh* Michael Matheson*
B E L L P RI Z E nluehr @nvidia.com ephillips @nvidia.com amahesh@lbl.gov mathesonma@ornl.gov
Jack Deslippe* Massimiliano Fatica' Prabhat* Michael Houston'
jrdeslippe @Ibl.gov mfatica@nvidia.com prabhat@Ibl.gov mhouston@nvidia.com
80000
140000 { Y¥¥ Tiramisu, V100-FP16, lag 1 -~ 600 ¥¥y Deeplabv3+ V100-FP16, lag 1
T?ram?su, V100-FP16, lag 0 70000 - DeeplLabv3+, V100-FP16, lag 0 L 1000
120000 - @By Tiramisu, V100-FP32, lag 1 L 500 @By Deeplabv3+ V100-FP32,lag1
Tiramisu, V100-FP32, lag O DeeplLabv3+, VI00-FP32, lag 0
R 60000 1
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#GPUs #GPUs
(a) Tiramisu (b) DeepLabv3+

Nearly perfect weak scaling up to 25k GPUS. 1 Exa-flop of performance. 100 years of climate model data in hours
Demonstrates the power of this approach for large-scale data analysis 34
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2. TRANSLATION:
IMPROVED DATA
ASSIMILATION VIA
INVERSE MODELING

Deep learning can automatically
construct maps between any two
related coordinate systems. This
can be used to convert satellite
observations into model
variables, with applications to
data assimilation. It also has the
potential to enable us to combine
information from multiple models
or satellites into a single dataset
of greater accuracy and
completeness.

GOES-16 CIRA GEO COLOR / GOES-15 RED BAND



IMAGE TO IMAGE TRANSLATION

Conditional GANS can translate one type of image into another

Labels to Street Scene Labels to Facade BW to Color

input output

Aerial to Map

input oput input output
Day to Night Edges to Photo

input 7 output input output input output

Figure 1: Many problems in image processing, graphics, and vision involve translating an input image into a corresponding output image.
These problems are often treated with application-specific algorithms, even though the setting is always the same: map pixels to pixels.
Conditional adversarial nets are a general-purpose solution that appears to work well on a wide variety of these problems. Here we show
results of the method on several. In each case we use the same architecture and objective, and simply train on different data.

36



MAP: MODEL TO SATELLITE (FORWARD OPERATOR)

Model analyses to satellite observations
SATELLITE RADIANCES Convolutional Neural Network MODEL VARIABLES
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Maps from 3d fields to 3d fields, rather than one column at a time
Can use spatial patterns to guide predictions
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MAP: SATELLITE TO MODEL (INVERSE OPERATOR)

Satellite observations to model analyses
SATELLITE RADIANCES Convolutional Neural Networl; MODEL VARIABLES
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Hard to construct an inverse model by hand, but no more difficult for a
neural network than the forward model.
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RESULTS: REGRESSION

One-to-many map results in ‘regression to the mean’

INPUT: GOES-15 band3 OUTPUT: L1 NORM TARGET: GFS PWAT

Example of incomplete information: upper-tropo WV to total column WV
L1 output is average of multiple plausible states N
. . . . INPUT OUTPUT,
Not consistent with any single realizable state — % )
Adding bands can more fully constrain the output \ V4

39



RESULTS:
CONDITIONAL GAN

Physically plausible state
from incomplete data

OBSERVATION GOES-15 band 3

MODEL VAR GFS Precipitable water
Training 2014-2016
Test 2013

Adversarial model outputs a
physically plausible state

Like an ensemble member from
uncertain initial conditions

Both forward and inverse maps

For data assimilation and forecast
verification

INPUT: GOES-15

INPUT: GFS

GENERATED

GENERATED

TARGET: GFS

TARGET: GOES-15




APPLICATIONS TO DATA ASSIMILATION

Accelerate forward and/or inverse models

Background state Observations Forward Operator Background Observation
Error Covariances Error Covariances

3DVAR: Iterate to minimize loss J(x). H is expensive!

J(x) = (x — x,)"B (x — x,) + (y — H[x])"R™"(y — H[) L
OBSERVATIONS
Accelerate H by replacing it with DL forward map y

Apply DL inverse map, then solve for x directly! minimize
Jx)=(x—x,)"B Y (x —xp) + (x —x,)TR *(x — x,) J(x,y)

M



NEED FOR UNCERTAINTY QUANTIFICATION

Some pixels are certain, others are are completely uncertain

Mean of Possible One specific Confiden
Outputs output ce

Need pixel-level variances and covariances to combine with other data sources
Use Bayesian neural networks to explicitly model uncertainties
Or use “Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles”

42
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3. ENHANCEMENT:
SLOW MOTION
SATELLITE LOOPS

Deep learning may be used to
enhance satellite data by
learning to intelligently
interpolate it in time. We can
also repair damage data by
imputing missing pixels, missing
channels, or even dropped
frames. More ambitiously, deep
learning has the potential to
learn the underlying dynamics
directly from observations,

Which may then be used to
estimate future satellite
observations directly.




NVIDIA SUPER SLOW-MOTION

Deep learning for temporal interpolation

MANUAL SLFOEh‘dlo

SUPER SLOMO .
240 FPS




OPTICAL FLOW FROM MODEL WINDS

Estimate motion vectors from upper tropospheric model winds

u-component of wind Optical Flow




SLOW MOTION
SATELLITE LOOP

David Hall NVIDIA

INPUT GOES-15 band 3, GFS winds
OUTPUT Interpolated GOES-15
INPUT FREQ 1 every 3 hours

OUTPUT FREQ 1 every 18 minutes

Applications:

* Visualization

« Data Augmentation

* Replace dropped frames

* Reduce storage requirements

110 output frames




PARAMETER INFERENCE

Fine tune winds from observations

Improve estimate of advective winds
Treat model winds as an initial guess
Advect observations forward from frame n
Compute a loss function using frame n+1
Back-propagate to obtain gradient

Optimize to fine tune wind speeds




MODEL INFERENCE

Learn both the winds and the ODE from observations

Use robust ODE solver for time integration
Represent derivatives via a neural net
Compute loss function following RK-NN paper
Obtain gradients via Adjoint Sensitivity

Automatically learn dynamics from data




IMPUTE MISSING DATA

Train a conditional GAN to reconstruct missing pixels

DAMAGED OBSERVATION Conditional GAN > COMPLETE OBSERVATION
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Missing data can potentially be reconstructed from information in the other bands
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INTERPOLATION + IMPUTATION

Interpolate in time to provide additional information for imputation

‘_.
Interpolate to ’§\}\$(/,A\\
missing pixels CW/’.§§§:§§§%.\‘\‘V

X ‘ OATATAT SO
XU O JR S 3
XS S ISR
AN e
AN

Combine with 2N\ LR A7 KER
PN AL

known pixels to G/
improve N\ S\ A4
imputation y V’%”"‘“\QV
DMA'G =

Conditional GAN

>

(Or map from the interpolated images to the real images, to improve interpolated image quality) <



4. ACCELERATION VIA /
NEURAL NET EMULATION ‘N

Deep neural networks can produce high
fidelity approximations of expensive
functions through supervised training on
a large number of input-output data
pairs. The resulting emulation can be
multiple orders of magnitude faster
than the original. It’s similar to a
lookup table, but with feature-aware
interpolation in high dimensional
spaces. This approach enables GPU
acceleration of arbitrarily complex
functions without labor intensive code
porting.



ACCELERATION VIA EMULATION

Do the same thing, but do it much faster

An alternate route to GPU acceleration
Accelerates conventional routines
Complimentary to OpenACC and CUDA
Replace expensive routines with DNNs

. . . G
Train on 1000s of input/output pairs \
No need to port original code to GPU
Orders of magnitude faster at runtime

.

X

Examples:

* Ocean wave-wave interactions
» Radiation parametrization

* Cloud super-parametrization
« Particle collider simulations | & PROCESS




EMULATION: AN Al POWERED LOOKUP-TABLE

Precompute expensive values, and interpolate intelligently

It took a day to compute each value! I’d better cache them.

Interpolate linearly? We can do better.

« Imagine it takes a day to compute a single value * Deep learning emulation fits a custom curve
* Do you ever want to repeat that calculation? comprised of features learned from your data.
« What if you want a value that is almost the same? + It interpolates but can’t extrapolate.

GANVIDIA.



EMULATION: CAM SUPER-PARAMETRIZATION (20X)

Deep learning to represent sub-grid processes in climate models
Stephan Rasp, Michael Pritchard, UC Irvine Pierre Gentine, Columbia University
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A) Mean heating rate B) Mean temp and biases C) Top of atmosphere fluxes, and precipitation

SPCAM is a 2d cloud-resolving parameterization for greater accuracy
NNCAM emulates SP-CAM, with 20x speedup
Details: 9 fully connected layers, 567k params, 8 hours training time on a single NVIDIA GTX 1080


https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2018GL078202

EMULATION: MIIDAPS-AI (1400X)

Multi-Instrument Inversion and Data Assimilation Preprocessing System
Sid Boukabara NOAA/NESDIS Eric Maddy, Adam Neiss Riverside Technology Inc

MIDAPS-AL TPW
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ECMWF TPW

0 8 16 23 31 39 47 54 62 70 O 8 16 23 31 39 47 54 62 70
TPW, [mm] TPW, [mm]
Inverse operator for multiple IR and microwave satellites. 5 seconds vs 2 hrs to process one day
Iteratively uses CRTM radiative transfer model 1400x speedup.
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EMULATION: RRTMG (10X)
Rapid Radiative Transfer Model for GCMs

Matthew Norman, Pal Anikesh, ORNL

Surface Net SW Flux (RRTMG). Mean = 161.91 W/m? Surface Net SW Flux (Emulation). Mean = 161.91 W/m?

Emulation of radiative transfer parametrization

E3SM global climate model

Speedup of 8-10x over original.

Details: 3778 inputs, fully connected, 3 hidden layers, 6million training samples




HYBRID EMULATION MODEL

One approach to address the quality / coverage issues

Emulator (GPU)

Fast emulation at run-time Discriminator
Discriminator ensures Fast 99%
quality , High Quality

Output

For new use cases:
Discriminator flags errors
Original routine is applied
New output pairs cached

Emulator weights are fine-
tuned

GANVIDIA.



STOCHASTIC EMULATIONS

Generative Adversarial Networks produce better emulations

Emulation via regression leads to artificially
smoothed output (regression to the mean)

Use conditional GANs to stochastically sample
the distribution of realizable states

More faithfully emulates the original function

Discriminator provides a natural mechanism for
detecting errors

58 SANVIDIA.



5. IMPROVED PHYSICAL
PARAMETRIZATIONS
FROM DATA

Physical parametrizations represent
unresolved physics in climate and
weather models. They need to be
simple to be fast, and are often
inaccurate approximations, hand
coded by domain experts. Using
deep learning, we can create more

accurate parametrization directly
from observational data, or from
high resolution simulations.




HOW WE USUALLY BUILD PARAMETERIZATIONS

Expert guided physical approximation

High resolution simulations
or observations

Mad Scientist Low Order Parametrization
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UNIFIED PHYSICS PARAMETERIZATION

Prognostic Validation of a Neural Network Unified Physics
Noah Brenowitz and Cristopher Bretherton, University of Washington, May 2018

Improved parametrization for global climate model Loss function minimizing accumulated error over
Trained on near-global aqua-planet simulation several days is accurate and stable
Predicts heating and moistening tendencies 3 layer fully connected network, 256 neurons each




UNIFIED PHYSICS
PARAMETERIZATION

Prognostic Validation of
a Neural Network
Unified Physics

Noah Brenowitz and Cristopher
Bretherton, University of
Washington, May 2018

More accurate than CAM

Improves forecast accuracy
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UNIFIED PHYSICS PARAMETERIZATION

Prognostic Validation of a Neural Network Unified Physics
Noah Brenowitz and Cristopher Bretherton, University of Washington, May 2018
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Exhibits loss of stochasticity. (Fix using stochastic sampling based on conditional GAN)
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IMPROVED SOIL MOISTURE IN HRRR
Lidia Trailovik and Isadora Jankov NOAA ESRL

Air temperature

Soil moisture is important Barometric pressure
for convection initiation § Rainfall amount
Current parametrization in Yok Relative humidity
HRR is inadequate | Soil moisture

Soil temperature

Create a better
parametrization from field

observations T Wind direction
e W Wind speed

Solar radiation

Use surface measurements
to infer sub-surface state

Mesonet weather station
network provides ground
truth
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Using GPUs is critical to
achieving performance gains on
modern supercomputers.
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#GPUs

Scale trained networks up on
very large systems, to analyze
enormous data volumes

SUMMARY

Deep learning provides a new general
purpose set of tools which are well
suited for GPUs.

Hurricane

Use DL to construct functions by
example, and freely mixed with
traditional code.

Neural Py, = f(obs)
network

HURRICANE

@ Optimizer

Not a hurricane

SLOW ITS FASTER (o cauumses ’ I S
& PROCESS REPLACEMENT _#%¥ 2 : e s

i S

Build software too complex
or unintuitive to code by
hand (like AlphaGo)

Emulate expensive routines, without Construct superior physical
porting code, to achieve 10x-1000x parameterizations directly from
speedup (ex. inverse modeling) high resolution simulations or data

dhall@nvidia.com

These examples are just the
tip of the Al iceberg




DEEP LEARNING VS. MACHINE LEARNING

When should | use deep learning vs classical ML?

CLASSICAL ML

Random forests, SVM, K-means, Logistic Regression
Features hand-crafted by experts

® ® Small set of features: 10s or 100s
& — \'lﬁ_] — — Dataset is too small for deep learning
j o NVIDIA RAPIDS: orders of magnitude speedup

Input Feature extraction Classification Qutput

Machine Learning

Deep Learning

DEEP LEARNING

Car CNN, RNN, LSTM, GAN, Variational Auto-encoders
Not Car Finds features automatically

High dimensional data: images, sounds, speech
Large set of training data (10k+ examples)

NVIDIA CU-DNN: accelerates DL frameworks

Feature extraction + Classification Cutput

GANVIDIA.



SCIENTIFIC CHALLENGES

Barriers to acceptance of deep learning as a tool for science

Interpretability: Can | understand what the neural-net is doing? (Explainable Al)
Robustness: Will it always give me the right answer? (GAN discriminator)
Conservation: Does it conserve mass, momentum, energy? (Lagrange multiplier)

Coverage: How much training data do | need? (Hybrid sol#ion)

Convergence: How can | ensure that training will conve’? eg‘resNhen GAN)

Uncertainty: How certain can | be of the answers? (Measure covariance)

GANVIDIA.



