
Oleksii Kuchaiev, Boris Ginsburg
3/19/2019

OPENSEQ2SEQ: A DEEP LEARNING TOOLKIT FOR
SPEECH RECOGNITION, SPEECH SYNTHESIS, AND NLP

2

Jason Li, Vitaly Lavrukhin, Boris Ginsburg, Ryan Leary, Oleksii Kuchaiev,
Chip Nguyen, Jonathan Cohen, Edward Lu, Ravi Gadde, Igor Gitman, Vahid
Noroozi, Siddharth Bhatnagar, Trevor Morris, Kathrin Bujna, Carl Case,
Nathan Luehr, Dima Rekesh

Contributors

3

• Toolkit overview

• Capabilities

• Architecture

• Mixed precision training

• Distributed training

• Speech technology in OpenSeq2Seq

• Intro to Speech Recognition with DNN

• Jasper model

• Speech commands

Contents

Code, Docs and Pre-trained models:
https://github.com/NVIDIA/OpenSeq2Seq

https://github.com/NVIDIA/OpenSeq2Seq

4

1. TensorFlow-based toolkit for sequence-
to-sequence models

2. Mixed Precision training

3. Distributed training: multi-GPU and
multi-node

4. Extendable

Capabilities

Supported Modalities

• Automated Speech Recognition

• DeepSpeech2, Wav2Letter+, Jasper

• Speech Synthesis

• Tacotron2, WaveNet

• Speech Commands

• Jasper, ResNet-50

• Neural Machine Translation

• GNMT, ConvSeq2Seq, Transformer

• Language Modelling and Sentiment Analysis

• Image Classification

6

Core Concepts

Loss

Decoder

Encoder

Data Layer

Flexible Python-based config file Seq2Seq model

7

How to Add a New Model

Supported Modalities:

• Speech to Text

• Text to Speech

• Translation

• Language modeling

• Image classification

For supported modalities:

1. Subclass from Encoder, Decoder

and/or Loss

2. Implement your idea

Encoder
Implements: parsing/setting
parameters.

Accepts: DayaLayer output

Decoder
Implements: parsing/setting
parameters.

Accepts Encoder output

Loss
Implements: parsing/setting
parameters.

Accepts: Decoder output

Your Encoder

Your Decoder

Your Loss

You get: logging, mixed precision and distributed training from toolkit.

No need to write any code for it. You can mix various encoders and decoders.

https://nvidia.github.io/OpenSeq2SeqContributions Welcome!

Your Encoder

8

INTRODUCTION

• Train SOTA models faster and using less memory

• Keep hyperparameters and network unchanged

Mixed Precision Training in OpenSeq2Seq

Mixed Precision training*:

1. Different from “native” tf.float16

2. Maintain tf.float32 “master copy” for weights update

3. Use the tf.float16 weights for forward/backward pass

4. Apply loss scaling while computing gradients to

prevent underflow during backpropagation

5. NVIDIA’s Volta or Turing GPU

* Micikevicius et al. “Mixed Precision Training” ICLR 2018

9

INTRODUCTIONMixed Precision Training

0

0.5

1

1.5

2

2.5

3

3.5

4

0 50000 100000 150000 200000 250000 300000 350000

Tr
ai

n
in

g
Lo

ss

Iteration

GNMT FP32

GNMT MP

1

10

100

1000

10000

0 20000 40000 60000 80000 100000

Tr
ai

n
in

g
Lo

ss
 (

Lo
g-

sc
al

e
)

Iteration

DS2 FP32

DS2 MP

Convergence is the same for float32 and mixed precision training

10

INTRODUCTIONMixed Precision Training

Faster and uses less GPU memory

• Speedups of 1.5x - 3x for same hyperparameters as float32

• You can use larger batch per GPU to get even bigger speedups

11

INTRODUCTIONDistributed Training

Data Parallel Training
Synchronous updates

...

Two modes:

1. Tower-based approach

• Pros: simple, less dependencies

• Cons: single-node only, no NCCL

2. Horovod-based approach

• Pros: multi-node support, NCCL support

• Cons: more dependencies

Tip: Use NVIDIA's TensorFlow container.
https://ngc.nvidia.com/catalog/containers/nvidia:tensorflow

12

INTRODUCTIONDistributed Training

Transformer-big Scaling ConvSeq2Seq Scaling

13

OPENSEQ2SEQ:
SPEECH TECHNOLOGY

Jason Li, Vitaly Lavrukhin, Boris Ginsburg, Ryan Leary,
Oleksii Kuchaiev, Chip Nguyen, Jonathan Cohen,

Edward Lu, Ravi Gadde

14

OpenSeq2Seq has the following speech technologies:

1. Large Vocabulary Continuous Speech Recognition:

• DeepSpeech2, Wav2Letter+, Jasper

2. Speech Commands

3. Speech Generation (Tacotron2 + WaveNet/Griffin-Lim)

4. Language Models

OpenSeq2Seq: Speech Technologies

15

• Intro to end-to-end NN based ASR

• CTC-based

• Encoder-Decoder with Attention

• Jasper architecture

• Results

Agenda

16

Traditional ASR pipeline

• All parts are trained separately
• Need pronunciation dictionary
• How to deal with out-of-vocabulary words
• Need explicit input-output time alignment

for training: severe limitation since the
alignment is very difficult

17

Hybrid NN-HMM Acoustic model

• DNN as GMM replacement to
predict senones

• Different types of NN:
• Time Delay NN, RNN, Conv NN

• Still need an alignment between
the input and output sequences
for training

18

NN End-to-End: Encoder-Decoder

• No explicit input-output alignment
• RNN-based Encoder-Decoder
• RNN transducer (Graves 2012)

• Encoder: Transcription net B-LSTM
• Decoder: Prediction net (LSTM)

Courtesy of Awni Hannun , 2017 https://distill.pub/2017/ctc/

https://distill.pub/2017/ctc/

19

NN End-to-End: Connectionist Temporal Classification

The CTC algorithm (Graves et al., 2006) doesn’t
require an alignment between the input and the
output.
To get the probability of an output given an
input, CTC takes sum over the probability of all
possible alignments between the two. This
‘integrating out’ over possible alignments is
what allows the network to be trained with
unsegmented data

Courtesy of Awni Hannun https://distill.pub/2017/ctc/

Connectionist Temporal Classification

https://distill.pub/2017/ctc/

20

NN End-to-End models: NN Language Model

Replace N-gram with NN-based LM

Connectionist Temporal Classification

21

DeepSpeech2 = Conv + RNN + CTC

CTC

Deep Conv+RNN network
• 3 conv (TDNN)
• 6 bidirectional RNN
• 1 FC layer
• CTC loss

Amodei, et al “Deep speech 2 : End-to-end speech recognition in

english and mandarin,” in ICML , 2016

22

Wav2Letter = Conv Model + CTC

Auto Segmentation Criterion

Deep ConvNet network
• 11 1D-conv layers
• Gated Linear Units (GLU)
• Weight Normalization
• Gradient clipping
• Auto Segmentation Criterion

(ASG) = fast CTC

structured as follows: thenext section presents theconvolutional networksused for acoustic modeling,
along with the automatic segmentation criterion. The following section shows experimental results
comparing different features, the criterion, and our current best word error rates on LibriSpeech.

2 Architecture

Our speech recognition system is a standard convolutional neural network [12] fed with various
different features, trained through an alternative to the Connectionist Temporal Classification (CTC)
[6], and coupled with a simple beam search decoder. In the following sub-sections, we detail each of
these components.

2.1 Features

CONV

kw = 1

2000 : 40

CONV

kw = 1

2000 : 2000

CONV

kw = 32

250 : 2000

CONV

kw = 7

250 : 250

CONV

kw = 7

250 : 250

CONV

kw = 7

250 : 250

CONV

kw = 7

250 : 250

CONV

kw = 7

250 : 250

CONV

kw = 7

250 : 250

CONV

kw = 7

250 : 250

CONV

kw = 48, dw = 2

250 : 250

CONV

kw = 250, dw = 160

1 : 250

Figure 1: Our neural net-
work architecture for raw
wave. First two layers
are convolutions with strides.
Last two layers are convolu-
tions with kw = 1, which
are equivalent to fully con-
nected layers. Power spec-
trum and MFCC based net-
works do not have the first
layer.

We consider three types of input features for our model: MFCCs,
power-spectrum, and raw wave. MFCCs are carefully designed
speech-specific features, often found in classical HMM/GMM speech
systems [27] because of their dimensionality compression (13 coeffi-
cients are often enough to span speech frequencies). Power-spectrum
features are found in most recent deep learning acoustic modeling
features [1]. Raw wave has been somewhat explored in few recent
work [15, 16]. ConvNets have the advantage to beflexible enough to
be used with either of these input feature types. Our acoustic models
output letter scores (one score per letter, given a dictionary L).

2.2 ConvNet Acoustic Model

The acoustic models we considered in this paper are all based on
standard 1D convolutional neural networks (ConvNets). ConvNets
interleave convolution operations with pointwise non-linearity oper-
ations. Often ConvNets also embark pooling layers: these type of
layers allow the network to “see” a larger context, without increas-
ing the number of parameters, by locally aggregating the previous
convolution operation output. Instead, our networks leverage striding
convolutions. Given (x t)t = 1...Tx

an input sequence with Tx frames
of dx dimensional vectors, a convolution with kernel width kw, stride
dw and dy frame size output computes the following:

yi
t = bi +

dxX

j = 1

kwX

k = 1

wi ,j ,k x
j

dw⇥(t− 1)+ k
81 i dy , (1)

where b 2 Rdy and w 2 Rdy ⇥dx ⇥kw are the parameters of the convo-
lution (to be learned).

Pointwise non-linear layers are added after convolutional layers. In
our experience, we surprisingly found that using hyperbolic tangents,
their piecewise linear counterpart HardTanh (as in [16]) or ReLU units
lead to similar results.

There are some slight variations between the architectures, depending
on the input features. MFCC-based networks need less striding, as
standard MFCC filters are applied with large strides on the input raw
sequence. With power spectrum-based and raw wave-based networks,
we observed that the overall stride of the network was more important
than where the convolution with strides were placed. We found thus
preferrable to set the strided convolutions near the first input layers
of the network, as it leads to the fastest architectures: with power
spectrum features or raw wave, the input sequences are very long and
the first convolutions are thus the most expensive ones.

2

Collobert, et al . "Wav2letter: an end-to-end convnet-based speech

recognition system." arXiv preprint arXiv:1609.03193 (2016).

23

Jasper = Very Deep Conv NN + CTC

CTC

24

Very Deep Conv-net:

• 1D Conv-BatchNorm-ReLU-Dropout

• Residual Connection (per block)

• Jasper10x5

• 54 layers

• 330M weights

Trained with SGD with momentum:

• Mixed precision

• ~8 days on DGX1

OpenSeq2Seq: Speech Technologies

Block Kernel Channels Dropout

keep

Layers/

Block

Conv1 11 str 2 256 0.8 1

B1 11 256 0.8 5

B2 11 256 0.8 5

B3 13 384 0.8 5

B4 13 384 0.8 5

B5 17 512 0.8 5

B6 17 512 0.8 5

B7 21 640 0.7 5

B8 21 640 0.7 5

B9 25 768 0.7 5

B10 25 768 0.7 5

Conv2 29 dil 2 896 0.6 1

Conv3 1 1024 0.6 1

Conv4 1 vocabulary 1

25

Jasper: Speech preprocessing

Signal
Preprocessing

Speech waveform Log mel spectrogram

Speed
perturbation

Noise
Augmentation

Power
Spectrogram

Mel Scale
Aggregation

Log
Normalization

faster / slower speech

(resampling)

additive background

noise

windowing, FFT log scaling in frequency

domain

log scaling for amplitude,

feature normalization

26

Jasper: Data augmentation

Augment with synthetic data using
speech synthesis

Train speech synthesis on multi-
speaker data

Generate audio using LibriSpeech
transcriptions

Train Jasper by mixing real audio and
synthetic audio at a 50/50 ratio

2727

• Tested difference mixtures of synthetic and natural data on Jasper 10x3 model

• 50/50 ratio achieves best results for LibriSpeech

Model,

Natural/Synthetic Ratio (%)

WER (%),

Test-Clean

WER (%),

Test-Other

Jasper 10x3 (100/0) 5.10 16.21

Jasper 10x3 (66/33) 4.79 15.37

Jasper 10x3 (50/50) 4.66 15.47

Jasper 10x3 (33/66) 4.81 15.81

Jasper 10x3 (0/100) 49.80 81.78

Jasper: Correct ratio for Synthetic Data

28

Jasper: Language models

WER evaluations* on LibriSpeech

• Jasper 10x5 dense res model, beam width = 128, alpha=2.2, beta=0.0

Language Model
WER (%),

Test-Clean

WER (%),

Test-Other

4-gram 3.67 11.21

5-gram 3.44 11.11

6-gram 3.45 11.13

Transformer-XL 3.11 10.62

2929

test-clean test-other

Jasper-10x5 DR Syn 3.11 10.62

LibriSpeech, WER %, Beam Search with LM

DeepSpeech2 5.33 13.25

Wav2Letter 4.80 14.50

Wav2Letter++ 3.44 11.24

CAPIO** 3.19 7.64

Published results

**CAPIO Augmented with additional training data

Jasper: Results

30

OPENSEQ2SEQ:
SPEECH COMMANDS

Edward Lu

31

OpenSeq2Seq: Speech Commands

Dataset: Google Speech Commands (2018)
• V1: ~65,000 samples over 30 classes

• V2: ~110,000 samples over 35 classes

• Each sample is ~1 second long, 16kHz recording in a different voice

includes commands (on/off, stop/go, directions), non-commands,

background noise

Previous SoA:
• Kaggle Contest: 91% accuracy

• Mixup paper: 96% accuracy (VGG-11)

32

Dataset Validation Test Training Time

ResNet-50

V1-12 96.6% 96.6% 1h56m

V1 97.5% 97.3% 3h16m

V2 95.7% 95.9% 3h49m

Jasper-10x3

V1-12 97.1% 96.2% 3h13m

V1 97.5% 97.3% 8h10m

V2 95.5% 95.1% 9h32m

VGG-11 with Mixup

V1 96.1% 96.6%

Speech Commands: Accuracy

Code, Docs and Pre-trained models:
https://github.com/NVIDIA/OpenSeq2Seq

https://github.com/NVIDIA/OpenSeq2Seq

