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• ADAS and Automated Driving 

• World 3D Reconstruction 

• 3D Deep Sensor Fusion 

• Future Plan 

• Conclusion 



ADAS Applications are booming

• Adaptive Cruise Control (ACC)
• Adaptive Front Lights (AFL)
• Driver Monitoring System (DMS)
• Forward Collision Warning (FCW)
• Intelligent Speed Adaptation (ISA)
• Lane Departure Warning (LDW)
• Pedestrian Detection System (PDS)
• Surround-View Cameras (SVC)
• Autonomous Emergency Braking (AEB)

Vehicle Platform

Sensors Configuration 
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Each pixel has such matching 
cost curve, which constructs 

the Matching Cost Space

<Cost Space >
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Matching cost curve

Neighbors: 

low matching cost 
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Viterbi algorithm can find the global optimum 
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Exploiting the neighbors’ matching cost  can be translated into  
Mathematical Optimization about the Shortest Path Problem



Cost for VSLj

Cost for VSLj+1

DSL_RDLUk , k=1,…,K
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Huge Networks with 
Parallel Optimization  



< SGBM > 
< Proposed Method(Multi-Path Viterbi) > 
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Image Size           ：１２８０×９６０

Calculation Time : 15ms／Frame
GPU ： GeFORCE GTX 1080

Nagoya Urban Road



Tokyo Metropolitan Highway

Calculation Time :15ms／Frame
GPU ： GeFORCE GTX 1080



Calculation Time : 15ms／Frame
GPU ： GeFORCE GTX 1080







Electromagnetic Range Wave: Camera ,Laser, Radar

0.1μm 1μm 10μm 1ｍｍ100μm

Laser

Visible Light Camera 

Infrared Camera

Car Radar

10ｍｍ

Car Sonar

Electromagnetic 
Wave 

Sound Wave

Wave 
Length

Can See Detail 

Can See Far

Fog & Dust Rain

~100／ｍ3
~100/cｍ3

Sun Light

Snow



Perception 
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• Single sensor-based 
learning is not robust or 
descriptive enough

• Challenges

– Environmental 
Variation (occlusion, 
illumination variation,  
etc.)

– High Inter-Class and 
Intra-Class Variability

Perception 
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Single Sensor

Camera, 
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Labels



There are many vehicle varieties with different orientations  



We have a large number of On-Road Objects

We have a lot of variety of on road objects!!!!  



We have the different type of road boundaries

We have a lot of variety of Free Space Boundary!!!!  

Concrete Curb
Guardrail

Wall

Pylon Divider



Illumination variation as observed by a monocular 
camera image with appearance features



• Sensor Fusion-based 
learning with 

Complementary Sensors 
addresses these issues

• Monocular Camera 
appearance features and 
depth features are 
Complementary Features
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Monocular Camera Depth Camera

Monocular Camera ⇒ Rich 
Appearance Information

Depth Camera ⇒ Depth 
Information (3D Data)

Inexpensive Stereo-based Depth Inexpensive

Illumination Variation
Illumination Invariant due to 
robust stereo algorithm [1]

[1] Xu et al. Real-time Stereo Disparity Quality Improvement for Challenging Traffic Environments, IV 2018

Depth information from stereo camera robust to illumination variation

https://www.researchgate.net/publication/325987237_Real-time_Stereo_Disparity_Quality_Improvement_for_Challenging_Traffic_Environments


Appearance and Depth Features are Fused within a Deep
learning Framework for Environment Perception

Deep learning 
framework

Appearance
(Monocular camera)

Descriptive 
Appearance Features

Depth 
(Stereo Camera/Laser)
Illumination invariant 

depth features

Sensor fusion with complementary features

3D Environment 
Perception



Image & Depth

 Sensor Fusion : Raw Data Level Fusion
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 Sensor Fusion : Feature Level Fusion
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Intensity Input

Depth Input
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Entire Depth Encoder Feature Maps (m,n,n) are transferred to Free Space and 
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Entire Intensity Encoder Feature Maps (m,n,n) are transferred to Free Space 
and Object Decoder  Feature Maps (o,n,n) for Concatenation (m+o,n,n)

Skip Connections
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ChiNet

Intensity Image

Disparity Image

Free Space

• Trained with 9000 Samples from Japanese Highway dataset
• Manually annotated free space and objects

• Trained on Keras with theano backend
• Trained with Nvidia Titan X GPU

Objects



Free Space 

Objects









Implemented on 
GeForce Titan X 
using Keras with 
Theano backend



Comparison : “Intensity” vs “Intensity and Depth”

Intensity and Disparity fusion

Wrong boundary Pylon not
detected

Car detection
Not accurate

Car not
detected

Car detected
Pylon detected

Car, better detection

Accurate boundary

Intensity image only



Intensity image only

Intensity and Depth Fusion

Pylon not
detected

Pylon 
detected

False object

No false object

Wrong boundary

better boundary

Evaluation Result
Comparison : “Intensity” vs “Intensity and Dept



Some of Learned Image Feature
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Some of Learned Depth Features

Depth 

Intensity Image

• Close Distance Objects
• Close Free Space 

• Edges 

• Far Distance Objects
• Far Free Space

Strong

Weak





Pixel Data After Mean Centering 

We have different distribution even after mean centering 

Day Time Day Time 

Night Time 

Night Time 



Electromagnetic Range Wave: Camera ,Laser, Radar
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Thermal Camera Normal Camera 





Stability against a variety of light conditions



32 cm



Pedestrian 
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320TOPS

Automated Driving Unit

DRIVE PX PEGASUS

Support the High Speed and 
Processing Requirement for Lev. 5 

Process and Integration 

Laser , Stereo, Sonar 

Far Infrared Camera, 
Visible Camera  

Milliwave Radar

IMU & GNSS & Map



• Sensor fusion of appearance and depth features for 
environment perception

• Increased robustness and perception accuracy

• ChiNet advantages

– Precise object boundary detection

– Detection of small objects in the road

– Detection of far-away objects

• Computational time

– Reduction of computational time to ~15 ms
possible with optimized CUDA libraries and 
advances in GPU computing




