
Performance and Precision

Tensor Core

Josef Schüle, University Kaiserslautern, Germany, josef.schuele@rhrk.uni-kl.de

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43Learning Iterations

Why attend this Session?

Tensor Core Performance and Precision

Assumed learning curve - deviation from final values
blue: trend in FP32
red: range according to precision loss in FP16

d
e

vi
at

io
n

o
f

w
e

ig
h

ts
an

d
b

ia
se

s

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43Learning Iterations

Why attend this Session?

Tensor Core Performance and Precision

Assumed learning curve - deviation from final values
blue: trend in FP32
red: range according to precision loss in FP16
green: possible behaviours in FP16

stagnationdivergence

Mixed precision
 Each iteration is faster
 Number of iterations is increased

Why attend this Session?

Tensor Core Performance and Precision

But: Does mixed precision really fasten up the
learning?

 Tensor Cores - Way of Operation and
Consequences

 Improving Quality of Tensor Core Usage
 Performance
 Results and Outlook

Outline

Tensor Core Performance and Precision

Source: NVIDIA

Tensor Core Performance and Precision

 Easiest and fastest way - NVIDIAs BLAS library
(cublas)

How can we use Tensor Cores?

#include "cublas_v2.h"

cublasHandle_t handle=0;

cublasStatus_t cublasStat = cublasCreate(&handle);

cublasStat=cublasSetMathMode(handle,CUBLAS_TENSOR_OP_MATH);

cublasGemmEx(handle,CUBLAS_OP_N,CUBLAS_OP_N,m,n,k,&beta,

B, CUDA_R_16F, ldb, A, CUDA_R_16F, lda, &alpha,

C, CUDA_R_32F, ldc, CUDA_R_32F,

CUBLAS_GEMM_DEFAULT_TENSOR_OP);

Tensor Core Performance and Precision

N= 8192 -> 91 Tflops (of 120 Tflops Peak)

 Nvidia provides Warp Matrix Multiply
Accumulate API

 contains very few functionality:
 fill_fragment - initialize an accumulator
 load_matrix_sync - load input data
 mma_sync - perform the multiplication
 store_matrix_sync - store result

 limitations
Matrices A, B, C, D may be
 8x16 (A), 16x32 (B), 8x32 (C,D)
 16x16 (A, B, C, D)
 32x16 (A), 16x8 (B), 32x8 (C,D)
 and - like cublas - it's FORTRAN data layout

Tensor core API

Tensor Core Performance and Precision

 maximum absolute value ±𝟔𝟓, 𝟓𝟎𝟒
 machine epsilon 𝟐−𝟏𝟎 (0.0009765)
 non-uniform precision loss

 1,024 representable values for each power-interval i.e.

 1,024 representables between 0.0 and 1.0 𝟎, 𝟐𝟎

 1,024 representables between 1,024 and 2,048
 32,768; 32,800; 32,832, … only representables in

𝟐𝟏𝟓, 𝟐𝟏𝟔

What is a FLOAT16?

sign 5bits exponent 10bits significand

Tensor Core Performance and Precision

 maximum absolute value ±𝟏𝟎𝟑𝟖

 machine epsilon 𝟐−𝟐𝟑 (1𝟎−𝟕)

Conversion of FLOAT32 x to FLOAT16 produces
round(x) with
 abserr(x)= |round(x)-x|
 Significands b11..b23 are lost (assuming proper

range)
 relerr(x)=abserr(x)/|x|=𝟐−𝟏𝟎=eps

What is a FLOAT32?

sign 8bits exponent 23bits significand

Tensor Core Performance and Precision

x=(𝟐−𝟔, 𝟐−𝟔, 𝟐−𝟔, 𝟐−𝟔)
y=(𝟐−𝟓, 𝟐−𝟓, 𝟐−𝟓, 𝟐−𝟓)

Float32

𝒔 = 𝒙𝑻 ∙ 𝒚 = 𝟒 ∙ 𝟐−𝟔 ∙ 𝟐−𝟓 = 𝟒 ∙ 𝟐−𝟏𝟏 = 𝟐−𝟗

= 𝟏. 𝟗𝟓 ∙ 𝟏𝟎−𝟑

Multiply-Accumulate with Float16

Tensor Core Performance and Precision

Float16
abserr(x)=abserr(y)= 0. (no initial rounding error)
Conversion of intermediate product 𝟐−𝟏𝟏 into float16 results
in 0.

Final result in float16 is 0., abserr(s)=𝟐−𝟗.

Tensor Core Performance and Precision

Additional rounding errors are prevented.

Thus - good and important that FP16 products are
accumulated in FP32 precision.

Source: NVIDIA

If abserr(__float2half(.)) = 0., it remains 0.

abserr(x)=eps=𝟐−𝟏𝟎 for 𝐱 ∈ 𝟎, 𝟐𝟎

abserr(x)=2 eps=𝟐−𝟗 for 𝐱 ∈ 𝟐𝟏, 𝟐𝟐

abserr(x)=1 for 𝐱 ∈ 𝟐𝟏𝟎, 𝟐𝟏𝟏

abserr(x)=32 for 𝐱 ∈ 𝟐𝟏𝟓, 𝟐𝟏𝟔

absolute error and matrix values

Tensor Core Performance and Precision

absolute rounding error increases
with value

x=(𝟏 − 𝟐−𝟏𝟏)

Float32
𝒔 = 𝒙𝑻 ∙ 𝒙 = 𝟏 − 𝟐−𝟏𝟎 + 𝟐−𝟐𝟐

If x is a vector of length N, 𝑠 = 𝑵 − 𝑵 ∙ 2−10 +𝑵 ∙ 2−22

absolute error and matrix size

Tensor Core Performance and Precision

Float16
x=1., abserr(x) =𝟐−𝟏𝟏

𝒔 = 𝒙𝑻 ∙ 𝒙 = 𝟏
If x is a vector of length N, 𝒔 = 𝐍

Final result in float16 is N, abserr(s)≈ 𝑵 ∙ 𝟐−𝟏𝟎.
Rounding errors increase with matrix size.

0,00E+00

2,00E-02

4,00E-02

6,00E-02

8,00E-02

1,00E-01

1,20E-01

1,40E-01

1,60E-01

1,80E-01

2,00E-01

64 128 256 512 1024 2048 4096 8192

e
rr

o
r

matrix sizes

A,B in [1,-1] A in [1,-1], B in [1,0] A in [1,-1], B in [4,-4]

different matrix sizes and intervals

absolute errors for C=AB

Tensor Core Performance and Precision

larger value,
larger errorlarger size

larger error

But - it is the 4th digit

Tensor Core Performance and Precision

3

3,5

4

4,5

64 128 256 512 1024 2048 4096 8192

e
rr

o
r

in
 d

ig
it

matrix sizes

A,B in [1,-1] A in [1,-1], B in [4,-4]

affected digit for different matrix sizes

0.984….

3.98….

Assume all entries of A below threshold T.
Scale A with σ: Ã= σA

D=αAB+βC becomes: D=
α
σ

ÃB+βC

Larger value, larger error: abserr(ÃB) ≈ σ abserr(AB)

Division by σ: abserr(Τα
σÃB) = Τα

σ abserr(ÃB) ≈ abserr(AB)

Scaling introduces no additional rounding error to AB, but

NVIDIA and others recommend scaling to prevent over- or
underflow

 reason: small gradient values otherwise will be
ignored because they are treated as 0.

range problems

Tensor Core Performance and Precision

Scaling of A may introduce additional rounding:

Choosing a proper scaling factor
Scaling with 1200.
1200.*(1.+𝟐−𝟏𝟎) = 1201.1718
in FP16 = 1201 (precision loss)

Scaling with powers of 2 avoids this problem.

scaling factor

Tensor Core Performance and Precision

only
1024 representables
for [1024,2048] in
FP16

Scaling with 1024.
1024.*(1.+𝟐−𝟏𝟎) = 1024.+1.=1025.

Scaling with powers of 2 corresponds to a
 change in the exponent.
 significand is unchanged.

scaling factor

Tensor Core Performance and Precision

 Way of Operation and Consequences
 limited range -> scaling, but use powers of 2
 rounding erros increase with

 matrix values (scaling has no influence)
 matrix size
 4th digit of result has no significance

 Improving Quality of Tensor Core Usage

Outline

Tensor Core Performance and Precision

Binomial approach
Markidis et al. Mar 2018.

X(32) ≈ Xh(16) + Xl(16)
with Xh(16)=(half) X(32)

Xl(16) =X(32)-(float)Xh(16)

𝑿𝒉 + 𝑿𝒍 ∗ 𝒀𝒉 + 𝒀𝒍 =
𝑿𝒉 ∗ 𝒀𝒉 + 𝑿𝒉 ∗ 𝒀𝒍 + 𝑿𝒍 ∗ 𝒀𝒉 + 𝑿𝒍 ∗ 𝒀𝒍

 higher accuracy compared to Xh*Yh in FP16
 4 MMAs instead of one

increasing accuracy

Tensor Core Performance and Precision

x(32)=𝟐−𝟏+𝟐−𝟏𝟏-𝟐−𝟏𝟑 0.5003662
xh(16)=𝟐−𝟏

xl(16) =𝟐−𝟏𝟏 − 𝟐−𝟏𝟑

𝒙𝟐 ≈ 𝟐−𝟐 + 𝟐−𝟏𝟏 − 𝟐−𝟏𝟑

𝒇𝒑𝟏𝟔𝟐 = 𝟐−𝟐

𝒃𝒊𝒏𝒐𝒎𝒊𝒂𝒍 = 𝟐−𝟐 + 𝟐−𝟏𝟏 − 𝟐−𝟏𝟑

abserr(𝒇𝒑𝟏𝟔)=𝟐−𝟏𝟏 − 𝟐−𝟏𝟑 (0.0003662)
abserr(binomial) = 0.

Using these numbers in a 8192x8192 matrix:
abserr(𝒙𝒉𝟐) ≈ 𝟐𝟐

Example - binomial approach

Tensor Core Performance and Precision

normal vs. binomial

Tensor Core Performance and Precision

0,00E+00

5,00E-03

1,00E-02

1,50E-02

2,00E-02

2,50E-02

3,00E-02

3,50E-02

4,00E-02

4,50E-02

5,00E-02

64 128 256 512 1024 2048 4096 8192

e
rr

o
r

matrix sizes

[1,-1]*[1,-1] [1,-1]*[1,0] Full Binomi [1,-1] 3 Term Binomi

different matrix sizes and intervals

difference in digits

Tensor Core Performance and Precision

3

3,5

4

4,5

5

5,5

6

6,5

7

7,5

64 128 256 512 1024 2048 4096 8192

e
rr

o
r

in
 d

ig
it

matrix sizes

A,B in [1,-1] A in [1,-1], B in [4,-4] 3T Binomi

affected digit for different matrix sizes
and intervalls

 Fast multiplication algorithm
 Divide a number X into two halves, the high bits

h and the low bits l with respect to a base b:
X=Xh*b+Xl

 Form H=Xh*Yh, L=Xl*Yl, D=(Xh+Xl)(Yh+Yl)-H-L
 Products are formed in lower precision
 Final Product in full precision:

XY = H*b*b + D*b + L

 Only 3 low precision products needed to form H,
L and D (compared to 4 with binomial approach)

Karatsuba Algorithm

Tensor Core Performance and Precision

Example: X=35, Y=34, b=10
Xh=3, Xl=5, Yh=3, Yl=4
H=3*3=9
L=5*4=20
D=(3+5)(3+4)-9-20=56-29=27
XY=9*b*b+27*b+20 = 900+270+20 = 1190
Only 2-digit multiplications required
Just 3 of them (multiplication by b is a shift operation)

Karatsuba Algorithm

Tensor Core Performance and Precision

Karatsuba: All operands have similar ranges

Modified Binomial Algorithm:
Use Karatsuba like decompostion of X= Xh+Xl *𝟐𝟏𝟎

Use Binomi for Operation:
(Xh+Xl)(Yh+Yl) with products
H=Xh*Yh, HL=Xh*Yl, LH=Xl*Yh, L=Xl*Yl
and
XY=H+𝟐−𝟏𝟎(HL+LH+𝟐−𝟏𝟎L)

Karatsuba extended to Scaled
Binomial

Tensor Core Performance and Precision

different approximations

Tensor Core Performance and Precision

0,00E+00

5,00E-04

1,00E-03

1,50E-03

2,00E-03

2,50E-03

64 128 256 512 1024 2048 4096 8192

e
rr

o
r

matrix sizes

Binomi Karatsuba 3 Term scaled Binomi scaled Binomi

absolute errors for different matrix sizes

 Way of Operation and Consequences
 Improving Quality of Tensor Core Usage

 Binomial multiplication reduces absolute error by one
magnitude

 adds 2-3 significant digits
 Karatsuba and scaled binomial improve further
 3 terms of binomial algorithms are sufficient

 Performance

Outline

Tensor Core Performance and Precision

 Volta 100
 Cuda 9.1.85, gcc 6.5
 10 iteration measured
 time for data preparation not included
 time for data movements (CPU-GPU) not

included

Implementations

Tensor Core Performance and Precision

Using Cublas

Tensor Core Performance and Precision

0

10

20

30

40

50

60

70

80

1024 2048 4096 8192

ti
m

e
 [

m
s]

matrix sizes

Float32 Mixed Binomial Kara. 4M Scaled

different matrix sizes and cublas-methods

 Mixed precision really pais off at larger matrix
sizes (4096+)

 Implementations for precision improvements
slower than float32 for small sizes
 use float32 instead

 For large matrices precision improvement
algorithms are faster than float32 and may be
worth a try

cublas - Thinks to Remember

Tensor Core Performance and Precision

 Usage is limited
 2 types of so called fragments, FP16 matrix and

FP16/FP32 accumulator
 1 operation possible D=AB+C

1. is the only factor to be used
C and D may be identical
No accumulator for A or B

 1 store operation
 No manipulation of loaded matrices

like A=alpha*A
like A=A+B

 Accumulators may be manipulated in loops
i->D.num_elements {D [i]=0.0f; }

WMMA-API

Tensor Core Performance and Precision

 8 Tensor Cores/SM
 8 warps per block for efficiency
 very effective loading of data

 repeated loads utilize cache
 shared memory really needed?

 documentation (#fragments) lacking
 fragments tile matrix
 additional tiling (4x4) mandatory

 hand coded version runs approx. at half
performance of cublas-version

WMMA-API

Tensor Core Performance and Precision

Binomi in WMMA-API

Tensor Core Performance and Precision

0

10

20

30

40

50

60

70

80

1024 2048 4096 8192

ti
m

e
 [

m
s]

matrix sizes

Float32 Binomial Scaled WMMA_Binomi

binomial methods including WMMA

 Own API implementation is for small matrices
faster than cublas-calls

 Own API implementation is for large matrices
comparable to cublas-calls
 with cublas-tricks it should be significantly faster

WMMA-API
Thinks to Remember

Tensor Core Performance and Precision

 4x4 Tiles
 High and Low values of A and B matrices
 High and Low values double the amount of data
 Increases operational density - 3 MMAs per 4

loads compared to 1 MMA per 2 loads
 all binomi terms in flight accumulated to save

accumulators or decrease #tiles

WMMA-Implementation Details

Tensor Core Performance and Precision

Karatsuba in WMMA-API

Tensor Core Performance and Precision

0

50

100

150

200

250

300

1024 2048 4096 8192

ti
m

e
 [

m
s]

matrix sizes

Float32 Scaled WMMA_Kara. 3Mults WMMA_Kara. 4Mults

Karatsuba WMMA versions

 Implementations are not competitive to float32
version

 True Karatsuba algorithm with 3 MMAs only is by
far too slow
 Tensor Cores are really fast - 1 add. MMA does not

matter
 AH+AL - operation is not feasible for fragments
 complexity of algorithm reduces number of tiles to be

used to 4x2

 Modified Karatsuba with 4 MMAs still too slow

WMMA for Karatsuba
Thinks to Remember

Tensor Core Performance and Precision

 precision increasing algorithms require 32 bits for
all matrix elements
 reduced memory footprint in FP16 is lost
 NVIDIA recommends to store network weights in FP32

anyway - but still

 Casting FP32 into 2 FP16 costs
 few operations more
 one FP16 matrix more to be moved
 still one magnitude less than the MMA itself.

memory issues

Tensor Core Performance and Precision

 Tensor Cores - Way of Operation and
Consequences

 Improving Quality of Tensor Core Usage
 Performance

 Tensor Cores are really fast for large problems (>4096)
 Binomial and scaled Binomi approximations faster

than FP32
 3 Term Binomi in WMMA may close the gap further
 WMMA limitations hamper scaled Binomi and

Karatsuba

 Results and Outlook

Outline

Tensor Core Performance and Precision

 Tensor Core Usage requires Mixed Precision
 limited precision of FP16
 range problem of FP16

 Provided intermediate accumulation in FP32 is
important

 Scaling values is good technique, if realized with
powers of 2.

Results

Tensor Core Performance and Precision

 FP16 precision introduces rounding errors
rounding erros increase with
 matrix values (scaling back and forth has no influence)
 matrix size

 4th digit of result has no significance

 Fine grain optimization of deep learning
networks beyond 3rd digit for weights, biases, …
is meaningless.

 Tensor Cores results are blind behind that point

Results

Tensor Core Performance and Precision

 Precision of tensor cores may be enhanced

 Split FP32 into High and Low FP16
 Binomial algorithm:

x*y = (xH+xL)*(yH+yL) ≈ xH*yH + xH*yL + xL*yH

 Karatsuba:
x*y = xH*yH + S*((xH+xL)*(yH+yL)-xHyH-xLyL)+S(xL*yL))

 Scaled Binomial:
x*y ≈ xH*yH + S*(xH*yL + xL*yH)

 2-3 more siginificant digits

Results

Tensor Core Performance and Precision

 cublas in Mixed Precision is incredibly fast
 WMMA-API is very restrictive

 Binomial and Scaled Binomial with cublas are
faster than cublas in FP32

 Binomial algorithm in WMMA-API is faster than
using cublas

Results

Tensor Core Performance and Precision

 Binomial and Scaled Binomial algorithm in
WMMA-API may be fastened up further knowing
"tricks" used in cublas

 A new library function may be added to cublas:
 Mixed precision
 Tensor cores
 Binomial or Scaled Binomial
 Faster than FP32
 Higher accuracy

Outlook

Tensor Core Performance and Precision

 Deep learning algorithms may be improved
 Highest performance, lowest accuracy at beginning
 When precision starts to matter, shift to binomial type

of algorithm
High Performance, improved accuracy in the middle

 Ultimative refinement in FP32
Good Performance, best accuracy for final steps

Outlook

Tensor Core Performance and Precision

 I am asking for true large network examples to
test and verify the above stated
recommendations in collaboration.

 I am asking NVIDIA to provide cublas code to set
up Binomial type of algorithms at best possible
performance.

 I am asking for a better documentation of the
WMMA-API.

 I am hopping that some of the restrictions in
using the WMMA-API are released in the future.

Outlook

Tensor Core Performance and Precision

62

Thanks

Vielen Dank

Tensor Cores
Performance and Precision

