
Performance and Precision

Tensor Core

Josef Schüle, University Kaiserslautern, Germany, josef.schuele@rhrk.uni-kl.de

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43Learning Iterations

Why attend this Session?

Tensor Core Performance and Precision

Assumed learning curve - deviation from final values
blue: trend in FP32
red: range according to precision loss in FP16

d
e

vi
at

io
n

o
f

w
e

ig
h

ts
an

d
b

ia
se

s

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43Learning Iterations

Why attend this Session?

Tensor Core Performance and Precision

Assumed learning curve - deviation from final values
blue: trend in FP32
red: range according to precision loss in FP16
green: possible behaviours in FP16

stagnationdivergence

Mixed precision
 Each iteration is faster
 Number of iterations is increased

Why attend this Session?

Tensor Core Performance and Precision

But: Does mixed precision really fasten up the
learning?

 Tensor Cores - Way of Operation and
Consequences

 Improving Quality of Tensor Core Usage
 Performance
 Results and Outlook

Outline

Tensor Core Performance and Precision

Source: NVIDIA

Tensor Core Performance and Precision

 Easiest and fastest way - NVIDIAs BLAS library
(cublas)

How can we use Tensor Cores?

#include "cublas_v2.h"

cublasHandle_t handle=0;

cublasStatus_t cublasStat = cublasCreate(&handle);

cublasStat=cublasSetMathMode(handle,CUBLAS_TENSOR_OP_MATH);

cublasGemmEx(handle,CUBLAS_OP_N,CUBLAS_OP_N,m,n,k,&beta,

B, CUDA_R_16F, ldb, A, CUDA_R_16F, lda, &alpha,

C, CUDA_R_32F, ldc, CUDA_R_32F,

CUBLAS_GEMM_DEFAULT_TENSOR_OP);

Tensor Core Performance and Precision

N= 8192 -> 91 Tflops (of 120 Tflops Peak)

 Nvidia provides Warp Matrix Multiply
Accumulate API

 contains very few functionality:
 fill_fragment - initialize an accumulator
 load_matrix_sync - load input data
 mma_sync - perform the multiplication
 store_matrix_sync - store result

 limitations
Matrices A, B, C, D may be
 8x16 (A), 16x32 (B), 8x32 (C,D)
 16x16 (A, B, C, D)
 32x16 (A), 16x8 (B), 32x8 (C,D)
 and - like cublas - it's FORTRAN data layout

Tensor core API

Tensor Core Performance and Precision

 maximum absolute value ±𝟔𝟓, 𝟓𝟎𝟒
 machine epsilon 𝟐−𝟏𝟎 (0.0009765)
 non-uniform precision loss

 1,024 representable values for each power-interval i.e.

 1,024 representables between 0.0 and 1.0 𝟎, 𝟐𝟎

 1,024 representables between 1,024 and 2,048
 32,768; 32,800; 32,832, … only representables in

𝟐𝟏𝟓, 𝟐𝟏𝟔

What is a FLOAT16?

sign 5bits exponent 10bits significand

Tensor Core Performance and Precision

 maximum absolute value ±𝟏𝟎𝟑𝟖

 machine epsilon 𝟐−𝟐𝟑 (1𝟎−𝟕)

Conversion of FLOAT32 x to FLOAT16 produces
round(x) with
 abserr(x)= |round(x)-x|
 Significands b11..b23 are lost (assuming proper

range)
 relerr(x)=abserr(x)/|x|=𝟐−𝟏𝟎=eps

What is a FLOAT32?

sign 8bits exponent 23bits significand

Tensor Core Performance and Precision

x=(𝟐−𝟔, 𝟐−𝟔, 𝟐−𝟔, 𝟐−𝟔)
y=(𝟐−𝟓, 𝟐−𝟓, 𝟐−𝟓, 𝟐−𝟓)

Float32

𝒔 = 𝒙𝑻 ∙ 𝒚 = 𝟒 ∙ 𝟐−𝟔 ∙ 𝟐−𝟓 = 𝟒 ∙ 𝟐−𝟏𝟏 = 𝟐−𝟗

= 𝟏. 𝟗𝟓 ∙ 𝟏𝟎−𝟑

Multiply-Accumulate with Float16

Tensor Core Performance and Precision

Float16
abserr(x)=abserr(y)= 0. (no initial rounding error)
Conversion of intermediate product 𝟐−𝟏𝟏 into float16 results
in 0.

Final result in float16 is 0., abserr(s)=𝟐−𝟗.

Tensor Core Performance and Precision

Additional rounding errors are prevented.

Thus - good and important that FP16 products are
accumulated in FP32 precision.

Source: NVIDIA

If abserr(__float2half(.)) = 0., it remains 0.

abserr(x)=eps=𝟐−𝟏𝟎 for 𝐱 ∈ 𝟎, 𝟐𝟎

abserr(x)=2 eps=𝟐−𝟗 for 𝐱 ∈ 𝟐𝟏, 𝟐𝟐

abserr(x)=1 for 𝐱 ∈ 𝟐𝟏𝟎, 𝟐𝟏𝟏

abserr(x)=32 for 𝐱 ∈ 𝟐𝟏𝟓, 𝟐𝟏𝟔

absolute error and matrix values

Tensor Core Performance and Precision

absolute rounding error increases
with value

x=(𝟏 − 𝟐−𝟏𝟏)

Float32
𝒔 = 𝒙𝑻 ∙ 𝒙 = 𝟏 − 𝟐−𝟏𝟎 + 𝟐−𝟐𝟐

If x is a vector of length N, 𝑠 = 𝑵 − 𝑵 ∙ 2−10 +𝑵 ∙ 2−22

absolute error and matrix size

Tensor Core Performance and Precision

Float16
x=1., abserr(x) =𝟐−𝟏𝟏

𝒔 = 𝒙𝑻 ∙ 𝒙 = 𝟏
If x is a vector of length N, 𝒔 = 𝐍

Final result in float16 is N, abserr(s)≈ 𝑵 ∙ 𝟐−𝟏𝟎.
Rounding errors increase with matrix size.

0,00E+00

2,00E-02

4,00E-02

6,00E-02

8,00E-02

1,00E-01

1,20E-01

1,40E-01

1,60E-01

1,80E-01

2,00E-01

64 128 256 512 1024 2048 4096 8192

e
rr

o
r

matrix sizes

A,B in [1,-1] A in [1,-1], B in [1,0] A in [1,-1], B in [4,-4]

different matrix sizes and intervals

absolute errors for C=AB

Tensor Core Performance and Precision

larger value,
larger errorlarger size

larger error

But - it is the 4th digit

Tensor Core Performance and Precision

3

3,5

4

4,5

64 128 256 512 1024 2048 4096 8192

e
rr

o
r

in
 d

ig
it

matrix sizes

A,B in [1,-1] A in [1,-1], B in [4,-4]

affected digit for different matrix sizes

0.984….

3.98….

Assume all entries of A below threshold T.
Scale A with σ: Ã= σA

D=αAB+βC becomes: D=
α
σ

ÃB+βC

Larger value, larger error: abserr(ÃB) ≈ σ abserr(AB)

Division by σ: abserr(Τα
σÃB) = Τα

σ abserr(ÃB) ≈ abserr(AB)

Scaling introduces no additional rounding error to AB, but

NVIDIA and others recommend scaling to prevent over- or
underflow

 reason: small gradient values otherwise will be
ignored because they are treated as 0.

range problems

Tensor Core Performance and Precision

Scaling of A may introduce additional rounding:

Choosing a proper scaling factor
Scaling with 1200.
1200.*(1.+𝟐−𝟏𝟎) = 1201.1718
in FP16 = 1201 (precision loss)

Scaling with powers of 2 avoids this problem.

scaling factor

Tensor Core Performance and Precision

only
1024 representables
for [1024,2048] in
FP16

Scaling with 1024.
1024.*(1.+𝟐−𝟏𝟎) = 1024.+1.=1025.

Scaling with powers of 2 corresponds to a
 change in the exponent.
 significand is unchanged.

scaling factor

Tensor Core Performance and Precision

 Way of Operation and Consequences
 limited range -> scaling, but use powers of 2
 rounding erros increase with

 matrix values (scaling has no influence)
 matrix size
 4th digit of result has no significance

 Improving Quality of Tensor Core Usage

Outline

Tensor Core Performance and Precision

Binomial approach
Markidis et al. Mar 2018.

X(32) ≈ Xh(16) + Xl(16)
with Xh(16)=(half) X(32)

Xl(16) =X(32)-(float)Xh(16)

𝑿𝒉 + 𝑿𝒍 ∗ 𝒀𝒉 + 𝒀𝒍 =
𝑿𝒉 ∗ 𝒀𝒉 + 𝑿𝒉 ∗ 𝒀𝒍 + 𝑿𝒍 ∗ 𝒀𝒉 + 𝑿𝒍 ∗ 𝒀𝒍

 higher accuracy compared to Xh*Yh in FP16
 4 MMAs instead of one

increasing accuracy

Tensor Core Performance and Precision

x(32)=𝟐−𝟏+𝟐−𝟏𝟏-𝟐−𝟏𝟑 0.5003662
xh(16)=𝟐−𝟏

xl(16) =𝟐−𝟏𝟏 − 𝟐−𝟏𝟑

𝒙𝟐 ≈ 𝟐−𝟐 + 𝟐−𝟏𝟏 − 𝟐−𝟏𝟑

𝒇𝒑𝟏𝟔𝟐 = 𝟐−𝟐

𝒃𝒊𝒏𝒐𝒎𝒊𝒂𝒍 = 𝟐−𝟐 + 𝟐−𝟏𝟏 − 𝟐−𝟏𝟑

abserr(𝒇𝒑𝟏𝟔)=𝟐−𝟏𝟏 − 𝟐−𝟏𝟑 (0.0003662)
abserr(binomial) = 0.

Using these numbers in a 8192x8192 matrix:
abserr(𝒙𝒉𝟐) ≈ 𝟐𝟐

Example - binomial approach

Tensor Core Performance and Precision

normal vs. binomial

Tensor Core Performance and Precision

0,00E+00

5,00E-03

1,00E-02

1,50E-02

2,00E-02

2,50E-02

3,00E-02

3,50E-02

4,00E-02

4,50E-02

5,00E-02

64 128 256 512 1024 2048 4096 8192

e
rr

o
r

matrix sizes

[1,-1]*[1,-1] [1,-1]*[1,0] Full Binomi [1,-1] 3 Term Binomi

different matrix sizes and intervals

difference in digits

Tensor Core Performance and Precision

3

3,5

4

4,5

5

5,5

6

6,5

7

7,5

64 128 256 512 1024 2048 4096 8192

e
rr

o
r

in
 d

ig
it

matrix sizes

A,B in [1,-1] A in [1,-1], B in [4,-4] 3T Binomi

affected digit for different matrix sizes
and intervalls

 Fast multiplication algorithm
 Divide a number X into two halves, the high bits

h and the low bits l with respect to a base b:
X=Xh*b+Xl

 Form H=Xh*Yh, L=Xl*Yl, D=(Xh+Xl)(Yh+Yl)-H-L
 Products are formed in lower precision
 Final Product in full precision:

XY = H*b*b + D*b + L

 Only 3 low precision products needed to form H,
L and D (compared to 4 with binomial approach)

Karatsuba Algorithm

Tensor Core Performance and Precision

Example: X=35, Y=34, b=10
Xh=3, Xl=5, Yh=3, Yl=4
H=3*3=9
L=5*4=20
D=(3+5)(3+4)-9-20=56-29=27
XY=9*b*b+27*b+20 = 900+270+20 = 1190
Only 2-digit multiplications required
Just 3 of them (multiplication by b is a shift operation)

Karatsuba Algorithm

Tensor Core Performance and Precision

Karatsuba: All operands have similar ranges

Modified Binomial Algorithm:
Use Karatsuba like decompostion of X= Xh+Xl *𝟐𝟏𝟎

Use Binomi for Operation:
(Xh+Xl)(Yh+Yl) with products
H=Xh*Yh, HL=Xh*Yl, LH=Xl*Yh, L=Xl*Yl
and
XY=H+𝟐−𝟏𝟎(HL+LH+𝟐−𝟏𝟎L)

Karatsuba extended to Scaled
Binomial

Tensor Core Performance and Precision

different approximations

Tensor Core Performance and Precision

0,00E+00

5,00E-04

1,00E-03

1,50E-03

2,00E-03

2,50E-03

64 128 256 512 1024 2048 4096 8192

e
rr

o
r

matrix sizes

Binomi Karatsuba 3 Term scaled Binomi scaled Binomi

absolute errors for different matrix sizes

 Way of Operation and Consequences
 Improving Quality of Tensor Core Usage

 Binomial multiplication reduces absolute error by one
magnitude

 adds 2-3 significant digits
 Karatsuba and scaled binomial improve further
 3 terms of binomial algorithms are sufficient

 Performance

Outline

Tensor Core Performance and Precision

 Volta 100
 Cuda 9.1.85, gcc 6.5
 10 iteration measured
 time for data preparation not included
 time for data movements (CPU-GPU) not

included

Implementations

Tensor Core Performance and Precision

Using Cublas

Tensor Core Performance and Precision

0

10

20

30

40

50

60

70

80

1024 2048 4096 8192

ti
m

e
 [

m
s]

matrix sizes

Float32 Mixed Binomial Kara. 4M Scaled

different matrix sizes and cublas-methods

 Mixed precision really pais off at larger matrix
sizes (4096+)

 Implementations for precision improvements
slower than float32 for small sizes
 use float32 instead

 For large matrices precision improvement
algorithms are faster than float32 and may be
worth a try

cublas - Thinks to Remember

Tensor Core Performance and Precision

 Usage is limited
 2 types of so called fragments, FP16 matrix and

FP16/FP32 accumulator
 1 operation possible D=AB+C

1. is the only factor to be used
C and D may be identical
No accumulator for A or B

 1 store operation
 No manipulation of loaded matrices

like A=alpha*A
like A=A+B

 Accumulators may be manipulated in loops
i->D.num_elements {D [i]=0.0f; }

WMMA-API

Tensor Core Performance and Precision

 8 Tensor Cores/SM
 8 warps per block for efficiency
 very effective loading of data

 repeated loads utilize cache
 shared memory really needed?

 documentation (#fragments) lacking
 fragments tile matrix
 additional tiling (4x4) mandatory

 hand coded version runs approx. at half
performance of cublas-version

WMMA-API

Tensor Core Performance and Precision

Binomi in WMMA-API

Tensor Core Performance and Precision

0

10

20

30

40

50

60

70

80

1024 2048 4096 8192

ti
m

e
 [

m
s]

matrix sizes

Float32 Binomial Scaled WMMA_Binomi

binomial methods including WMMA

 Own API implementation is for small matrices
faster than cublas-calls

 Own API implementation is for large matrices
comparable to cublas-calls
 with cublas-tricks it should be significantly faster

WMMA-API
Thinks to Remember

Tensor Core Performance and Precision

 4x4 Tiles
 High and Low values of A and B matrices
 High and Low values double the amount of data
 Increases operational density - 3 MMAs per 4

loads compared to 1 MMA per 2 loads
 all binomi terms in flight accumulated to save

accumulators or decrease #tiles

WMMA-Implementation Details

Tensor Core Performance and Precision

Karatsuba in WMMA-API

Tensor Core Performance and Precision

0

50

100

150

200

250

300

1024 2048 4096 8192

ti
m

e
 [

m
s]

matrix sizes

Float32 Scaled WMMA_Kara. 3Mults WMMA_Kara. 4Mults

Karatsuba WMMA versions

 Implementations are not competitive to float32
version

 True Karatsuba algorithm with 3 MMAs only is by
far too slow
 Tensor Cores are really fast - 1 add. MMA does not

matter
 AH+AL - operation is not feasible for fragments
 complexity of algorithm reduces number of tiles to be

used to 4x2

 Modified Karatsuba with 4 MMAs still too slow

WMMA for Karatsuba
Thinks to Remember

Tensor Core Performance and Precision

 precision increasing algorithms require 32 bits for
all matrix elements
 reduced memory footprint in FP16 is lost
 NVIDIA recommends to store network weights in FP32

anyway - but still

 Casting FP32 into 2 FP16 costs
 few operations more
 one FP16 matrix more to be moved
 still one magnitude less than the MMA itself.

memory issues

Tensor Core Performance and Precision

 Tensor Cores - Way of Operation and
Consequences

 Improving Quality of Tensor Core Usage
 Performance

 Tensor Cores are really fast for large problems (>4096)
 Binomial and scaled Binomi approximations faster

than FP32
 3 Term Binomi in WMMA may close the gap further
 WMMA limitations hamper scaled Binomi and

Karatsuba

 Results and Outlook

Outline

Tensor Core Performance and Precision

 Tensor Core Usage requires Mixed Precision
 limited precision of FP16
 range problem of FP16

 Provided intermediate accumulation in FP32 is
important

 Scaling values is good technique, if realized with
powers of 2.

Results

Tensor Core Performance and Precision

 FP16 precision introduces rounding errors
rounding erros increase with
 matrix values (scaling back and forth has no influence)
 matrix size

 4th digit of result has no significance

 Fine grain optimization of deep learning
networks beyond 3rd digit for weights, biases, …
is meaningless.

 Tensor Cores results are blind behind that point

Results

Tensor Core Performance and Precision

 Precision of tensor cores may be enhanced

 Split FP32 into High and Low FP16
 Binomial algorithm:

x*y = (xH+xL)*(yH+yL) ≈ xH*yH + xH*yL + xL*yH

 Karatsuba:
x*y = xH*yH + S*((xH+xL)*(yH+yL)-xHyH-xLyL)+S(xL*yL))

 Scaled Binomial:
x*y ≈ xH*yH + S*(xH*yL + xL*yH)

 2-3 more siginificant digits

Results

Tensor Core Performance and Precision

 cublas in Mixed Precision is incredibly fast
 WMMA-API is very restrictive

 Binomial and Scaled Binomial with cublas are
faster than cublas in FP32

 Binomial algorithm in WMMA-API is faster than
using cublas

Results

Tensor Core Performance and Precision

 Binomial and Scaled Binomial algorithm in
WMMA-API may be fastened up further knowing
"tricks" used in cublas

 A new library function may be added to cublas:
 Mixed precision
 Tensor cores
 Binomial or Scaled Binomial
 Faster than FP32
 Higher accuracy

Outlook

Tensor Core Performance and Precision

 Deep learning algorithms may be improved
 Highest performance, lowest accuracy at beginning
 When precision starts to matter, shift to binomial type

of algorithm
High Performance, improved accuracy in the middle

 Ultimative refinement in FP32
Good Performance, best accuracy for final steps

Outlook

Tensor Core Performance and Precision

 I am asking for true large network examples to
test and verify the above stated
recommendations in collaboration.

 I am asking NVIDIA to provide cublas code to set
up Binomial type of algorithms at best possible
performance.

 I am asking for a better documentation of the
WMMA-API.

 I am hopping that some of the restrictions in
using the WMMA-API are released in the future.

Outlook

Tensor Core Performance and Precision

62

Thanks

Vielen Dank

Tensor Cores
Performance and Precision

