
Vincent Bao, Stanley Tzeng, Ching Hung

EUCLIDEAN DISTANCE TRANSFORM ON XAVIER

2

AGENDA

• Autonomous Machines Processor: Xavier

• A New Engine: Programmable Vision Accelerator (PVA)

• Introduction of Euclidean Distance Transform (EDT) with Different Algorithms

• Accelerating EDT by embedded Volta GPU

• PVA is another choice

• Conclusion and future work

This talk is going to cover

3

AUTONOMOUS MACHINES
Xavier is Designed for the Next Waves of Autonomous Machines

CARS ROBO-TAXIS TRUCKS DELIVERY ROBOTS DRONES

MEDICAL INSTRUMENTS AGRICULTURE PICK-AND-PLACE LOGISTICS MANUFACTORING

4

XAVIER
World First Autonomous Machines Processor

Carmel CPU

8 custom cores

ARM V8

Volta GPU

512 CUDA tensor

cores

PVA

7-slot VLIW DSP

1.7 TOPS

DLA

5.7 TFLOPS FP16

11.4 TOPS INT8

Multimedia

Engines

Stereo & Optical

Flow Engines

9 Billion Transistors, 350mm2, 12 FFN

5

VMEM0/1

96KB

PROGRAMMABLE VISION ACCELERATOR
High-level Block Diagram

Cortex R5
I$, D$, TCM

Multi-Channel

DMA0/1 VMEM0/1

192KB

VPU0/1

7-slot VLIWTask IO

Data IO

1 PVA’s Block Diagram

Data Bus

Control Bus

PVA x 2
• Optimized for Computer

Vision Tasks

Each PVA
• Cortex R5 for Config and Control
• Vector Processing Units x 2
• DMA for Data Movement x 2

7-Slot VLIW architecture
• 2 Scalar + 2 Vector + 3 Memory
• 32 x 8bit | 16 x 16bit | 8 x 32bit
• Table Lookup, Histogram, and

Vector-addressed Store
• I-cache with Prefetching
• Shared SRAM

6

PVA SIMD ARCHITECTURE
Wide-SIMD-Lane provides high-throughput Math and IO

scalar0 scalar1 vector0 vector1 IO0 IO1 IO2

VPU
4 instances
per Xavier

2 vector slots provide
• 64 int8 ops
• 32 int16 ops
• 16 int32 ops
per cycle

3 IO slots provide
192Byte R/W per

cycle

7

PERFORMANCE MONITORS
Make sure the real performance on silicon meets our expectation

VPU activation monitor DMA activation monitor

Kernel duration Read transaction number

I cache miss number Write transaction number

I cache miss penalty Read active duration

Vector math stall number Write active duration

… …

8

PVA IN AUTONOMOUS DRIVING PIPELINE
An Example of Autonomous Pipeline on Xavier with PVA

Capture
Image

Processing
Perception

Tracking

Fusing
Localization Planning Action

Parker Parker ISP Parker ISP,

Pascal GPU

Pascal GPU Pascal GPU Pascal GPU Pascal GPU,

CPU

Xavier Xavier ISP Xavier ISP,

PVA

DLA,

PVA,

Volta GPU

PVA, SOFE*,

Volta GPU

PVA,

Volta GPU

PVA,

Volta GPU,

CPU

* SOFE means Stereo and Optical Flow Engine

PVA is widely used in the pipeline to offload the non-deep-learning and integer tasks.
Then the Volta GPU has more compute budget to perform more complex algorithms with higher resolution.

9

EUCLIDEAN
DISTANCE

TRANSFORM

https://reference.wolfr
am.com/language/ref/D
istanceTransform.html

A List-Processing Approach to
Compute Voronoi Diagrams and

the Euclidean Distance Transform

10

EUCLIDEAN DISTANCE TRANSFORM (EDT)

• Description (a global optimization problem)

• D(p) := min{d(p, q) | q ∈ Oc} = min{d(p, q) | I (q) = 0}.

• Application (widely used in many area, a part of DL nowadays)

• Biomedical Image Analysis

• ADAS (lane detection, lane keeping)

• Neural network post processing (DriveAV pipeline)

Backgrounds

d1

d2

11

ACCELERATING EDT

• The global optimization problem is hard to be accelerated since it can’t easily be cut into pieces/tiles
and has multiple process elements accelerate it.

• The kernel is important because its wide application and we mainly focus on accelerating it on Xavier
since it is involved in our auto driving solution.

• Three EDT algorithms are implemented and compared on Xavier (GV11B):

• Naïve (demonstrate the principle and show the baseline)

• Felzenszwalb Algorithm

• Ref: “Distance Transforms of Sampled Functions”

• Parallel Banding Algorithm

• Ref: “Parallel Banding Algorithm to Compute Exact Distance Transform with the GPU”

Different Solutions

12

NAÏVE IMPLEMENTATION
• Each result pixel’ value is the shortest distance to the given target pixel set.

• Make an array to save the target pixel set, with its x and y coordinates.

• For each result pixel, calculates distance to each target pixel in the set and choose the minimal one as the value.

• If the image size is W x H = N, and the number of target pixel is n = R% x N, the total iteration number is like R% x N2,
almost O(N2)!

• Accelerate on GPU: easy to implement and good occupancy

• Make each thread for 1 or several output pixels

• Load a subset of the target pixel array into shared memory

blk blk We can have a lot of CTA and thread
to make the occupancy high

blk

1,0 1,1 1,2 1,3

image

13

FELZENSWALB ALGORITHM

• Felzenswalb is a linear time algorithm to calculate the Euclidean distance. There are 2 stages (horizontal and
vertical) in the algorithm, each stage accesses every pixel once, so totally 2 x W x H = 2 x N, O(N)! LINEAR TIME!

• The idea is to make the global optimization to semi global. For example, the horizontal stage sweeps the image
twice, from the left to right and the right to left, to get the minimal distance in each row (vertical distance is not
considered in this stage) and save it into a buffer (hd, horizontal distance).

Horizontal Stage

We can have totally H threads reside in M CTAs
The occupancy/utilization is a problem when
Processing the small image.

If there is no target pixel in a row, set all the
distances larger than W, means invalid.

CTA0

CTA1

CTA2

input left to right right to left

14

FELZENSWALB ALGORITHM

• When implementing the vertical stage on GPU, we scan the horizontal buffer from top to bottom. Make each thread
process 1 column. The threads still need to be grouped by several CTAs.

• The issue here is we have limited data parallelism and not enough active warp to hide the latency, especially when
the image size is small. And the utilization of the GPU also needs to be considered.

• The good point is the complexity of the algorithm is largely reduced so we can see a non-trivial speedup even if the
image is not big.

Vertical Stage

15

PARALLEL BANDING ALGORITHM

• The math principle of PBA is equivalent to the Felzenswalb algorithm so the complexity is O(N). PBA is designed to
maximum the data parallelism, which targets to be accelerated on GPU (or other many-PE machine).

• For each stage, PBA split the image/hd into multiple band, and has more CTAs to process each band. The utilization
and occupancy increase but need extra stages to merge the result of each band (since band is only the local optimal,
needs to make it global). So we may have more kernels.

PBA

16

CUDA KERNEL LAUNCH DURATION

• Hundreds of CUDA cores enable the PBA to process an image in a short time, with nearly a dozen of kernels. Each
kernel is short especially when the image size is small. CPU launches the kernels asynchronized but sequentially. So if
the average kernel launch time is T, and if the total kernel time is less than 12T, it can be a kernel launch bound.

small image, fast kernel

If the workload is larger

No bubble in between the kernels

Kernel launch duration
on CPU

Kernel execute duration
on GPU

Kernel launch duration
on CPU

Kernel execute duration
on GPU

17

PERFORMANCE COMPARE
• First we compare the end-to-end task times of 3 kernels to process the same input image, range from

320x240 to 1920x1080. The data pattern is random and the target pixel density is 2%.

• The plot is in the log10 scale since the time increases in a non-linear way.

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4

m
se

c
in

 lo
g

sc
al

e
(0

 m
ea

n
s

1
m

se
c,

 3
 m

ea
n

s
1

0
0

0
m

se
c)

1. 320x240 2. 640x480 3. 1280x720 4.1920x1080

random image end-to-end task time measured by nvprof

naive felz pba

The PBA shows a perf regress
when process the small size
input. But we can find the
trend to be faster than Felz if
it can be non-kernel launch
bound.

The baseline perf is sensitive
to the total number of target
pixel while the other 2 are
not. So we can conclude
averages speedups:
Felz: 15x to the baseline
PBA: 65x to the baseline

18

USING PVA TO
ACCELERATE

EDT

From paper “Distance Transforms of
Sampled Functions

19

ACCELERATING EDT ON PVA
Using 1 VPU to elaborate the process

Image in external

memory

1 tile

DMA read
1 tile (enlarged view)

Sweep from left to right

0

1

2

…

31

Transpose Load Logic Operations Transpose Store to the same place

Intermediate

result in external

memory

1 tile
for (i = 0; i < niter2; i++) {

prev_dist = vreplicateh(w + h); // int16 x 32
prev_label = vreplicateh(0); // int16 x 32, same below

for (j = 0; j < niter1; j++) #loop_unroll(4) {
map_data = vload_transp(in1);
on_pix = (map_data != -1); // standard C operators are vectorized
prev_dist = vmux(on_pix, const_zero, prev_dist + 1);

prev_label = vmux(on_pix, map_data, prev_label);
hd = vshiftor(prev_label, replicateh(12), prev_dist);
vstore_transp(hd, out1);

}
}

20

ACCELERATING EDT ON PVA
Full Frame View

• We need to DMA in entire row in the horizontal stage and entire column in the vertical stage.

image

Horizontal

Tile

Horizontal

Tile

Horizontal

Tile

Horizontal

Tile

Vertical

Tile

32-lane vector

Vertical

Tile

32-lane vector

Vertical

Tile

Vertical

Tile

21

ACCELERATING EDT ON PVA
Pipelining the tasks

• We can pipeline the computation of each tiles and overlap the DMA transferring with the computing to
keep the VPU working continuously.

• DMA, agen, zero-overhead loop, etc help to reduce the control overhead, close to SOL!

HT0 HT1 HT2 HT3 VT0 VT1 VT2 VT3

DI DI DIDI

DO DO DO DO

DI

DO DO DO DO

DI DI DI

Config ConfigR5

DMA RD

VPU

DMA WR

True-Completion
can remove the
RAW risk here

Sub-task0 Sub-task1

Data Input

Hori. Tile

Data Output

Vert. Tile

22

PERFORMANCE AND LIMITATION

• Performance

• The VPU performance is ~330usec for a 320x240 image, while the performance on the GPU is 300usec.

• If we have 4 instances of VPU batch 4 frames, the average DT process time is ~83us.

• Limitations

• The image data type should be uint16. The size limitation on PVA is 960x960 due to the VMEM size bound. The
larger size/uint32 date type can also be processed but will show a perf regress, since the parallelism goes
down.

The numbers are given by 1 VPU

23

CONCLUSION AND FUTURE WORK

• Conclusion

• For the high-resolution image, the GPU PBA algorithm is preferred to leverage all the compute resource of the
GPU in Xavier; when the image is smaller, Felzenswalb algorithm shows the advantage of it simplicity.

• PVA performs well and can offload some tasks from the GPU, even the global optimization problem like EDT.

• Future work

• PVA is a new engine. We need to continue exploring use cases that can be offloaded to the PVA to increase the
overall system efficiency.

• Build a better software ecosystem that allows the programmer to easily implement their GPU pipelines on
PVA, allowing the GPU to be freed up for deep-learning related tasks.

THANK YOU
email: vbao@nvidia.com

