
CUDA Implementation of Modern
Preconditioning Techniques for Iterative

Solvers of Linear Systems
Massimo Bernaschi

massimo.bernaschi@cnr.it

mailto:massimo.bernaschi@cnr.it

Co-AuthorsAndrea Franceschini, Post-Doc, University of Padua (currently in Stanford)

Victor Magri, PhD Student, University of Padua (joining soon LLNL)

Mauro Carrozzo, CNR, Roma

Mauro Bisson, NVIDIA, U.S.

Dario Pasquini, PhD Student, University of Rome “Sapienza”

Carlo Janna, University of Padua

Pasqua D’Ambra, CNR, Naples

Giving Credit where Credit is due

The computational requirements of models in research and industrial applications are steadily increasing

The linear solver is often the most time consuming kernel in numerical simulation methods.

Motivation

Introduction

❑ Iterative Conjugate Gradient-like methods are very effective especially on

HPC systems but…

❑ … the linear system MUST be preconditioned to achieve fast convergence!

❑ Preconditioning is “the art of transforming a problem that appears intractable

into another whose solution can be approximated rapidly” [Trefethen and Bau,

1997]

❑ A preconditioned system is:

bx
1

12
1

2
1

1
−−− = MMAMM

where M-1=M1
-1M2

-1 is the “preconditioner”

❑ Convergence is accelerated if M-1 resembles, somehow, A-1

❑ At the same time, M-1 must be sparse, so as to keep the cost for the

preconditioner computation, storage and application to a vector as low as

possible

❑ No rules: even, apparently, naïve ideas can work surprisingly well!

Introduction (1/2)

Introduction

❑ The development of algebraic preconditioners has experienced a big

impulse in the last two decades

❑ Algebraic preconditioners: robust algorithms that generate a

preconditioner from the knowledge of the system matrix only without

taking into account the problem (geometry) it arises from

❑ Most popular and successful preconditioners:

➢ Incomplete LU factorization

➢ Approximate inverse techniques

➢ Algebraic multigrid

An approximate inverse can also be

used as smoother in an AMG

Introduction (2/2)

Algebraic Multigrid (AMG): Main Components

𝐴𝑥 = 𝑏 where 𝐴 ∈ ℝ𝑛×𝑛 s.p.d.

[solved in a recursive way]

Factored Sparse Approximate Inverse

❑ Factorized Sparse Approximate Inverse (FSAI): an almost perfectly

parallel factored preconditioner for SPD problems [Kolotilina & Yeremin, 1993] :

M -1 = FTF

with F a lower triangular matrix such that:

I -FL
F
®min

over the set of matrices with a prescribed lower triangular sparsity pattern SL,
e.g. the pattern of A or A2, where L is the exact Cholesky factor of A

L is not actually required for computing F!

❑ Computed via the solution of n independent small dense

systems and applied via matrix-vector products

Factorized Sparse Approximate Inverse (FSAI)

FSAI Construction

❑ The computation of each row of F is performed by:

1.Gathering a small dense system whose entries are in A

2.Solving that system with respect to a unitary rhs

FSAI construction

Factored Sparse Approximate Inverse

1.The FSAI preconditioner is always SPD we can use PCG

2.FSAI is applied through a matrix by vector product almost

perfectly parallel application

3.FSAI construction has a very high degree of natural parallelism

❑ In tough problems, the preconditioner computation may require large

computational resources and the natural parallelism of FSAI construction

is very attractive

FSAI features

A key-point in the computation of FSAI preconditioner is the choice of the

non-zero pattern. Two possible alternatives:

1. Static pattern FSAI

•The pattern is chosen a priori

•Easier implementation and cheaper computation

2. Dynamic pattern FSAI

•The pattern is adaptively chosen during set-up

•More effective but also more expensive and difficult to implement

C. Janna and M. Ferronato, “Adaptive pattern research for block FSAI preconditioning”, SIAM J. Sci.

Comp. 33, 3357-3380 (2011)

C. Janna, M. Ferronato, F. Sartoretto, and G. Gambolati, “FAIPACK: A Software Package for High-

Performance Factored Sparse Approximate Inverse Preconditioning”, ACM Trans. Math. Soft. 41,

(2015)

Factored Sparse Approximate Inverse
FSAI variants

Static Pattern FSAI

❑ In the recente past, we successfully ported on GPU the static pattern FSAI*

❑ Three main kernels:

➢Systems gather;

➢Dense system solver;

➢Sparse matrix by vector product;

❑ An overall 10x speed-up has been obtained w.r.t. to a highly tuned OpenMP

CPU implementation

*M.B., M. Bisson, C. Fantozzi and C. Janna, “A Factored Sparse Approximate Inverse preconditioned

conjugate gradient solver on graphics processing unites”, SIAM J. Sci. Comp. 38, C53-C72 (2016)

we rely on CUSPARSE

Static Pattern FSAI

GPU_Gather

1 35 78 111 291

❑ On the CPU each thread collects a whole system

x x x

x x

x x x

x x x x

x x x

é

ë

ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú

A

Pattern of a row of F

In this example 1 thread enters 5 rows of A

looking for 5 column indices on each of

them

Linear search on each A row

1 thread

❑ As the GPU are SIMD systems, this approach is very ineffective

Gather of small systems on GPU (1/2)

GPU_Gather

1 35 78 111 291

❑ To achieve a better performance we use an approach we*

proposed for the breadth first search on large scale graphs

x x x

x x

x x x

x x x x

x x x

é

ë

ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú

A

Pattern of a row of F

25 thread

* M.B. and E. Mastrostefano, “Efficient breadth first search on multi-GPU systems”,

J. Par. Distr. Comp. 73, 1292-1305 (2013)

1 35 78 111 291

1 35 78 111 291

1 35 78 111 291

1 35 78 111 291

1 35 78 111 291

Expanded system to be be gathered

Binary search on each A row

Gather of small systems on GPU (2/2)

GPU_Cholesky

❑ The solution to long sequences of small dense linear systems is a

kind of problem that, at first sight, does not fit to the GPU features

❑ Most numerical libraries aim at solving a small (1) number of large

linear systems

❑ To optimize the GPU performance it is necessary to use registers

and, as a consequence, to write a different specialized kernel for

each system dimension

❑ We used an approach similar to that proposed by Anderson et al.*

❑ We have a set of kernels to solve problem of sizes 32, 64, 96,…

❑ Systems of intermediate dimension are properly padded

* M. J. Anderson, D. Sheffield and K. Keutzer, “A predictive model for solving small linear algebra problems on GPU registers”, IEEE

26th International Parallel and Distributed Processing Symposium (2012)

Cholesky decomposition of small systems on GPU

*M.B., M. Bisson, C. Fantozzi and C. Janna, “A Factored Sparse Approximate Inverse preconditioned

conjugate gradient solver on graphics processing unites”, SIAM J. Sci. Comp. 38, C53-C72 (2016)

❑ Dynamic pattern FSAI uses all the kernels already developed for static

pattern FSAI and its application to a vector is identical

Good news:

Dynamic Pattern FSAI

❑ Dynamic pattern FSAI set-up is based on the computation of the “Kaporin

Gradient”

❑ the “Kaporin Gradient” is essentially a sparse matrix by sparse vector

product

❑ This operation needs to be performed several times for each row during

set-up and it is both time-consuming and memory unfriendly

Bad news:

M. B., M. Carrozzo, A. Franceschini and C. Janna, “A dynamic pattern Factored Sparse

Approximate Inverse preconditioner on Graphics Processing Units”, accepted for publication in

the SIAM Journal on Scientific Computing.

Adaptive (a.k.a. Dynamic) FSAI (1/3)

Since GPUs are SIMD architectures, the computation of dynamic pattern of

GPUs requires a flip in the loop for its computation

Dynamic Pattern FSAIAdaptive (a.k.a. Dynamic) FSAI (2/3)

❑ The computation of the Kaporin gradient involves a sparse matrix by

sparse vector product that currently represents the bottleneck of the

procedure

Dynamic Pattern FSAI

❑ A problem similar to merging a set of (scaled) rows of the matrix in a

vector

❑ The output pattern is determined dynamically

Adaptive (a.k.a. Dynamic) FSAI (3/3)

Hash-based Kap Grad comput.

4 8 3 7 …

❑ Three vectors to manage the Kaporin Gradient g:

➢IW: containing the unsorted column indices of g

➢WR: containing the unsorted values of g

➢JWN: a non-zero indicator containing the position of non-zeroes of g in

IW and WR

1.2 10.3 4.5 8.9 …

0 0 3 1 0 0 4 2 0 0

IW

WR

JWN

❑ This method is very efficient on CPU, but not suitable to GPU.

❑ The main problem is the size of JWN (of the order of the matrix)

Hash based computation of Kaporin gradient

Warp-Centric row merge

Thread 1

Thread 2

Thread 3

Thread 4

Warp

❑ The gradient g is managed by an entire warp

❑ Each thread in the warp explores one row of A
For the choice of the element having

the max absolute value we resort to

a butterfly data exchange pattern

Warp centric computation of Kaporin gradient

Test matrices:

CPU: 2 Intel(R) Xeon® E5-1620 @ 3.50GHz (4 cores each)
GPU:

• Pascal P100, with 16 Gb Ram, 3584 cores in 56 SM
• Volta Titan V, with 12 Gb Ram, 5120 cores in 80 SM

Experimental results (1/3)

Numerical Results

GPU (Titan V) speed up w.r.t. OpenMP CPU (8 cores)

➢ Maximum Speed-up ~ 12.5

➢ Minimum Speed-up ~ 2.5

➢ Average Speed-up ~ 7

Experimental results (2/3)

Numerical Results

Strong Scalability Test
on V100 GPUs

Experimental results (3/3)

BootCMatch: AMG based on
compatible weighted matching

CPU version github.com/bootcmatch/BootCMatch
[P. D’Ambra et al., BootCMatch: a Software package for Bootstrap AMG based on Graph Weighted Matching, ACM Transactions on Mathematical Software, Vol.44 2018.]

AMG application:
• Krylov Solvers (i.e., PFCG)
• V, H, W, K cycles (both as preconditioners and standalone solvers)

• Bootstrap to build composite AMG with desired
convergence rate

AMG setup:
• Aggregation based AMG
• Pairwise aggregation based on maximum weight matching

https://github.com/bootcmatch/BootCMatch

Pairwise Aggregation

• Given the input matrix 𝐴, it is necessary to build𝑨 , a matrix of weights that
characterize the strength of the connection (i.e., the similarity) between pairs of
variables

• 𝑨 has the same dimension and sparsity pattern of 𝑨 but with null diagonal;
[P. D’Ambra, et al., Adaptive AMG with Coarsening based on Compatible Weighted Matching]

• The procedure is applicable to general matrices and does not require
thresholds or other user defined parameters.

• Next step is to select the pairs of variables having the highest connection each
other
• Each variable i will be connected to a single variable j or it will be a singleton

• Finding the set of edges that couples the variables according to the strength of
their connection is an instance of the classic matching problem in graph theory.

Given a undirect graph 𝐺 = 𝑉, 𝐸 described by a weighted
adjacency matrix

• 𝑀 ⊆ 𝐸 is a matching for 𝐺 iff it includes only non-
adjacent edges

• 𝑀 is a perfect matching if its edges touch all the vertices 𝑉

• 𝑀 is a maximum weighted matching iff the sum of the
weights of its edges is maximized:

𝐶 𝑀 = σ(𝑖,𝑗)∈𝑀 𝑐𝑖𝑗 max
𝑀′𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔 𝑖𝑛 𝐺

𝐶 𝑀′

where 𝑐𝑖𝑗 is the weight of edge 𝑖, 𝑗

(Maximum Weighted) Graph Matching (1/2)

• A matching of maximum weight 15 can be
found by pairing vertex b to vertex c and
vertex d to vertex e
(leaving vertices a and f unpaired).

• A perfect matching (including the pair a-b,
f-c and d-e) would have weight equal to 14

(Maximum Weighted) Graph Matching (2/2)

Matching Algorithms

Matching algorithms for CPU are not very suitable for GPU

(nnz is the number of non-zero elements in the matrix of size n)

MC64:

• Optimal Exact Matching

• 𝒪(𝑛 𝑛 + 𝑛𝑛𝑧 log(𝑛))

Preis algorithm:

• half-approximate

• 𝒪(𝑛𝑛𝑧)

Auction algorithm:

• Near optimal

• 𝒪(𝑛 ⋅ 𝑛𝑛𝑧 𝑙𝑜𝑔(𝑛))

Matching Algorithm: Suitor (1/2)

Matching algorithms for CPU are not very suitable for GPU:

We resorted to a relatively new matching algorithm:

Suitor Algorithm
• half-approximate algorithm
• Time complexity: 𝑂(𝑛 Δ)
• based on the dominant edge strategy
• Very easily to parallelize

MC64:

• Optimal Matching

• 𝒪(𝑛 𝑛 + 𝑛𝑛𝑧 log(𝑛))

Preis algorithm:

• half-approximate

• 𝒪(𝑛𝑛𝑧)

Auction algorithm:

• Near optimal

• 𝒪(𝑛 ⋅ 𝑛𝑛𝑧 𝑙𝑜𝑔(𝑛))

[M. Halappanavar, et al, "Approximate weighted matching on emerging manycore and multithreaded architectures“]
[Md. Naim et al “Optimizing Approximate Weighted Matching on Nvidia Kepler K40”]

Matching Algorithm: Suitor (2/2)

[M. Halappanavar, et al, "Approximate weighted matching on emerging manycore and multithreaded architectures“]
[Md. Naim et al “Optimizing Approximate Weighted Matching on Nvidia Kepler K40”]

• A vertex u proposes (tentatively matches) to its
heaviest neighbor v that does not already have a
proposal of heavier weight.
• This reduces the number of neighbors a vertex

considers as candidate mates.
• If v has a proposal of lower weight, then u matches

itself to v and unmatches v’s mate w
• The algorithm now has to find a new mate for w

Suitor performance

G1 G2 G3

Suitor Preis Auction Optimal

Execution TimeSolution Quality

Previous algorithms

G4 G1 G2 G3 G4

Coarsening Algorithm

• 𝑨𝟎 = 𝑨, 𝑘 = 0, 𝑤0= 𝑤

• 𝒘𝒉𝒊𝒍𝒆 𝑠𝑖𝑧𝑒 𝑨𝒌 > 𝑚𝑎𝑥𝑠𝑖𝑧𝑒:

• 𝑷𝒌 = 𝑝𝑎𝑖𝑟𝑤𝑖𝑠𝑒𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛(𝑨,𝒘𝒌)

• 𝑹𝒌 = 𝑷𝒌 𝑇

• 𝑨𝒌+𝟏 = 𝑹𝒌𝑨𝒌𝑷𝒌 (Galerkin product)

• 𝒘𝒌+𝟏 = 𝑹𝒌𝒘𝒌

• 𝑘 + +

Hierarchy:

𝑨

𝑨𝟏

𝑨𝟐

𝑨𝒎• Where 𝑷𝒌 (prolongator) is a constant piecewise operator obtained
from the aggregates produced by the pairwise aggregation

Aggressive Coarsening Algorithm

• 𝑨𝟎 = 𝑨, 𝑘 = 0, 𝑤0= 𝑤

• 𝒘𝒉𝒊𝒍𝒆 𝑠𝑖𝑧𝑒 𝑨𝒌 > 𝑚𝑎𝑥𝑠𝑖𝑧𝑒:

• 𝑷𝒌 = 𝑝𝑎𝑖𝑟𝑤𝑖𝑠𝑒𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛(𝑨,𝒘𝒌)

• 𝑹𝒌 = 𝑷𝒌 𝑇

• 𝑨𝒌+𝟏 = 𝑹𝒌𝑨𝒌𝑷𝒌

• 𝒘𝒌+𝟏 = 𝑹𝒌𝒘𝒌

• 𝑘 + +

e.g. Hierarchy obtained by a double
pairwise aggregation :

Can be repeated 𝑛
times for each level 𝑘

𝐀 𝑷𝟎

𝐴1
′

𝑨𝟏 𝑷𝟏= 𝑃1
′
𝑃1

𝐴2
′

𝑨𝟐 𝑷𝟐= 𝑃2
′
𝑃2

𝐴𝑚
′

𝑨𝒎 𝑷𝒎 = 𝑃𝑚
′
𝑃𝑚

Matching

SpMM

Other

Building time
In the

Average Case

Y. Nagasaka, A. Nukada, S. Matsuoka, High-performance and memory-saving sparse seneral matrix-matrix multiplication for
Nvidia Pascal GPU, in: IEEE 46th International Conference on Parallel Processing, IEEE, 2017

Sparse Matrix Dense Vector product [SpMxV]
General case

Sparse Matrix 𝑨 :

Dense Vector 𝒙

0 1 2 3 4 5 6 7 … 31

𝑛𝑛𝑧𝑖
0 𝑛𝑛𝑧𝑖

1 𝑛𝑛𝑧𝑖
2 𝑛𝑛𝑧𝑖

3 𝑛𝑛𝑧𝑖
4 𝑛𝑛𝑧𝑖

5 𝑛𝑛𝑧𝑖
6 𝑛𝑛𝑧𝑖

7 … 𝑛𝑛𝑧𝑖
31

Warp :

1. Each warp is in charge of a row i of the matrix 𝐴
2. Each thread in the warp gets a nnz element A 𝑖, 𝑗 and

multiplies it by 𝑥 𝑗
3. Each warp performs an internal sum reduction

𝑦[𝑖] =

𝑗=0

𝑛

𝐴 𝑖, 𝑗 𝑥[𝑗]

CSR row

SpMxV on very sparse matrices

Sparse Matrix 𝑨 :

Dense Vector 𝒙

0 1 2 3 4 5 6 7 … 31

𝑛𝑛𝑧𝑖
0 𝑛𝑛𝑧𝑖

1 𝑛𝑛𝑧𝑖
2 𝑛𝑛𝑧𝑖

3 …

Warp :

CSR row

Threads are executed but not
exploited for the computation

1. Each warp is in charge of a row i of the matrix 𝐴
2. Each thread in the warp gets a nnz element A 𝑖, 𝑗 and

multiplies it by 𝑥 𝑗
3. Each warp performs an internal sum reduction

𝑦[𝑖] =

𝑗=0

𝑛

𝐴 𝑖, 𝑗 𝑥[𝑗]

Improving Load Balancing via “mini-warp”

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Mini-warps possible configuration:
• 16 mini-warps of 2 threads
• 8 mini-warps of 4 threads
• 4 mini-warps of 8 threads
• 2 mini-warps of 16 threads

Full Warp:
(e.g. 4 mini-warps of 8 threads each)

mini-warp 0 mini-warp 1 mini-warp 2 mini-warp 3

Communication channel Communication channel Communication channel Communication channel

SpMxV with “mini-warp”

Sparse Matrix 𝑨 :

Dense Vector 𝒙

0 1 2 3 4 5 6 7 … 31

𝑛𝑛𝑧𝑖
0 𝑛𝑛𝑧𝑖

1 𝑛𝑛𝑧𝑖
2 𝑛𝑛𝑧𝑖

3 𝑛𝑛𝑧𝑗
0 𝑛𝑛𝑧𝑗

1 𝑛𝑛𝑧𝑗
2 𝑛𝑛𝑧𝑗

3 … 𝑛𝑛𝑧𝑘
3

Warp :

CSR rows

• Each warp is divided in mini-warps of equal size.
Possible setups per warp:

• 16 mini-warps of 2 threads
• 8 mini-warps of 4 threads
• 4 mini-warps of 8 threads
• 2 mini-warps of 16 threads

Each mini-warp takes a different row
and manages it as if it were a full
warp

cuSPARSE

Adaptive mini-warp

Mini-warp Product vs. cuSPARSE Product

For each function call:
The mini-warp size is chosen
adaptively by averaging the
number of nnz per row of the
input matrix

Matrix n nnz

M1 22 × 104 17 × 105

M2 11 × 105 68 × 105

M3 42 × 105 51 × 106

M1 M2 M3

Solving time [V-cycle + FPCG]:

Three systems arising from
Linear Elasticity Problems:

Result on NVIDIA Volta architecture

Average total speedup: 1.8

Flexible Conjugate Gradient (FCG)
Optimizations [1]

• It’s possible to rearrange FCG algorithm in order to obtain
these three scalar products in sequence

[Y. Notay, A. Napov, A massively parallel solver for discrete Poisson-like problems]

Scalar product between two dense vectors:

𝑖=0

𝑛

𝑥 𝑖 𝑦[𝑖]

Flexible Conjugate Gradient (FCG)
Optimizations [2]

• Originally designed for distributed implementation
in order to reduce nodes’ communication during the
sum reduction

• It’s possible to exploit this optimization on the GPU

Flexible Conjugate Gradient (FCG)
Optimizations [2]

• Originally designed for distributed implementation
in order to reduce nodes’ communication during the
sum reduction

• It’s possible to exploit this optimization on the GPU

Performing the triple scalar product in a single kernel means:
1. Saving Τ1 3 of global memory data transfer

(dense vector 𝑤 is read once)
2. Avoiding the overhead of two device synchronizations

GPU Kernel

Flexible Conjugate Gradient (FCG)
Optimizations [2]

One additional vector update operation (or axpy)

GPU Kernel

• Originally designed for distributed implementation
in order to reduce nodes’ communication during the
sum reduction

• It’s possible to exploit this optimization on the GPU

Performing the triple scalar product in a single kernel means:
1. Saving Τ1 3 of global memory data transfer

(dense vector 𝑤 is read once)
2. Avoiding the overhead of two device synchronizations

NVIDIA AmgX

• State-of-the-art AMG library for GPUs

• Flexible configuration allows for nested solvers, smoothers and
preconditioners

• Support distributed multi-GPUs computation

• We chose AmgX as benchmark

[M. NAUMOV et al AMGX: A LIBRARY FOR GPU ACCELERATED ALGEBRAIC MULTIGRID AND PRECONDITIONED ITERATIVE METHODS]

BootCMatch Experiment Setting

AMG based on compatible weighted matching as preconditioner of the FCG

• Coarsening:
• maximum weighted matching obtained by Suitor algorithm
• combination of 2 sweeps of pairwise (unsmoothed) aggregation, corresponding to a coarsening ratio of at most 4

• vector of all ones as initial smooth vector

• Cycle:
• V-Cycle
• 1 sweep of Jacobi L1 smoother as pre/post smoothing
• 20 sweeps of Jacobi L1 smoother as coarsest solver

• Solver:
• stopping criterion: relative residual ≤ 10-6

• Hardware:
• NVIDIA TITAN V (CUDA 9.1)

• Architecture: NVIDIA Volta
• Memory: 12 GB
• CUDA CORES: 5120

− div K𝛻u = f in Ω = 0, 1 × [0,1]

with homogeneous Dirichlet BC, u = 0 on ∂Ω, and

𝐾 =
𝑎 𝑐
𝑐 𝑏

with ൞

𝑎 = 𝜖 + cos2(𝛼)

𝑏 = 𝜖 + 𝑠𝑖𝑛2(𝛼)

𝑐 = cos 𝛼 sin(𝛼)

Discretized using linear finite elements on triangular meshes by uniform refinement.

Test Case: anisotropic diffusion with:

𝜖 = 0.001 𝑎𝑛𝑖𝑠𝑜𝑡𝑟𝑜𝑝𝑦 𝑠𝑡𝑟𝑎𝑖𝑛

𝛼 = 0 𝑎𝑛𝑑
𝜋

8
(𝑎𝑛𝑖𝑠𝑜𝑡𝑟𝑜𝑝𝑦 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛)

2D Diffusion Equation

NVIDIA AmgX

BootCMatch

Total Time Comparison

Matrix n nnz

P*M1 168577 1177473

P*M2 673025 4706049

P*M3 2689537 18816513

P0M1 P0M2 P0M3 P8M1 P8M2 P8M3 Building time

anisotropy direction: 0 anisotropy direction: Τ𝝅 𝟖

NVIDIA AmgX

BootCMatch

Iterations number

Matrix n nnz

P*M1 168577 1177473

P*M2 673025 4706049

P*M3 2689537 18816513

P0M1 P0M2 P0M3 P8M1 P8M2 P8M3

BootCMatch requires:
𝟏𝟎% ∼ 𝟐𝟎% fewer iterations

NVIDIA AmgX

BootCMatch

Time Comparison with AmgX Classic AMG

Matrix n nnz

P*M1 168577 1177473

P*M2 673025 4706049

P*M3 2689537 18816513

P0M1 P0M2 P0M3 P8M1 P8M2 P8M3

The parallel implementation
of Classic AMG in AMGX is
based largely on HYPRE

[Hans De Sterck, et al Reducing complexity in parallel algebraic multigrid preconditioners 2006]

Average total speedup: 8.6

• Lamé equation:
𝜇Δu + 𝜆 + μ 𝛻 div u = f x ∈ Ω

• 𝜇 = 0.42 and 𝜆 = 1.7 one side of the beam is fixed and the opposite
end pushed downwards (Dirichlet and traction conditions)

• each scalar component of the displacement vector is chosen as a block unknown: unknown-
based matrix ordering

• linear finite 2D elements on triangular mesh with three sizes (264450, 1053186, 4203522)

Systems arising from 2D Linear Elasticity
Problems

BootCMatch: GPU vs CPU speedup

Matrix n nnz

M1 264450 1710589

M2 1053186 6829053

M3 4203522 50375672

M1 M2 M3

x 85 faster

Intel(R) Xeon(R) Platinum 8176 CPU
Titan V GPU

NVIDIA AmgX

BootCMatch

Time Comparison

Matrix n nnz

M1 264450 1710589

M2 1053186 6829053

M3 4203522 50375672

M1 M2 M3

Average total speedup: 1.6

Building time

NVIDIA AmgX

BootCMatch

Solving iterations number

Matrix n nnz

M1 264450 1710589

M2 1053186 6829053

M3 4203522 50375672

M1 M2 M3

BootCMatch requires:
𝟏𝟎% ∼ 𝟏𝟓% fewer iterations

NVIDIA AmgX

BootCMatch

Time Comparison with AmgX Classic AMG

Matrix n nnz

M1 264450 1710589

M2 1053186 6829053

M3 4203522 50375672

M1 M2 M3

Average total speedup: 4.6

❑ Jacobi or Gauss-Seidel are usually adopted as smoothers

❑ AMG may fail in ill-conditioned problems as in the linear elasticity problem
shown before

❑ The idea is to apply the power of the FSAI approach to improve the smoothing
phase of the AMG

Limitation of classic AMG packages

Combining Dynamic FSAI and BootCMatch

Combining Dynamic FSAI and BootCMatch (1/3)
Systems arising from 3D Linear Elasticity Problems:

Matrix n nnz

M1 15795 239717

M2 111843 1699647

M3 839619 64790700

Solve time:

m
s

(l
o

g
sc

al
e)

NVIDIA AmgX

BootCMatch

BootCMatch+FSAI

Combining Dynamic FSAI and BootCMatch (2/3)
Systems arising from 3D Linear Elasticity Problems:

Matrix n nnz

M1 15795 239717

M2 111843 1699647

M3 839619 64790700

Building time:

m
s

(l
o

g
sc

al
e)

NVIDIA AmgX

BootCMatch

BootCMatch+FSAI

Combining Dynamic FSAI and BootCMatch (3/3)
Systems arising from 3D Linear Elasticity Problems:

Matrix n nnz

M1 15795 239717

M2 111843 1699647

M3 839619 64790700

Iterations number:

n
u

m
b

er
 o

f
it

er
at

io
n

s

NVIDIA AmgX

BootCMatch

BootCMatch+FSAI

Future Work

• Further optimizations in the building phase
• In the graph matching and triple matrix product

• Increase the number of software options
• Including (complete / incomplete) LU decomposition for the

coarsest solver

• Support for distributed multi-GPUs computation
• For both the building and the solver phase

• Release in the public domain
• Currently the code is available on demand

Thanks for Your Attention

