
Dask and V100s for Fast,
Distributed Batch Scoring of
Computer Vision Workloads

Mathew Salvaris

• What is Dask?

• Batch scoring use cases
• Style transfer
• Mask- RCNN for object detection

and segmentation

http://docs.dask.org/en/latest/why.html

Dask for batch scoring

• Same code runs on single node
locally or in a cluster

• No orchestration code to write,
Dask handles orchestration

• Can create and execute complex
DAGs that can be generated on the
fly

Batch scoring use cases

• Style Transfer

• Object detection and segmentation

ReturnModel Write

Style transfer process

Read

A
p

p
ly

ReturnModel Write

Dask Graph of Style Transfer Process

Load
Image

Load
Image

Load
Image

Load
Image

Stack

Style
Transfer

Write

N

@curry
def process_batch(client, style_model, output_path, batch_filenames):

remote_batch_f = client.scatter(batch_filenames)
img_array_f = client.map(load_image, remote_batch_f)
stacked_array_f = client.submit(stack, img_array_f)
styled_array_f = client.submit(stylize_batch, style_model, stacked_array_f)
return client.submit(write, batch, styled_array_f, output_path)

Testing Dask locally on GPU

• Need GPU based libraries for workers and CPU based ones client

• Would limit the visibility of CUDA devices to each worker

• Spawn as many workers as there are GPUs

CUDA_VISIBLE_DEVICES=0 dask-worker 127.0.0.1 --nprocs 1 --nthreads 1 --resources 'GPU=1

What is Azure ML Pipelines
Create experimentation graph that gets you from data to a model

The pipeline can be exported as a parameterised end point

Dask on Azure pipelines

• Need to set off workers, scheduler and run client

• Azure ML pipelines has MPIStep which allows us to trigger MPI job

• Run workers on all ranks - Run client and scheduler on rank 0

GPU: V100
Images: 823

180.4

96.7

48.9

25.4
15.5

0

20

40

60

80

100

120

140

160

180

200

1 Process 2 Processes 4 Processes 8 Processes 12 Processes

Time Taken (S)

4-5 images/second

53 images/second

180.4

96.7

48.9

25.4
15.5 12.3

0

20

40

60

80

100

120

140

160

180

200

1 Process 2 Processes 4 Processes 8 Processes 12 Processes

Blob Premium Blob

GPU: V100
Images: 823

180.4

96.7

48.9

25.4
15.5

106.8

56.5

33.7

16.8
12.3

0

20

40

60

80

100

120

140

160

180

200

1 Process 2 Processes 4 Processes 8 Processes 12 Processes

Blob Premium Blob

69 images/second

8 images/second

GPU: V100
Images: 823

Azure ML Pipelines
Notebook

Mask-RCNN process

ReturnCombine Write

Read Model
BBOX
Mask

BBOX
Mask

Dask Graph of Mask-RCNN

Load
Image

Load
Image

Load
Image

Load
Image

Preprocessing

Score

Merge image and
annotations

N

Write

@curry
def process_batch(client, style_model, preprocessing, output_path, batch):

remote_batch_f = client.scatter(batch)
img_array_f = client.map(load_image, remote_batch_f)
pre_img_array_f = client.map(preprocessing, img_array_f)
bbox_list_f = client.submit(score_batch, style_model, pre_img_array_f)
results_f = client.submit(loop_annotations, img_array_f, bbox_list_f)
return client.submit(loop_write(output_path), batch, results_f)

Dask on Kubernetes

• Use Helm chart to deploy, workers, scheduler and Jupyter lab

• Provision 3 VMs with 4 V100s each

• Installed Nvidia device plugin

• Installed plugin for storage

Demo Kubernetes

Summary

Able to easily prototype two
batch scoring scenarios locally
then deploy on Kubernetes as
well as Azure pipelines

Using GPUs through Dask could
be more straight forward, better
interaction between Dask and DL
libraries

Acknowledgements
JS Tan

Azure Machine Learning Pipelines Team

Thanks
&

Questions?

