
Advancing Fusion Science with CGYRO using GPU-Based Leadership Systems

by **J. Candy**¹, I. Sfiligoi² and E. Belli¹.

¹General Atomics, San Diego, CA ²San Diego Supercomputer Center, San Diego CA

Presented at GTC 2019 San Jose, CA 18-21 March 2019

ID: S9202

Sincere thanks to

- Chris Holland (UCSD)
- Orso Meneghini, Sterling Smith, Ron Waltz, Gary Staebler (GA)
- Nathan Howard, Alessandro Marinoni (MIT)
- Walter Guttenfelder, Brian Grierson (PPPL)
- George Fann (ORNL)
- Klaus Hallatschek (IPP, Germany)

• Who is General Atomics?

- Who is General Atomics?
- **2** The case for **fusion energy**

- **1** Who is General Atomics?
- **2** The case for **fusion energy**
- 3 Mathematical formulation and GPU-based numerical solution

- Who is General Atomics?
- 2 The case for fusion energy
- 3 Mathematical formulation and GPU-based numerical solution
- 4 Simulation of turbulent energy loss in a tokamak plasma

- Who is General Atomics?
- 2 The case for fusion energy
- 3 Mathematical formulation and GPU-based numerical solution
- 4 Simulation of turbulent energy loss in a tokamak plasma
- **6** GPU performance: development and results

1 General Atomics (GA) is a private contractor in San Diego

- **1** General Atomics (GA) is a private contractor in San Diego
- 2 The GA Magnetic Fusion division does DOE-funded research

- **1** General Atomics (GA) is a private contractor in San Diego
- 2 The GA Magnetic Fusion division does DOE-funded research
- **3** Hosts DIII-D National Fusion Facility

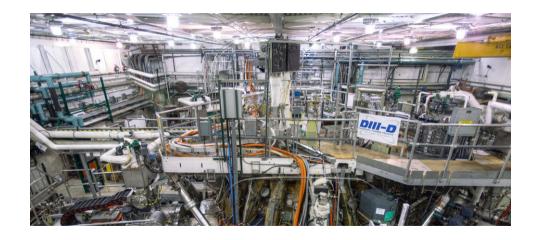
Founded on July 18, 1955 (photo 1957)

The General Atomic Division of General Dynamics

Laboratory formally dedicated on June 25th, 1959

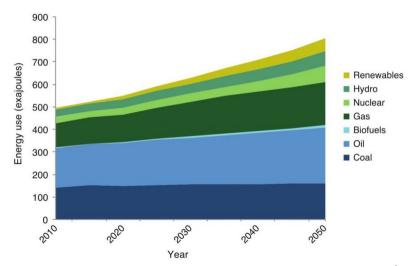
John Jay Hopkins Laboratory for Pure and Applied Science

Present-day Campus (2019)

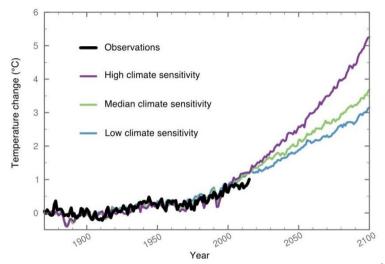

Retains feel of early architecture

Doublet III (1974)

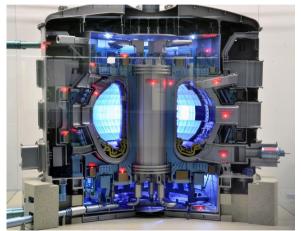
DIII-D (Present day)

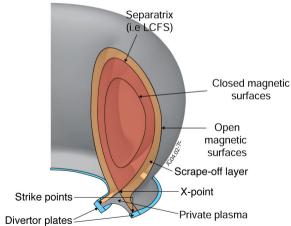


The case for fusion energy

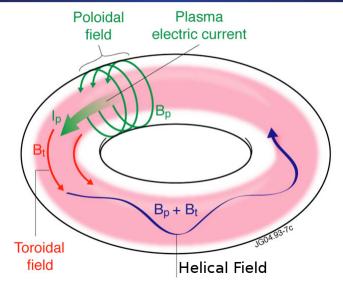

Energy Use by Technology and Year

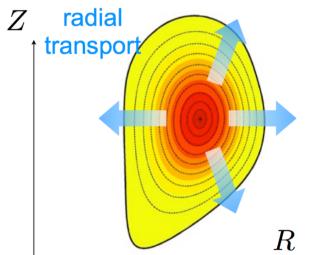
energy.mit.edu/news/limiting-global-warming-aggressive-measures-needed




Surface Temperature Anomaly

 ${\tt energy.mit.edu/news/limiting-global-warming-aggressive-measures-needed}$


Plasma theory in closed fieldline region well-understood

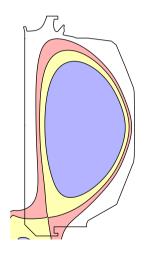


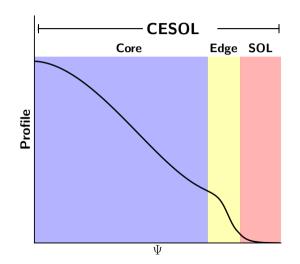
Helical field perfectly confines plasma (almost)

There is a small amount of radial energy/particle loss

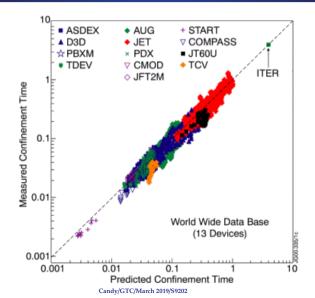
- Collisions (1970s): $\Gamma_{\text{collision}}$
- Turbulence (1980s): Γ_{turbulence}
- Both exhibit gyroBohm scaling

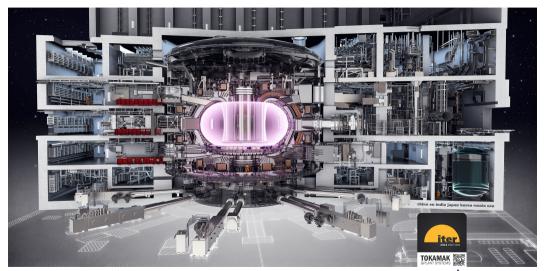
flux
$$\Gamma \sim v(\rho/a)^2$$


confinement time
$$\tau = \frac{a}{\Gamma} \sim \frac{a^3}{v \rho^2}$$


- a = torus radius
- ρ = particle orbit size
- v = particle velocity

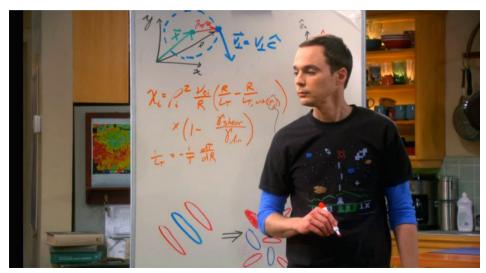
Tokamak physics spans multiple space/timescales


Core-edge-SOL (CESOL) region coupling


Tokamak confinement improves with LARGE PLASMA VOLUME

ITER Facility (35 nations) under construction in France

GOAL: Simulate turbulent plasma in core (magenta) region



Mathematical formulation and GPU-based numerical solution

Gyrokinetic Theory for Magnetized Plasma

The Cooper/Kripke Inversion

Typically: a = (deuterium, carbon, electron)

$$\frac{\partial \widetilde{h}_a}{\partial \tau} - i\Omega_s X \left[\widetilde{h}_a \right] - i \left(\Omega_{\theta} + \Omega_{\xi} + \Omega_{d} \right) \left[\widetilde{H}_a \right] - i\Omega_* \left[\widetilde{\Psi}_a \right] + \Omega_{\text{NL}} \left[\left[\widetilde{h}_a \right], \left[\widetilde{\Psi}_a \right] \right] = C_a$$

Symbol definitions

particles
$$\widetilde{H}_a = \widetilde{h}_a + \frac{z_a T_e}{T_a} \widetilde{\Psi}_a$$

Typically: a = (deuterium, carbon, electron)

$$\frac{\partial \widetilde{h}_a}{\partial \tau} - i\Omega_s X |\widetilde{h}_a| - i(\Omega_{\theta} + \Omega_{\xi} + \Omega_{d}) |\widetilde{H}_a| - i\Omega_* |\widetilde{\Psi}_a| + \Omega_{NL} (|\widetilde{h}_a|, |\widetilde{\Psi}_a|) = C_a$$

Symbol definitions

$$\begin{aligned} \widetilde{H}_{a} &= \widetilde{h}_{a} + \frac{z_{a}T_{e}}{T_{a}}\widetilde{\Psi}_{a} \\ \mathbf{\widetilde{fields}} &\qquad \widetilde{\Psi}_{a} &= J_{0}(\gamma_{a})\left(\delta\widetilde{\Phi} - \frac{v_{\parallel}}{c}\delta\widetilde{A}_{\parallel}\right) + \frac{v_{\perp}^{2}}{\Omega_{ca}c}\frac{J_{1}(\gamma_{a})}{\gamma_{a}}\delta\widetilde{B}_{\parallel} \end{aligned}$$

Electromagnetic GK-Maxwell Equations

Coupling to fields is a MAJOR complication!

$$\begin{pmatrix} k_{\perp}^{2} \lambda_{D}^{2} + \sum_{a} z_{a}^{2} \frac{T_{e}}{T_{a}} \int d^{3}v \frac{f_{0a}}{n_{e}} \end{pmatrix} \underbrace{\delta \widetilde{\Phi}} = \sum_{a} z_{a} \int d^{3}v \frac{f_{0a}}{n_{e}} J_{0}(\gamma_{a}) \underbrace{\widetilde{H}_{a}}$$

$$\frac{2}{\beta_{e,\text{unit}}} k_{\perp}^{2} \rho_{s}^{2} \underbrace{\delta \widetilde{A}_{\parallel}} = \sum_{a} z_{a} \int d^{3}v \frac{f_{0a}}{n_{e}} \frac{v_{\parallel}}{c_{s}} J_{0}(\gamma_{a}) \underbrace{\widetilde{H}_{a}}$$

$$-\frac{2}{\beta_{e,\text{unit}}} \underbrace{B_{\text{unit}}} \underbrace{\delta \widetilde{B}_{\parallel}} = \sum_{a} \int d^{3}v \frac{f_{0a}}{n_{e}} \frac{m_{a} v_{\perp}^{2}}{T_{e}} \underbrace{J_{1}(\gamma_{a})}{\gamma_{a}} \underbrace{\widetilde{H}_{a}}$$

Typically, deuterium, some carbon, and electrons

$$\frac{\partial \widetilde{h}_{a}}{\partial \tau} - i \Omega_{s} X \widetilde{h}_{a} - i (\Omega_{\theta} + \Omega_{\xi} + \Omega_{d}) \widetilde{H}_{a} - i \Omega_{*} \widetilde{\Psi}_{a} + \Omega_{NL} (\widetilde{h}_{a}, \widetilde{\Psi}_{a}) = \mathcal{C}_{a}$$

 $E \times B$ flow

$$-i\Omega_s = -i\frac{k_{\theta}L}{2\pi}\frac{a}{c_s}\gamma_E$$

Typically, deuterium, some carbon, and electrons

$$\frac{\partial \widetilde{h}_a}{\partial \tau} - i\Omega_s X \widetilde{h}_a - i \left(\Omega_{\theta} + \Omega_{\xi} + \Omega_{d} \right) \widetilde{H}_a - i\Omega_* \widetilde{\Psi}_a + \Omega_{\text{NL}}(\widetilde{h}_a, \widetilde{\Psi}_a) = \mathcal{C}_a$$

Streaming

$$-i\Omega_{ heta} = rac{v_{\parallel}}{\mathrm{w}_{\mathrm{s}}} rac{\partial}{\partial heta}$$

Typically, deuterium, some carbon, and electrons

$$\frac{\partial \widetilde{h}_{a}}{\partial \tau} - i\Omega_{s}X\widetilde{h}_{a} - i\left(\Omega_{\theta} + \boxed{\Omega_{\xi}} + \Omega_{d}\right)\widetilde{H}_{a} - i\Omega_{*}\widetilde{\Psi}_{a} + \Omega_{NL}(\widetilde{h}_{a}, \widetilde{\Psi}_{a}) = C_{a}$$

Trapping

$$-i\Omega_{\xi} = -\frac{v_{ta}}{w_s} \frac{u_a}{\sqrt{2}} \left(1 - \xi^2\right) \frac{\partial \ln B}{\partial \theta} \frac{\partial}{\partial \xi}$$
$$-\frac{1}{2u_a} \frac{\partial \lambda_a}{\partial \theta} \left[\frac{v_{\parallel}}{w_s} \frac{\partial}{\partial u_a} + \frac{\sqrt{2}v_{ta}}{w_s} \left(1 - \xi^2\right) \frac{\partial}{\partial \xi} \right]$$

Typically, deuterium, some carbon, and electrons

$$\frac{\partial \widetilde{h}_{a}}{\partial \tau} - i\Omega_{s}X\widetilde{h}_{a} - i\left(\Omega_{\theta} + \Omega_{\xi} + \frac{\Omega_{d}}{\Omega_{d}}\right)\widetilde{H}_{a} - i\Omega_{*}\widetilde{\Psi}_{a} + \Omega_{NL}(\widetilde{h}_{a}, \widetilde{\Psi}_{a}) = C_{a}$$

Drift motion

$$-i\Omega_{d} = a \frac{v_{ta}}{c_{s}} \mathbf{b} \times \left[u_{a}^{2} \left(1 + \xi^{2} \right) \frac{\nabla B}{B} + u_{a}^{2} \xi^{2} \frac{8\pi}{B^{2}} \left(\nabla p \right)_{\text{eff}} \right] \cdot i \mathbf{k}_{\perp} \rho_{a}$$

$$+ M_{a} \frac{2av_{\parallel}}{c_{s}R_{0}} \mathbf{b} \times \left(\frac{R}{\mathcal{J}_{\psi}B} \frac{\partial R}{\partial \theta} \nabla \varphi - \frac{B_{t}}{B} \nabla R \right) \cdot i \mathbf{k}_{\perp} \rho_{a}$$

$$+ \frac{a}{c_{s}} \mathbf{b} \times \left(-\frac{v_{ta}}{T_{a}} \mathbf{F}_{c} + \frac{c}{B} \nabla \Phi_{*} \right) \cdot i \mathbf{k}_{\perp} \rho_{a}$$

Typically, deuterium, some carbon, and electrons

$$\frac{\partial \widetilde{h}_{a}}{\partial \tau} - i\Omega_{s}X\widetilde{h}_{a} - i\left(\Omega_{\theta} + \Omega_{\xi} + \Omega_{d}\right)\widetilde{H}_{a} - i\left(\Omega_{*}\widetilde{\Psi}_{a}\right) + \Omega_{NL}(\widetilde{h}_{a},\widetilde{\Psi}_{a}) = \mathcal{C}_{a}$$

Gradient drive

$$-i\Omega_{*} = \left[\frac{a}{L_{na}} + \frac{a}{L_{Ta}}\left(u_{a}^{2} - \frac{3}{2}\right) + \gamma_{p}v_{\parallel}\frac{a}{v_{ta}^{2}}\frac{RB_{t}}{R_{0}B}\right]ik_{\theta}\rho_{s}$$

$$+ \left\{\frac{a}{L_{Ta}}\left[\frac{z_{a}e}{T_{a}}\Phi_{*} - \frac{M_{a}^{2}}{2R_{0}^{2}}\left(R^{2} - R(\theta_{0})^{2}\right)\right]$$

$$+M_{a}^{2}\frac{aR(\theta_{0})}{R_{0}^{2}}\frac{dR(\theta_{0})}{dr} + M_{a}\gamma_{p}\frac{a}{v_{ta}R_{0}^{2}}\left(R^{2} - R(\theta_{0})^{2}\right)\right\}ik_{\theta}\rho_{s}$$

Typically, deuterium, some carbon, and electrons

$$\frac{\partial \widetilde{h}_{a}}{\partial \tau} - i\Omega_{s}X\widetilde{h}_{a} - i\left(\Omega_{\theta} + \Omega_{\xi} + \Omega_{d}\right)\widetilde{H}_{a} - i\Omega_{*}\widetilde{\Psi}_{a} + \left|\Omega_{NL}(\widetilde{h}_{a}, \widetilde{\Psi}_{a})\right| = \mathcal{C}_{a}$$

Nonlinearity

$$\Omega_{\rm NL}(\widetilde{h}_a, \widetilde{\Psi}_a) = \frac{ac_s}{\Omega_{cD}} \sum_{\mathbf{k}'_{\perp} + \mathbf{k}''_{\parallel} = \mathbf{k}_{\perp}} \left(\mathbf{b} \cdot \mathbf{k}'_{\perp} \times \mathbf{k}''_{\perp} \right) \widetilde{\Psi}_a(\mathbf{k}'_{\perp}) \widetilde{h}_a(\mathbf{k}''_{\perp})$$

Gyrokinetic equation for plasma species a

Typically, deuterium, some carbon, and electrons

$$\frac{\partial \widetilde{h}_{a}}{\partial \tau} - i\Omega_{s}X\widetilde{h}_{a} - i\left(\Omega_{\theta} + \Omega_{\xi} + \Omega_{d}\right)\widetilde{H}_{a} - i\Omega_{*}\widetilde{\Psi}_{a} + \Omega_{NL}(\widetilde{h}_{a}, \widetilde{\Psi}_{a}) = \boxed{\mathfrak{C}_{a}}$$

Cross-species collision operator

$$\mathfrak{C}_{a} = \sum_{b} C_{ab}^{L} \left(\widetilde{H}_{a}, \widetilde{H}_{b} \right)$$

$$\begin{split} C_{ab}^{L}(\widetilde{H}_{a},\widetilde{H}_{b}) &= \frac{\nu_{ab}^{D}}{2} \frac{\partial}{\partial \xi} \left(1 - \xi^{2}\right) \frac{\partial \widetilde{H}_{a}}{\partial \xi} + \frac{1}{\mathbf{v}^{2}} \frac{\partial}{\partial \mathbf{v}} \left[\frac{\nu_{ab}^{\parallel}}{2} \left(\mathbf{v}^{4} \frac{\partial \widetilde{H}_{a}}{\partial \mathbf{v}} + \frac{m_{a}}{T_{b}} \mathbf{v}^{5} \widetilde{H}_{a} \right) \right] \\ &- \widetilde{H}_{a} k_{\perp}^{2} \rho_{a}^{2} \frac{\mathbf{v}^{2}}{4 v_{ta}^{2}} \left[\nu_{ab}^{D} \left(1 + \xi^{2}\right) + \nu_{ab}^{\parallel} \left(1 - \xi^{2}\right) \right] + R_{\text{mom}}(\widetilde{H}_{b}) + R_{\text{ene}}(\widetilde{H}_{b}) \end{split}$$

Sonic Transport Fluxes

These are inputs to an independent TRANSPORT CODE

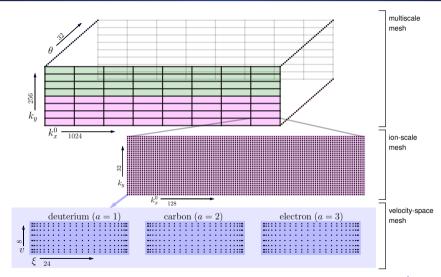
particle flux
$$\Gamma_a = \sum_{\mathbf{k}_{\perp}} \left\langle \int d^3v \, \widetilde{H}_a^* c_{1a} \widetilde{\Psi}_a \right\rangle$$
energy flux $Q_a = \sum_{\mathbf{k}_{\perp}} \left\langle \int d^3v \, \widetilde{H}_a^* c_{2a} \widetilde{\Psi}_a \right\rangle$
momentum flux $\Pi_a = \sum_{\mathbf{k}_{\perp}} \left\langle \int d^3v \, \widetilde{H}_a^* c_{3a} \widetilde{\Psi}_a \right\rangle$

What do we solve for

5-dimensional distribution for every plasma species

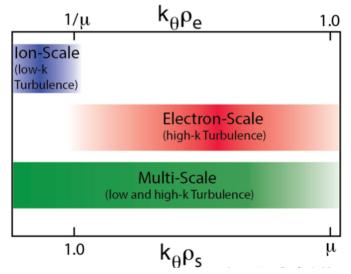
Six-dimensional array (mapped into internal 2D array in CGYRO)

$$H_a(\underbrace{k_x, k_y, \theta, \xi, \mathbf{v}}_{\text{5D mesh}}, t)$$


The **spatial coordinates** are

$$k_x \longrightarrow$$
 radial wavenumbers $k_y \longrightarrow$ binormal wavenumbers $\theta \longrightarrow$ field-line coordinate

The **velocity-space** coordinates are


$$\xi = v_{\parallel}/v \longrightarrow \text{cosine of the pitch angle} \in [-1, 1]$$

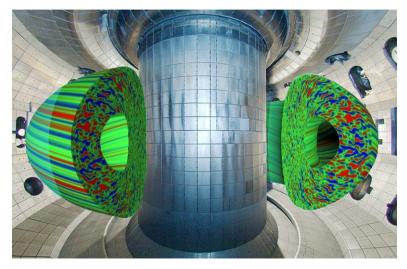
 $v \longrightarrow \text{speed} \in [0, \infty]$.

Visual representation of computational mesh

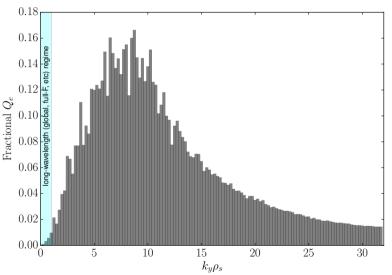
CGYRO optimized for challenging multiscale turbulence

COMPLETE REDESIGN of world-renowned GYRO code

Simulation of turbulent energy loss in a tokamak plasma


CGYRO computes the turbulent flux

DIII-D Tokamak at General Atomics in San Diego, CA

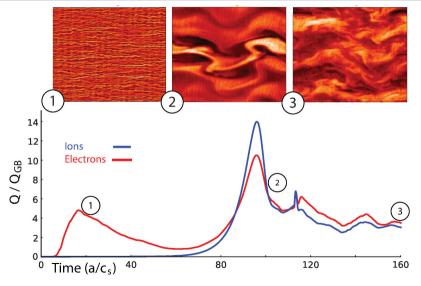

CGYRO computes the turbulent flux

DIII-D Tokamak at General Atomics in San Diego, CA

Multiscale DIII-D Simulation at r/a = 0.92

ITER baseline discharge (Haskey, Grierson) 164988

Resolution $k_x \rho_s \leq 124.0$, $k_y \rho_s \leq 31.8$


Time 9 hrs on 32K cores

	$Q_i/Q_{\rm GB}$	$Q_e/Q_{\rm GB}$
pwrbal	2.5	8.2
NEO	2.7	0.0
CGYRO	0.0	8.0

Simulation underway on Titan (NCCS)

4986 nodes = 4986 Tesla K20X GPUs

Important locations for CGYRO

Source code

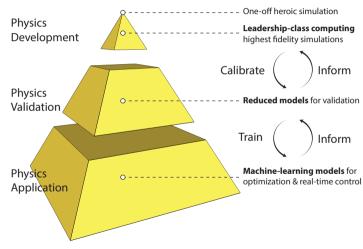
github.com/gafusion/gacode

DOI

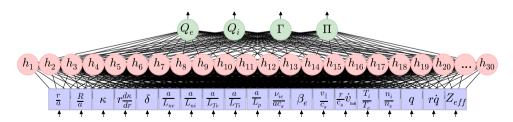
www.osti.gov/doecode/biblio/20298

User Documentation

gafusion.github.io/doc


Documentary Video (for GYRO)

www.youtube.com/watch?v=RLI6QW2x4Lg


Fidelity Hierarchy (Pyramid)

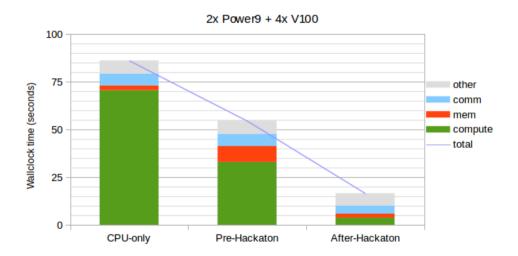
Range of models all the way up to leadership codes

Create TGLF-NN neural net from TGLF reduced model

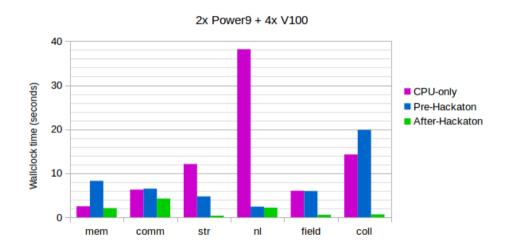
- 23 inputs \rightarrow 4 outputs
- Each dataset has 500K cases from 2300 multi-machine discharges
- Trained with TENSORFLOW
- Must be retrained as TGLF model is updated
- TGLF itself derived from **HPC CGYRO** simulation

GPU performance: development and results

- 1 Numerical algorithms selected to allow intensive threading/acceleration
 - Nonlinearity (nl) = FFT
 - Collisions (coll) = Matrix-vector multiply

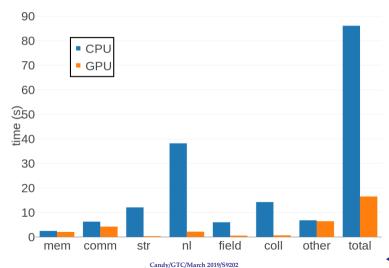

- Numerical algorithms selected to allow intensive threading/acceleration
 - Nonlinearity (nl) = FFT
 - Collisions (coll) = Matrix-vector multiply
- 2 Key kernels have threaded (default) and accelerated variations
 - Smart loop order and good memory management keeps kernels similar

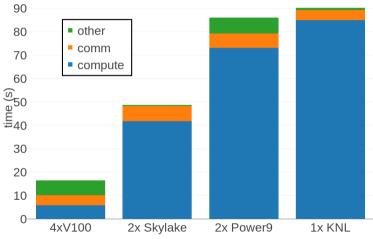
- Numerical algorithms selected to allow intensive threading/acceleration
 - Nonlinearity (nl) = FFT
 - Collisions (coll) = Matrix-vector multiply
- 2 Key kernels have threaded (default) and accelerated variations
 - Smart loop order and good memory management keeps kernels similar
- **3** Implemented **GPU-aware MPI** (utilizes GPUDirect and GPU-Infiniband RDMA)


Initial thought was that nonlinearity (nl) would dominate

Acceleration of nl exposed cost of other kernels

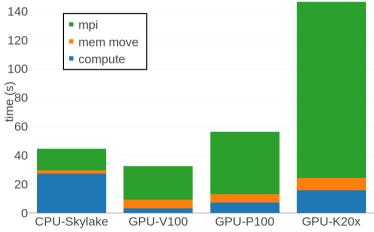
Titan K20 GPU too small to store collision matrix


- 1 Numerical algorithms selected to allow intensive threading/acceleration
 - Nonlinearity (nl) = FFT
 - Collisions (coll) = Matrix-vector multiply
- 2 Key kernels have threaded (default) and accelerated variations
 - Smart loop order and good memory management keeps kernels similar
- **3** Implemented **GPU-aware MPI** (utilizes GPUDirect and GPU-Infiniband RDMA)

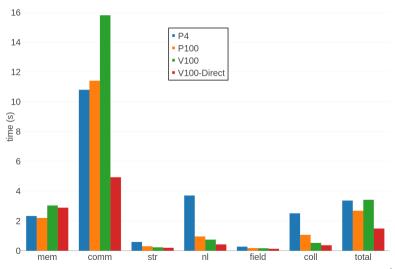

```
!$acc loop seq
       do ivp=1,nv
           cvec_re = real(cvec(ivp))
           cvec_im = aimag(cvec(ivp))
!$acc loop vector
          do iv=1.nv
              cval = cmat(iv,ivp,ic_loc)
              bvec(iv) = bvec(iv) + cmplx(cval*cvec_re,cval*cvec_im)
           enddo
        enddo
```

```
#ifdef DISABLE GPUDIRECT MPI
!$acc update host(fsendr)
#else
!$acc host data use device(fsendr.f)
#endif
    call MPI_ALLTOALL(fsendr.nsend.MPI_DOUBLE_COMPLEX. &
                             nsend.MPI_DOUBLE_COMPLEX.lib_comm.ierr)
#ifdef DISABLE_GPUDIRECT_MPI
!$acc update device(f)
#else
!$acc end host data
#endif
```

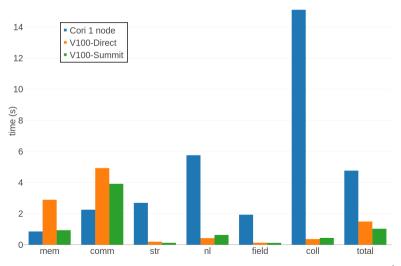
Power9 (CPU) versus Power9 + 4X V100 (GPU)


CPU systems versus 4X V100

Candy/GTC/March 2019/S9202


GPU type comparison

Stampede2, GA, Piz Daint, Titan



Google Cloud Partition Comparison

Santa Fe (last week)

Cloud V100 compared to Summit and Cori

OUTLINE

- History of General Atomics?
- **2** The case for fusion energy
- 3 Mathematical formulation and GPU-based numerical solution
- 4 Simulation of turbulent energy loss in a tokamak plasma
- **6** GPU performance: development and results

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, or those of the European Commission.

