

OPENSEQ2SEQ: A DEEP LEARNING TOOLKIT FOR SPEECH RECOGNITION, SPEECH SYNTHESIS, AND NLP

Oleksii Kuchaiev, Boris Ginsburg 3/19/2019

Contributors

Jason Li, Vitaly Lavrukhin, Boris Ginsburg, Ryan Leary, Oleksii Kuchaiev, Chip Nguyen, Jonathan Cohen, Edward Lu, Ravi Gadde, Igor Gitman, Vahid Noroozi, Siddharth Bhatnagar, Trevor Morris, Kathrin Bujna, Carl Case, Nathan Luehr, Dima Rekesh

Contents

- Toolkit overview
 - Capabilities
 - Architecture
 - Mixed precision training
 - Distributed training
- Speech technology in OpenSeq2Seq
 - Intro to Speech Recognition with DNN
 - Jasper model
 - Speech commands

Code, Docs and Pre-trained models: https://github.com/NVIDIA/OpenSeq2Seq

Capabilities

- 1. TensorFlow-based toolkit for sequenceto-sequence models
- 2. Mixed Precision training
- 3. Distributed training: multi-GPU and multi-node
- 4. Extendable

Supported Modalities

- Automated Speech Recognition
 - DeepSpeech2, Wav2Letter+, <u>Jasper</u>
- Speech Synthesis
 - Tacotron2, WaveNet
- Speech Commands
 - <u>Jasper</u>, ResNet-50
- Neural Machine Translation
 - GNMT, ConvSeq2Seq, Transformer
- Language Modelling and Sentiment Analysis
- Image Classification

Core Concepts

Flexible Python-based config file

42	"encoder": BidirectionalRNNEncoderWithEmbedding,
43	<pre>"encoder_params": {</pre>
44	"initializer": tf.glorot_uniform_initializer,
45	<pre>"core_cell": tf.nn.rnn_cell.LSTMCell,</pre>
46	"core_cell_params": {
47	"num_units": 512,
48	"forget_bias": 1.0,
49	},
50	"encoder_layers": 2,
51	<pre>"encoder_dp_input_keep_prob": 0.8,</pre>
52	<pre>"encoder_dp_output_keep_prob": 1.0,</pre>
53	<pre>"encoder_use_skip_connections": False,</pre>
54	"src_emb_size": 512,
55	"use_swap_memory": True,
56	},
57	
58	"decoder": RNNDecoderWithAttention,
59	"decoder_params": {
60	"initializer": tf.glorot_uniform_initializer,
61	<pre>"core_cell": tf.nn.rnn_cell.LSTMCell,</pre>
62	"core_cell_params": {
63	"num_units": 512,
64	"forget_bias": 1.0,
65	},
66	"decoder_layers": 2,

Seq2Seq model

How to Add a New Model

2. Implement your idea

You get: logging, mixed precision and distributed training from toolkit. No need to write any code for it. You can mix various encoders and decoders.

Mixed Precision Training in OpenSeq2Seq

Train SOTA models faster and using less memory Keep hyperparameters and network unchanged

Mixed Precision training*:

- 1. Different from "native" tf. float 16
- 2. Maintain tf. *float32* "master copy" for weights update
- 3. Use the tf. *float16* weights for forward/backward pass
- 4. Apply loss scaling while computing gradients to prevent underflow during backpropagation
- 5. NVIDIA's Volta or Turing GPU

"Mixed precision" optimizer wrapper around any TensorFlow optimizer.

* Micikevicius et al. "Mixed Precision Training" ICLR 2018

Mixed Precision Training

Convergence is the same for *float32* and *mixed precision* training

Mixed Precision Training

Faster and uses less GPU memory

- Speedups of 1.5x 3x for same hyperparameters as *float32*
- You can use larger batch per GPU to get even bigger speedups

Distributed Training

Data Parallel Training Synchronous updates

Two modes:

- 1. Tower-based approach
 - Pros: simple, less dependencies
 - Cons: single-node only, no NCCL
- 2. <u>Horovod-based approach</u>
 - Pros: multi-node support, NCCL support
 - Cons: more dependencies

Tip: Use NVIDIA's TensorFlow container. https://ngc.nvidia.com/catalog/containers/nvidia:tensorflow

11

Distributed Training

Transformer-big Scaling

ConvSeq2Seq Scaling

of GPUs

OPENSEQ2SEQ: SPEECH TECHNOLOGY

Jason Li, Vitaly Lavrukhin, Boris Ginsburg, Ryan Leary, Oleksii Kuchaiev, Chip Nguyen, Jonathan Cohen, Edward Lu, Ravi Gadde

OpenSeq2Seq: Speech Technologies

OpenSeq2Seq has the following speech technologies:

- 1. Large Vocabulary Continuous Speech Recognition:
 - DeepSpeech2, Wav2Letter+, Jasper
- 2. Speech Commands
- 3. Speech Generation (Tacotron2 + WaveNet/Griffin-Lim)
- 4. Language Models

Agenda

- Intro to end-to-end NN based ASR
 - CTC-based
 - Encoder-Decoder with Attention
- Jasper architecture
- Results

Traditional ASR pipeline

- All parts are trained separately
- Need pronunciation dictionary
- How to deal with out-of-vocabulary words
- Need explicit input-output time alignment for training: severe limitation since the alignment is very difficult

Language Model: N-gram

Pronunciation model (Words): n-state HMM

Acoustic model (Tri-phones): 3-state HMM

Acoustic model (Senones): Gaussian Mixtures (GMM)

Hybrid NN-HMM Acoustic model

- DNN as GMM replacement to predict senones
- Different types of NN:
 - Time Delay NN, RNN, Conv NN
- Still need an alignment between the input and output sequences for training

Pronunciation model (Words): n-state HMM

Acoustic model (Tri-phones): 3-state HMM

Acoustic DNN

NN End-to-End: Encoder-Decoder

Language Model: N-gram

- No explicit input-output alignment
- RNN-based Encoder-Decoder
- RNN transducer (Graves 2012)
 - Encoder: Transcription net B-LSTM
 - Decoder: Prediction net (LSTM)

Courtesy of Awni Hannun, 2017 <u>https://distill.pub/2017/ctc/</u> 18 SINIA

NN End-to-End: Connectionist Temporal Classification

The CTC algorithm (Graves et al., 2006) doesn't require an alignment between the input and the output.

To get the probability of an output given an input, CTC takes sum over the probability of all possible alignments between the two. This 'integrating out' over possible alignments is what allows the network to be trained with unsegmented data

Language Model: N-gram Connectionist Temporal Classification **Acoustic DNN: Predicts output characters**

Time (s)

Courtesy of Awni Hannun <u>https://distill.pub/2017/ctc/</u>

NN End-to-End models: NN Language Model

Replace N-gram with NN-based LM

NN Language Model

Connectionist Temporal Classification

Acoustic DNN: Predicts output characters

DeepSpeech2 = Conv + RNN + CTC

0.5

1.0

1.5

Time (s)

2.0

2.5

3.0

3.5

21

Amodei, et al "Deep speech 2 : End-to-end speech recognition in english and mandarin," in ICML , 2016

Wav2Letter = Conv Model + CTC

Language Model

Auto Segmentation Criterion

kw = 12000 : 40 CONV kw = 12000 : 2000 CONV kw = 32250 : 2000 CONV kw = 7250 : 250 CONV kw = 7250 : 250 ~ CONV kw = 7250 : 250 CONV kw = 48, dw = 2250 250

Collobert, et al. "Wav2letter: an end-to-end convnet-based speech recognition system." *arXiv preprint arXiv:1609.03193* (2016).

Deep ConvNet network

• Gated Linear Units (GLU)

Auto Segmentation Criterion

Weight Normalization

• 11 1D-conv layers

Gradient clipping

(ASG) = fast CTC

ullet

🕺 NVIDIA

Jasper = Very Deep Conv NN + CTC

Time (s)

OpenSeq2Seq: Speech Technologies

Very Deep Conv-net:

- 1D Conv-BatchNorm-ReLU-Dropout
- Residual Connection (per block)
- Jasper10x5
- 54 layers
- 330M weights

Trained with SGD with momentum:

- Mixed precision
- ~8 days on DGX1

Block	Kernel	Channels	Dropout keep	Layers/ Block
Conv1	11 str 2	256	0.8	1
B1	11	256	0.8	5
B2	11	256	0.8	5
B3	13	384	0.8	5
B4	13	384	0.8	5
B5	17	512	0.8	5
B6	17	512	0.8	5
B7	21	640	0.7	5
B8	21	640	0.7	5
B9	25	768	0.7	5
B10	25	768	0.7	5
Conv2	29 dil 2	896	0.6	1
Conv3	1	1024	0.6	1
Conv4	1	vocabulary		1

Jasper: Speech preprocessing

Jasper: Data augmentation

- Augment with synthetic data using speech synthesis
- Train speech synthesis on multispeaker data
- Generate audio using LibriSpeech transcriptions
- Train Jasper by mixing real audio and synthetic audio at a 50/50 ratio

Jasper: Correct ratio for Synthetic Data

- Tested difference mixtures of synthetic and natural data on Jasper 10x3 model
- 50/50 ratio achieves best results for LibriSpeech

Model, Natural/Synthetic Ratio (%)	WER (%), Test-Clean	WER (%), Test-Other
Jasper 10x3 (100/0)	5.10	16.21
Jasper 10x3 (66/33)	4.79	15.37
Jasper 10x3 (50/50)	4.66	15.47
Jasper 10x3 (33/66)	4.81	15.81
Jasper 10x3 (0/100)	49.80	81.78

Jasper: Language models

WER evaluations* on LibriSpeech

Language Model	WER (%), Test-Clean	WER (%), Test-Other
4-gram	3.67	11.21
5-gram	3.44	11.11
6-gram	3.45	11.13
Transformer-XL	3.11	10.62

• Jasper 10x5 dense res model, beam width = 128, alpha=2.2, beta=0.0

Jasper: Results

LibriSpeech, WER %, Beam Search with LM				
	test-clean	test-other		
Jasper-10x5 DR Syn	3.11	10.62		
	Published results			
DeepSpeech2	5.33	13.25		
Wav2Letter	4.80	14.50		
Wav2Letter++	3.44	11.24		
CAPIO**	3.19	7.64		

OPENSEQ2SEQ: SPECH COMMANDS

Edward Lu

OpenSeq2Seq: Speech Commands

Dataset: Google Speech Commands (2018)

- V1: ~65,000 samples over 30 classes
- V2: ~110,000 samples over 35 classes
- Each sample is ~1 second long, 16kHz recording in a different voice includes commands (on/off, stop/go, directions), non-commands, background noise

Previous SoA:

- Kaggle Contest: 91% accuracy
- Mixup paper: 96% accuracy (VGG-11)

Speech Commands: Accuracy

Dataset	Validation	Test	Training Time	
ResNet-50				
V1-12	96.6 %	96.6 %	1h56m	
V1	97.5%	97.3%	3h16m	
V2	95.7 %	95.9 %	3h49m	
Jasper-10x3				
V1-12	97. 1%	96.2 %	3h13m	
V1	97.5%	97.3%	8h10m	
V2	95.5 %	95. 1%	9h32m	
VGG-11 with Mixup				
V1	96. 1%	96.6 %		

Code, Docs and Pre-trained models: https://github.com/NVIDIA/OpenSeq2Seq

