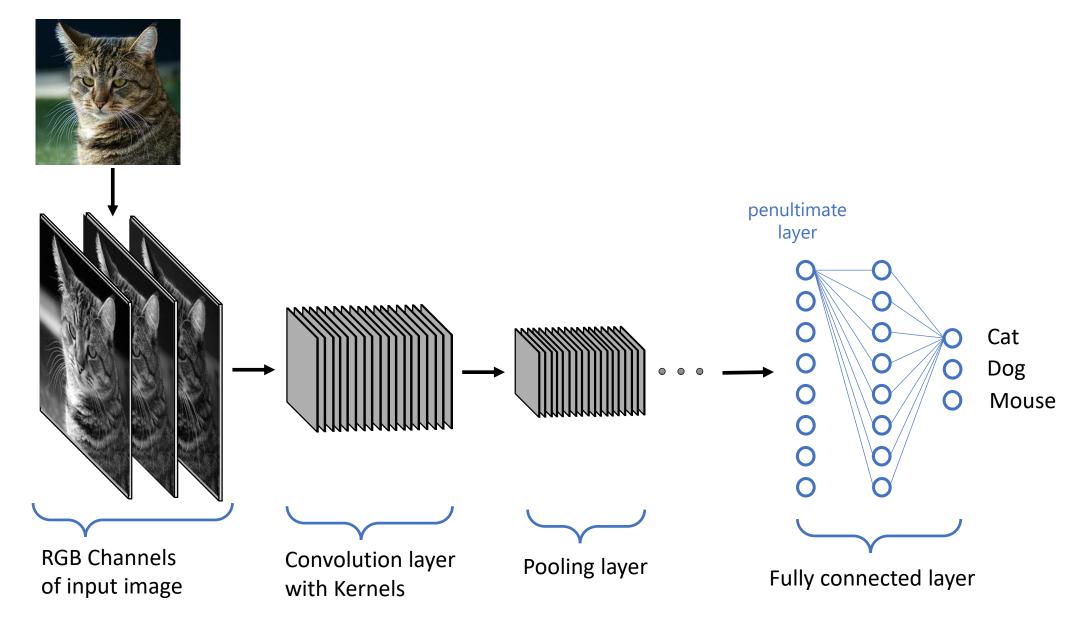
Mathew Salvaris

Distributed Deep Learning

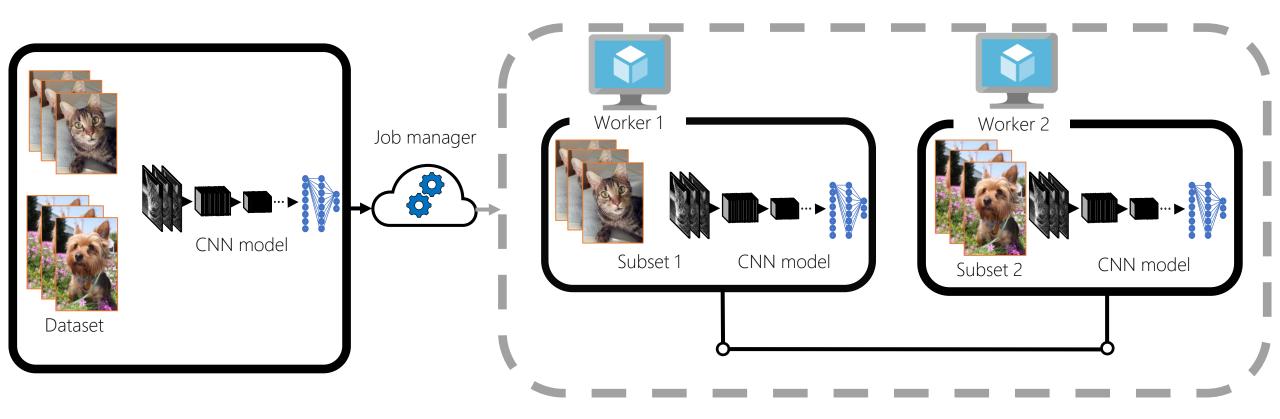
What will be covered

- Overview of Distributed Training
- What affects distributed training
 - Network
 - Model
 - Data location
 - Data format

Deep Learning Model (CNN)



Distributed training mode: Data parallelism



Distributed training mode: Model parallelism



Data parallelism vs model parallelism

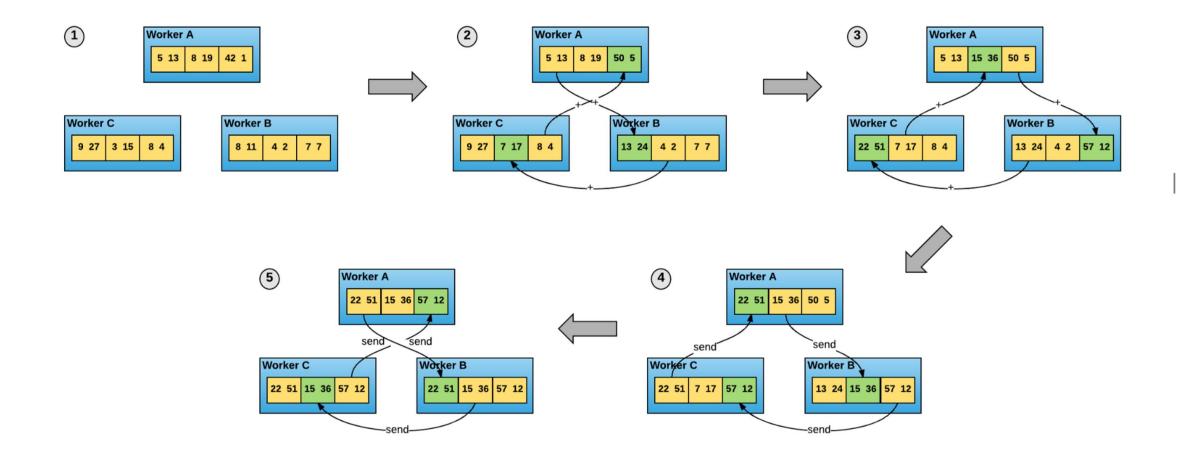
Data parallelism

- Easier implementation
- Stronger fault tolerance
- Higher cluster utilization

Model parallelism

- Better scalability of large models
- Less memory on each GPU

Horovod: Ring All Reduce



Effects of Network, Model and Precision

Clusters of 8 nodes using **K80**, **P40**, **P100** and **V100** (4 GPUs per node+Infiniband)

Two MPI configurations **OpenMPI+NCCL** and **IntelMPI**

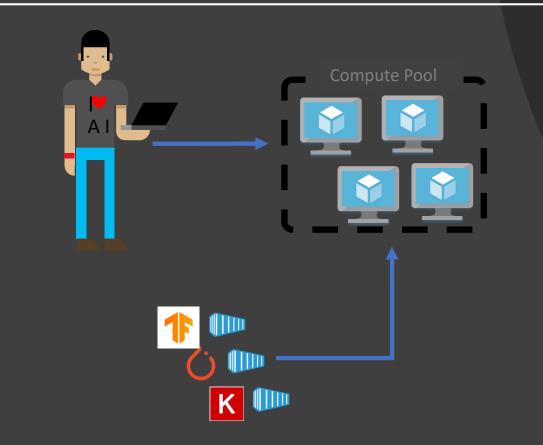
345 experiments across many different models including **ResNet50**, **MobileNet V2** etc.

Using synthetic data

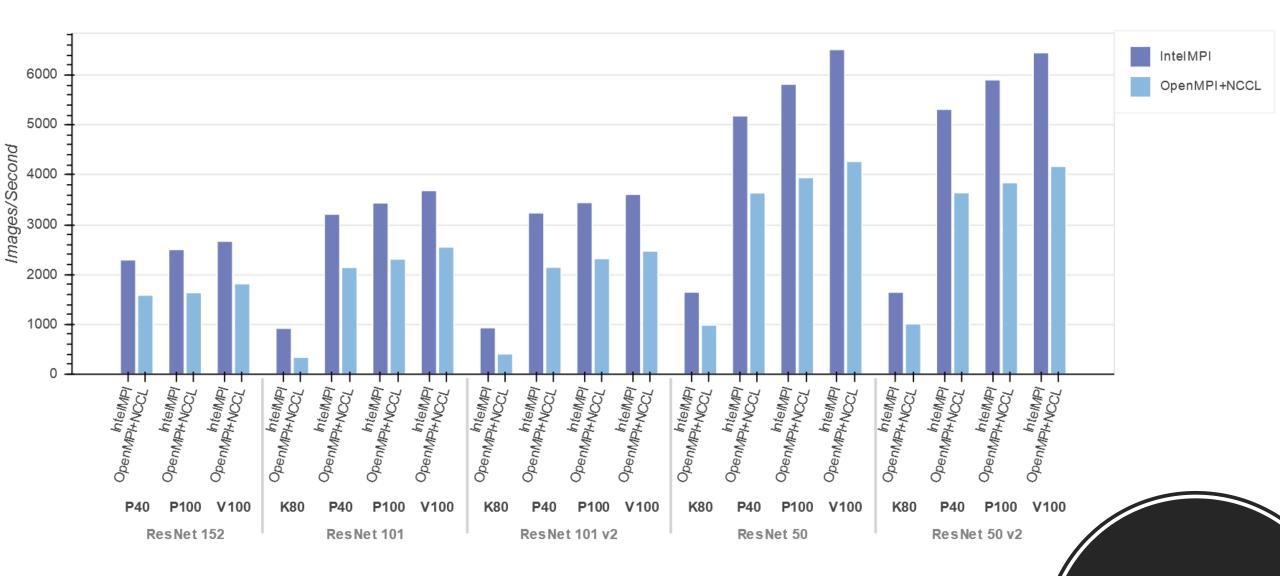
Batch size remains 64 across all models and GPUs

Use the benchmarking scripts from TensorFlow

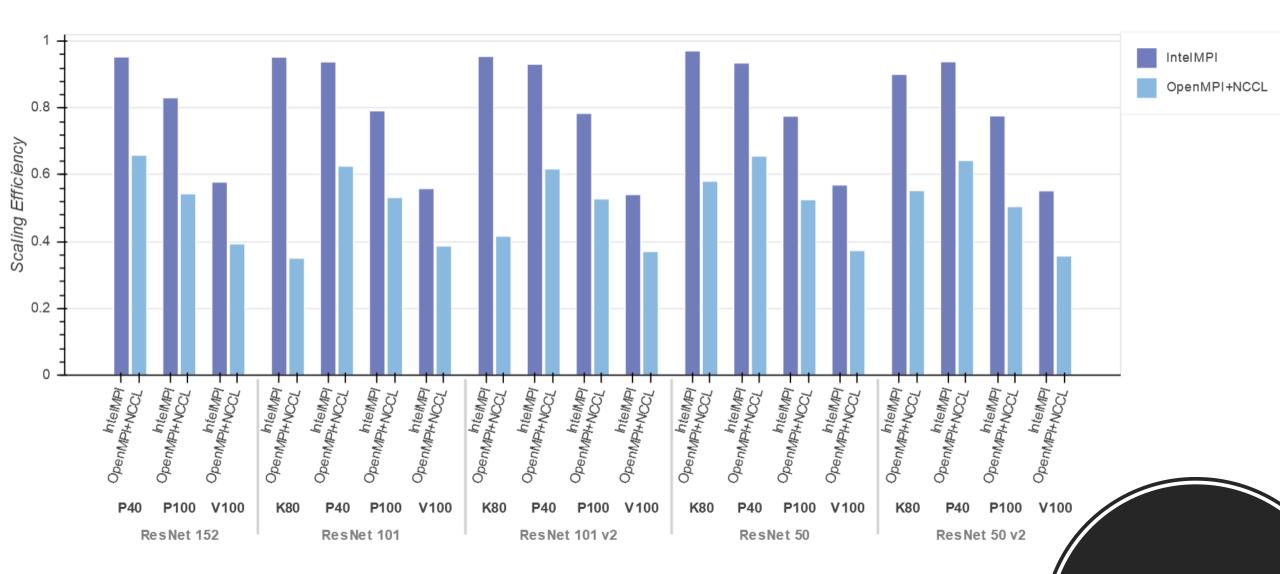
Distributed training with synthetic data





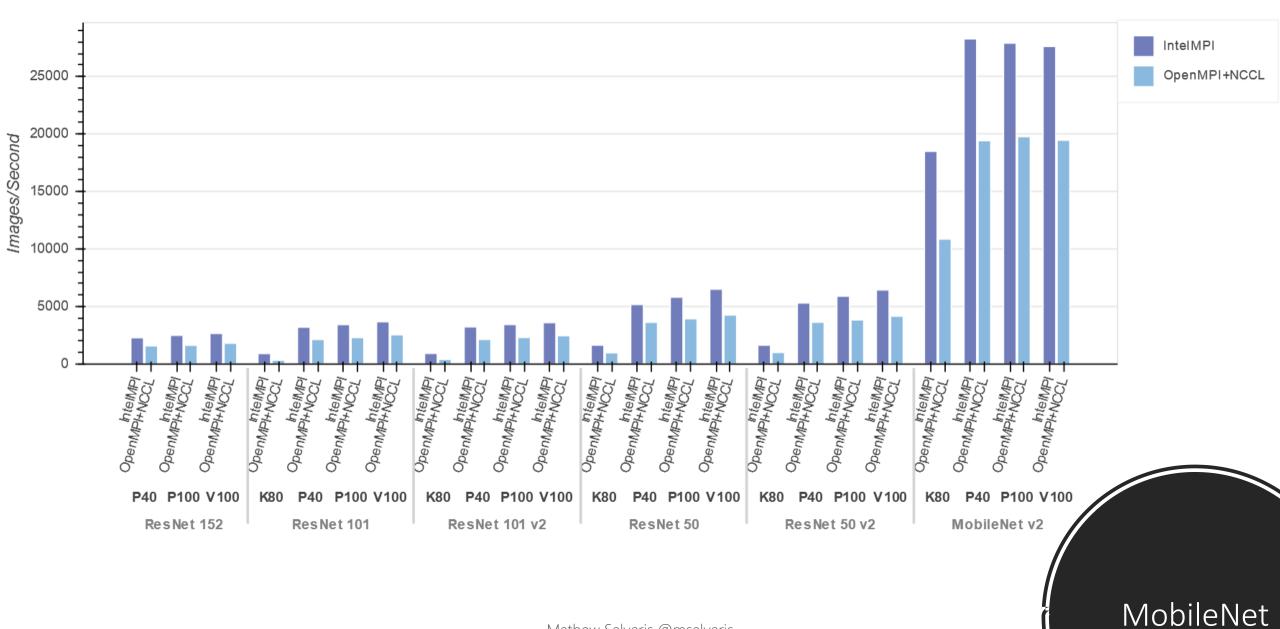


32 GPUs

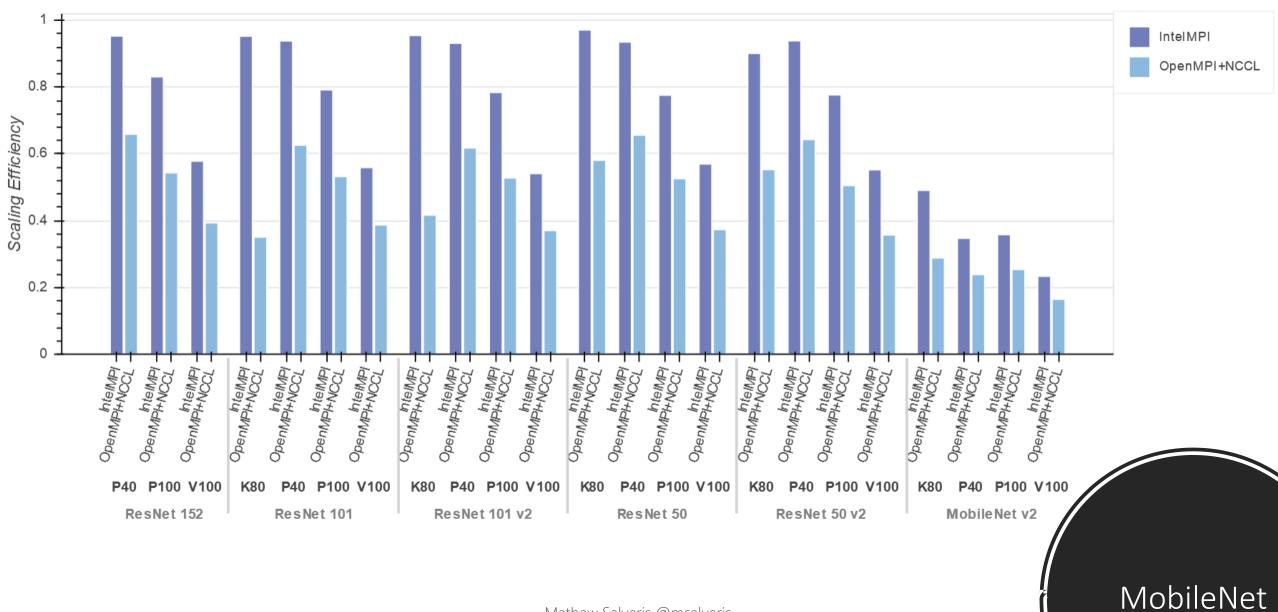


32 GPUs

Mathew Salvaris @msalvaris



Mathew Salvaris @msalvaris



Mathew Salvaris @msalvaris

Batch Execution

K80

GPU

Data Transfer

Time it takes to transfer weights between GPUs

P40

GPU

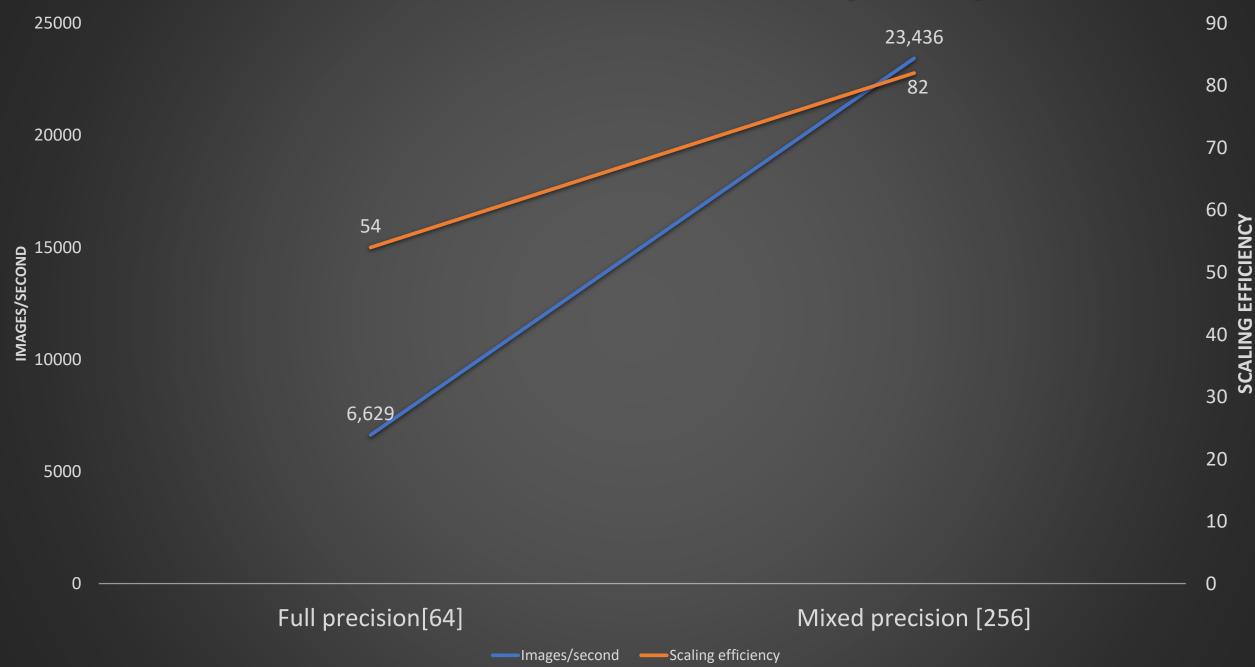
Time it takes to

process batch on

P100

V100

ResNet50 Full Precision vs Mixed Precision [32 V100s]



Effects of Storage

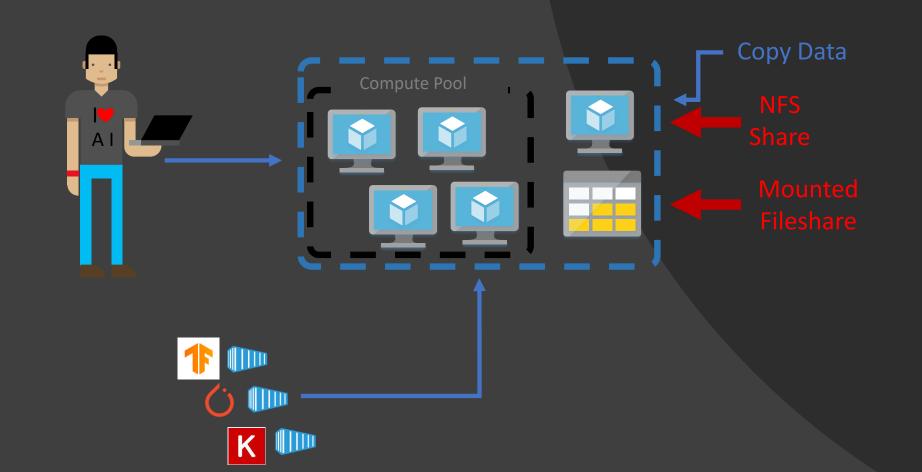
Using ResNet50 across three frameworks [PyTorch, TensorFlow, Keras]

Using **real and synthetic** data. Real data on local, NFS and Blob storage

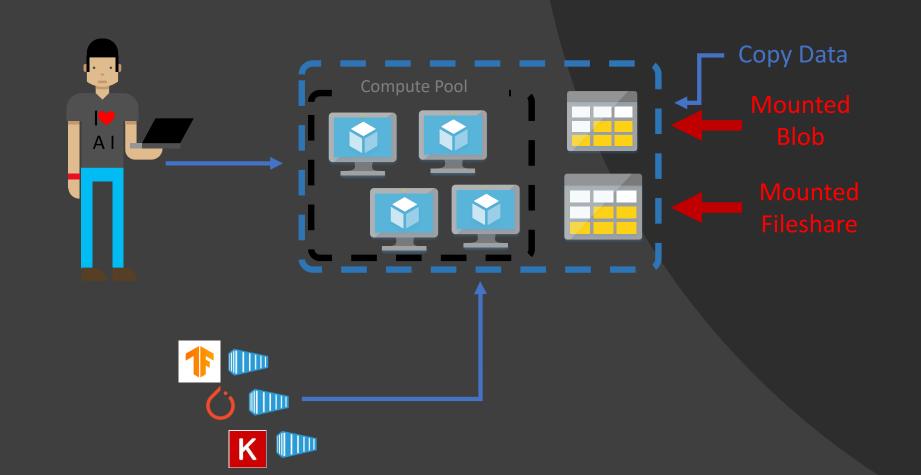
Batch size remains 64 across all configurations

Uses V100 GPUs

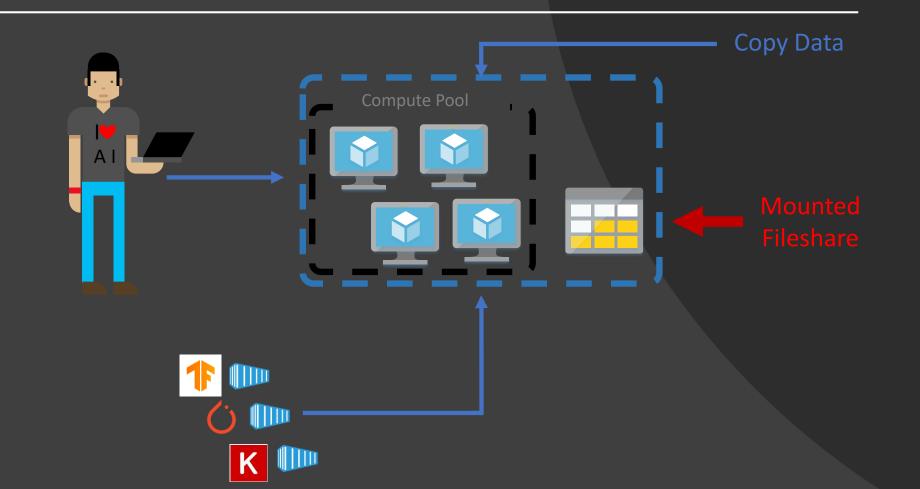
Distributed training with NFS



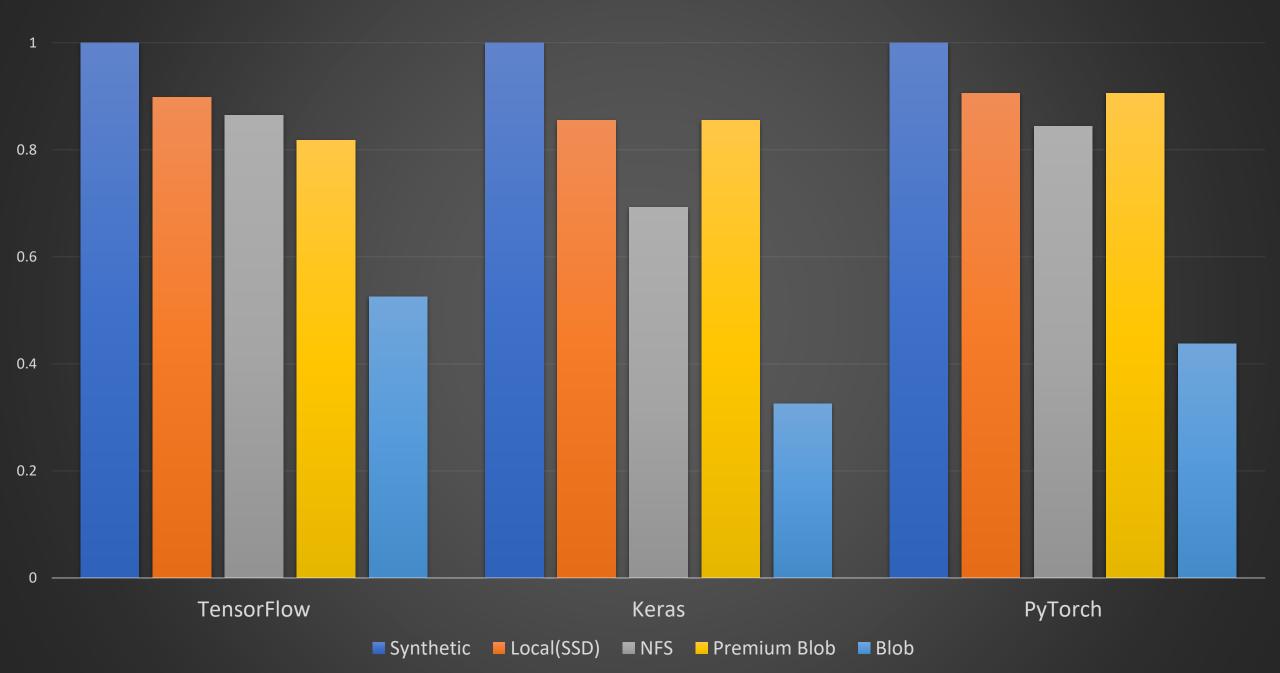
Distributed training with blob storage



Distributed training with local storage



ResNet50 - Relative performance across storage



Data Loaders and Preprocessors

Keras Data Loader

Simple with no parameters for buffering and parallelizing

PyTorch Data Loader

Specify number of workers with *num_workers*

TensorFlow

Highly configurable Many options : buffer, shuffle, cache and shard

Daunting and easy to get wrong

https://www.tensorflow.org/guide/performance/datasets

Effects of Data Type

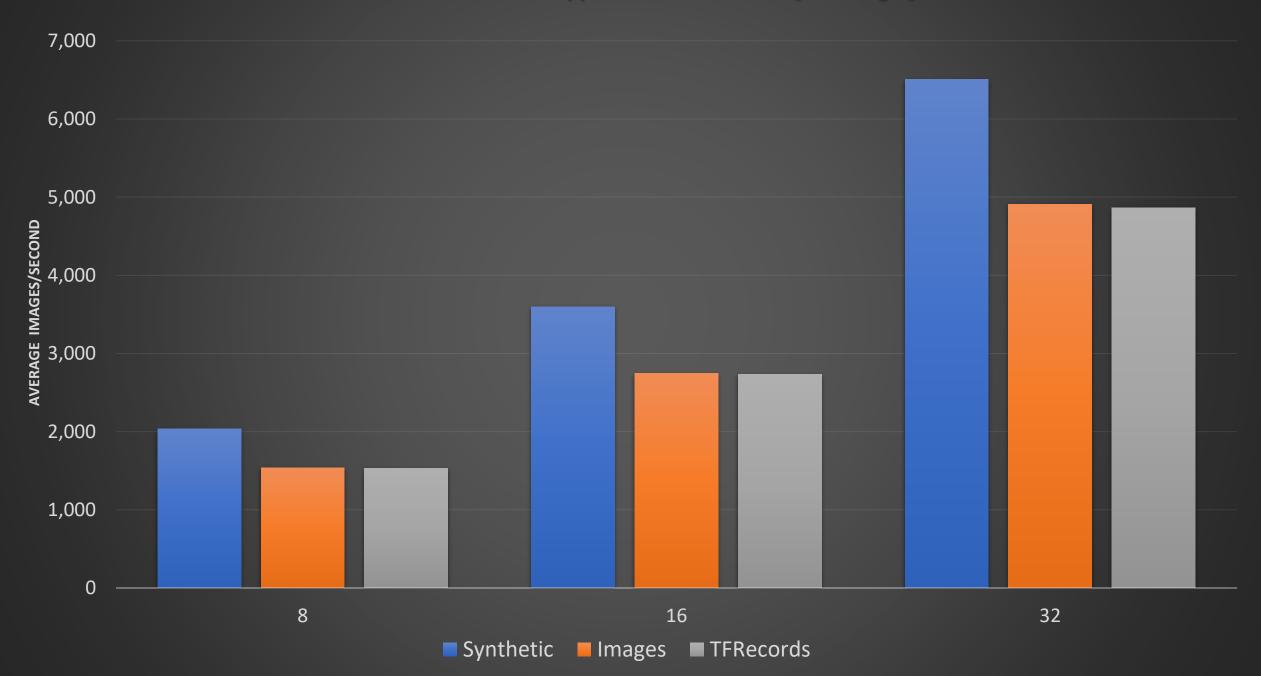
TensorFlow Records

- Binary data format created for TensorFlow Recommended format for TensorFlow
- Can aggregate number of examples to smaller number of TFRecords efficient for transferring and reading in the cloud

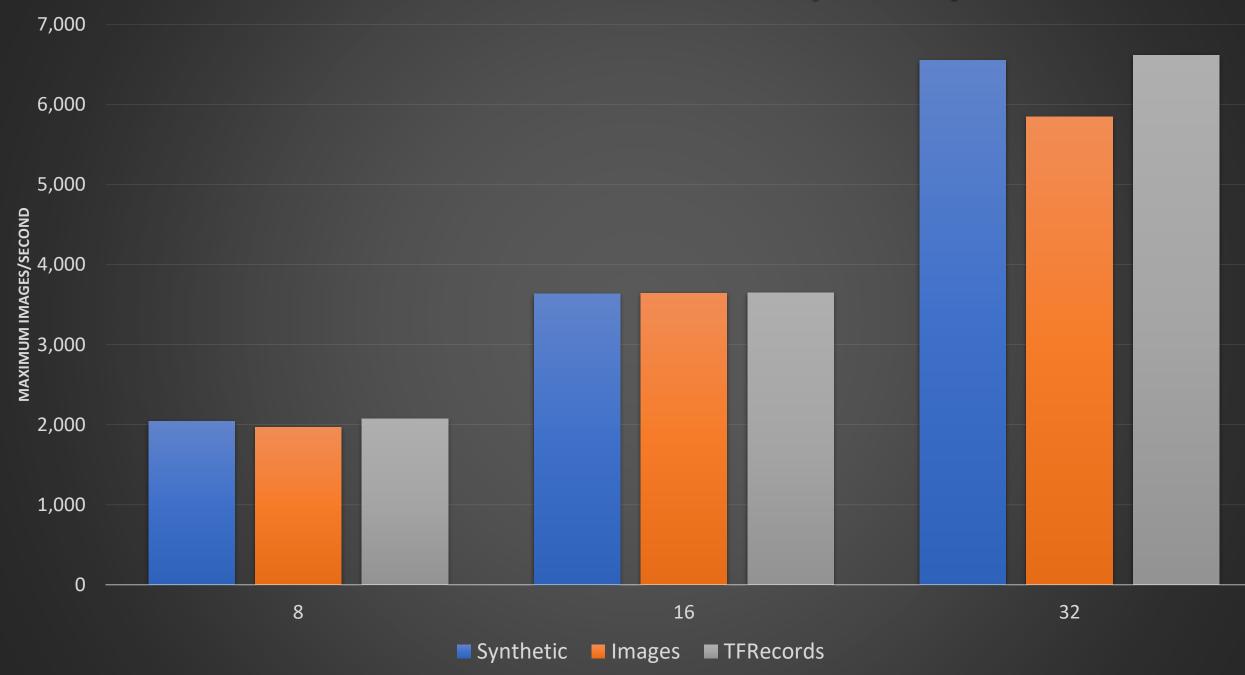
STEREO

• Have to export data to format - Has to be tailored to use case

ResNet50 – Data Type Performance [Average]



ResNet50 – Data Format Performance [Maximum]



Things not discussed

Asynchronous distributed training

Tradeoff between batch size and other parameters

Optimization of TensorFlow pipeline

Other data formats such as Parquet (Petastorm)

Transform libraries [albumentations]

Distributed file systems BeeGFs and other storage GlusterFS, Lustre etc.

Models other than CNN

Summary

Do try to use enhanced networking wherever possible especially for the latest GPUs

Training small models using distributed training is not recommended

Do use TFRecords or other columnar or row based data formats

Not all data loaders are equal

Thanks & Questions?