

Tensor Core

Performance and Precision

Josef Schüle, University Kaiserslautern, Germany, josef.schuele@rhrk.uni-kl.de

COMPUTER SCIENCE

Why attend this Session?

Learning Iterations

COMPUTER SCIENCE

Why attend this Session?

Assumed learning curve - deviation from final values blue: trend in FP32 red: range according to precision loss in FP16 green: possible behaviours in FP16

Learning Iterations

Why attend this Session?

Mixed precision

- Each iteration is faster
- Number of iterations is increased

But: Does mixed precision really fasten up the learning?

Outline

- Tensor Cores Way of Operation and Consequences
- Improving Quality of Tensor Core Usage
- Performance
- Results and Outlook

How can we use Tensor Cores?

 Easiest and fastest way - NVIDIAs BLAS library (cublas)

N= 8192 -> 91 Tflops (of 120 Tflops Peak)

Tensor core API

 Nvidia provides Warp Matrix Multiply Accumulate API

contains very few functionality:

- fill_fragment initialize an accumulator
- Ioad_matrix_sync load input data
- mma_sync perform the multiplication
- store_matrix_sync store result

Iimitations

Matrices A, B, C, D may be

- 8x16 (A), 16x32 (B), 8x32 (C,D)
- 16x16 (A, B, C, D)
- 32x16 (A), 16x8 (B), 32x8 (C,D)
- and like cublas it's FORTRAN data layout

What is a FLOAT16?

- maximum absolute value ±65, 504
- machine epsilon 2⁻¹⁰ (0.0009765)
- non-uniform precision loss
 - 1,024 representable values for each power-interval i.e.
 - 1,024 representables between 0.0 and 1.0 ([0, 2⁰])
 - 1,024 representables between 1,024 and 2,048
 - 32,768; 32,800; 32,832, ... only representables in
 [2¹⁵, 2¹⁶]

What is a FLOAT32?

- sign 8bits exponent 23bits significand
- maximum absolute value ±10³⁸
- machine epsilon 2⁻²³ (10⁻⁷)

Conversion of FLOAT32 x to FLOAT16 produces round(x) with

- abserr(x)= |round(x)-x|
- Significands b11..b23 are lost (assuming proper range)
- relerr(x)=abserr(x)/|x|=2⁻¹⁰=eps

Multiply-Accumulate with Float16

Float32 $s = x^T \cdot y = 4 \cdot (2^{-6} \cdot 2^{-5}) = 4 \cdot 2^{-11} = 2^{-9}$ $= 1.95 \cdot 10^{-3}$ Float16 abserr(x)=abserr(y)= 0. (no initial rounding error) Conversion of intermediate product 2^{-11} into float16 results

in 0.

Final result in float16 is 0., $abserr(s)=2^{-9}$.

VOLTA TENSOR OPERATION

FP16 storage/input

Convert to FP32 result

Source: NVIDIA

Additional rounding errors are prevented. If abserr(__float2half(.)) = 0., it remains 0.

Thus - good and important that FP16 products are accumulated in FP32 precision.

absolute error and matrix values

abserr(x)=eps=
$$2^{-10}$$
for $x \in [0, 2^0]$ abserr(x)=2 eps= 2^{-9} for $x \in [2^1, 2^2]$ abserr(x)=1for $x \in [2^{10}, 2^{11}]$ abserr(x)=32for $x \in [2^{15}, 2^{16}]$

absolute rounding error increases with value

absolute error and matrix size

$$x=(1-2^{-11})$$

Float32

 $s = x^T \cdot x = 1 - 2^{-10} + 2^{-22}$ If x is a vector of length N, $s = N - N \cdot 2^{-10} + N \cdot 2^{-22}$

Float16 x=1., abserr(x) = 2^{-11} $s = x^T \cdot x = 1$ If x is a vector of length N, s = N

Final result in float16 is N, abserr(s) $\approx N \cdot 2^{-10}$. Rounding errors increase with matrix size.

absolute errors for C=AB

COMPUTER SCIENCE

But - it is the 4th digit

range problems

NVIDIA and others recommend scaling to prevent over- or underflow

reason: small gradient values otherwise will be ignored because they are treated as 0.

Ã= σA

Assume all entries of A below threshold T.

Scale A with σ :

D=αAB+βC becomes:

 $D = \frac{\alpha}{\sigma} \tilde{A}B + \beta C$ Larger value, larger error: abserr($\tilde{A}B$) $\approx \sigma$ abserr(AB)

Division by σ :

abserr(
$$\alpha/\sigma$$
ÃB) = α/σ abserr(ÃB) \approx abserr(AB)

Scaling introduces no additional rounding error to AB, but

scaling factor

Scaling of A may introduce additional rounding:

Choosing a proper scaling factor

only 1024 representables for [1024,2048] in FP16

Scaling with 1200. 1200.*(1.+2⁻¹⁰) = 1201.1718 in FP16 = 1201 (precision loss)

Scaling with powers of 2 avoids this problem.

scaling factor

Scaling with 1024. 1024.* $(1.+2^{-10}) = 1024.+1.=1025.$

Scaling with powers of 2 corresponds to a

- change in the exponent.
- significand is unchanged.

Outline

- Way of Operation and Consequences
 - Iimited range -> scaling, but use powers of 2
 - rounding erros increase with
 - matrix values (scaling has no influence)
 - matrix size
 - 4th digit of result has no significance
- Improving Quality of Tensor Core Usage

increasing accuracy

Binomial approach

Markidis et al. Mar 2018.

 $X(32) \approx Xh(16) + Xl(16)$ with Xh(16)=(half) X(32) Xl(16) =X(32)-(float)Xh(16)

> (Xh + Xl) * (Yh + Yl) =Xh * Yh + Xh * Yl + Xl * Yh + Xl * Yl

higher accuracy compared to Xh*Yh in FP16
4 MMAs instead of one

Example - binomial approach

x(32)= $2^{-1}+2^{-11}-2^{-13}$ 0.5003662 xh(16)= 2^{-1} xl(16) = $2^{-11}-2^{-13}$ $x^2 \approx 2^{-2}+2^{-11}-2^{-13}$ $fp16^2 = 2^{-2}$ binomial = $2^{-2}+2^{-11}-2^{-13}$ abserr(fp16)= $2^{-11}-2^{-13}$ (0.0003662) abserr(binomial) = 0.

Using these numbers in a 8192x8192 matrix: $abserr(xh^2) \approx 2^2$

COMPUTER SCIENCE

Karatsuba Algorithm

- Fast multiplication algorithm
- Divide a number X into two halves, the high bits h and the low bits I with respect to a base b: X=Xh*b+XI
- Form H=Xh*Yh, L=XI*Yl, D=(Xh+Xl)(Yh+Yl)-H-L
- Products are formed in lower precision
- Final Product in full precision: XY = H*b*b + D*b + L
- Only 3 low precision products needed to form H, L and D (compared to 4 with binomial approach)

Karatsuba Algorithm

Example: X=35, Y=34, b=10

Xh=3, Xl=5, Yh=3, Yl=4 H=3*3=9 L=5*4=20 D=(3+5)(3+4)-9-20=56-29=27 XY=9*b*b+27*b+20 = 900+270+20 = 1190 Only 2-digit multiplications required Just 3 of them (multiplication by b is a shift operation)

Karatsuba extended to Scaled Binomial

Karatsuba: All operands have similar ranges

Modified Binomial Algorithm:

Use Karatsuba like decompostion of X= Xh+Xl *2¹⁰ Use Binomi for Operation: (Xh+Xl)(Yh+Yl) with products H=Xh*Yh, HL=Xh*Yl, LH=Xl*Yh, L=Xl*Yl and XY=H+2⁻¹⁰(HL+LH+2⁻¹⁰L)

different approximations

Outline

- Way of Operation and Consequences
- Improving Quality of Tensor Core Usage
 - Binomial multiplication reduces absolute error by one magnitude
 - adds 2-3 significant digits
 - Karatsuba and scaled binomial improve further
 - 3 terms of binomial algorithms are sufficient

Performance

Implementations

- Volta 100
- Cuda 9.1.85, gcc 6.5
- 10 iteration measured
- time for data preparation not included
- time for data movements (CPU-GPU) not included

cublas - Thinks to Remember

- Mixed precision really pais off at larger matrix sizes (4096+)
- Implementations for precision improvements slower than float32 for small sizes
 - use float32 instead
- For large matrices precision improvement algorithms are faster than float32 and may be worth a try

WMMA-API

Usage is limited

- 2 types of so called fragments, FP16 matrix and FP16/FP32 accumulator
- I operation possible D=AB+C
 - 1. is the only factor to be used
 - C and D may be identical
 - No accumulator for A or B
- 1 store operation
- No manipulation of loaded matrices like A=alpha*A like A=A+B
- Accumulators may be manipulated in loops i->D.num_elements {D [i]=0.0f; }

WMMA-API

- 8 Tensor Cores/SM
- 8 warps per block for efficiency
- very effective loading of data
 - repeated loads utilize cache
 - shared memory really needed?
- documentation (#fragments) lacking
- fragments tile matrix
- additional tiling (4x4) mandatory
- hand coded version runs approx. at half performance of cublas-version

COMPUTER SCIENCE

Binomi in WMMA-API

WMMA-API Thinks to Remember

- Own API implementation is for small matrices faster than cublas-calls
- Own API implementation is for large matrices comparable to cublas-calls
 - with cublas-tricks it should be significantly faster

WMMA-Implementation Details

- 4x4 Tiles
- High and Low values of A and B matrices
- High and Low values double the amount of data
- Increases operational density 3 MMAs per 4 loads compared to 1 MMA per 2 loads
- all binomi terms in flight accumulated to save accumulators or decrease #tiles

Karatsuba in WMMA-API

WMMA for Karatsuba Thinks to Remember

- Implementations are not competitive to float32 version
- True Karatsuba algorithm with 3 MMAs only is by far too slow
 - Tensor Cores are really fast 1 add. MMA does not matter
 - AH+AL operation is not feasible for fragments
 - complexity of algorithm reduces number of tiles to be used to 4x2
- Modified Karatsuba with 4 MMAs still too slow

memory issues

- precision increasing algorithms require 32 bits for all matrix elements
 - reduced memory footprint in FP16 is lost
 - NVIDIA recommends to store network weights in FP32 anyway - but still
- Casting FP32 into 2 FP16 costs
 - few operations more
 - one FP16 matrix more to be moved
 - still one magnitude less than the MMA itself.

Outline

- Tensor Cores Way of Operation and Consequences
- Improving Quality of Tensor Core Usage
- Performance
 - Tensor Cores are really fast for large problems (>4096)
 - Binomial and scaled Binomi approximations faster than FP32
 - 3 Term Binomi in WMMA may close the gap further
 - WMMA limitations hamper scaled Binomi and Karatsuba
- Results and Outlook

- Tensor Core Usage requires Mixed Precision
 - Iimited precision of FP16
 - range problem of FP16
- Provided intermediate accumulation in FP32 is important
- Scaling values is good technique, if realized with powers of 2.

- FP16 precision introduces rounding errors
 - rounding erros increase with
 - matrix values (scaling back and forth has no influence)
 - matrix size
- 4th digit of result has no significance
- Fine grain optimization of deep learning networks beyond 3rd digit for weights, biases, ... is meaningless.
- Tensor Cores results are blind behind that point

- Precision of tensor cores may be enhanced
- Split FP32 into High and Low FP16
- Binomial algorithm:

 $x^*y = (xH+xL)^*(yH+yL) \approx xH^*yH + xH^*yL + xL^*yH$

Karatsuba:

x***y** = **xH*****yH** + **S***((**xH**+**xL**)*(**yH**+**yL**)-**xHyH**-**xLyL**)+**S**(**xL*****yL**))

Scaled Binomial:

 $x^*y \approx xH^*yH + S^*(xH^*yL + xL^*yH)$

2-3 more siginificant digits

- cublas in Mixed Precision is incredibly fast
- WMMA-API is very restrictive
- Binomial and Scaled Binomial with cublas are faster than cublas in FP32
- Binomial algorithm in WMMA-API is faster than using cublas

Outlook

- Binomial and Scaled Binomial algorithm in WMMA-API may be fastened up further knowing "tricks" used in cublas
- A new library function may be added to cublas:
 - Mixed precision
 - Tensor cores
 - Binomial or Scaled Binomial
 - Faster than FP32
 - Higher accuracy

Outlook

- Deep learning algorithms may be improved
 - Highest performance, lowest accuracy at beginning
 - When precision starts to matter, shift to binomial type of algorithm
 - High Performance, improved accuracy in the middle
 - Ultimative refinement in FP32
 Good Performance, best accuracy for final steps

Outlook

- I am asking for true large network examples to test and verify the above stated recommendations in collaboration.
- I am asking NVIDIA to provide cublas code to set up Binomial type of algorithms at best possible performance.
- I am asking for a better documentation of the WMMA-API.
- I am hopping that some of the restrictions in using the WMMA-API are released in the future.

Tensor Cores Performance and Precision

Thanks

Vielen Dank

