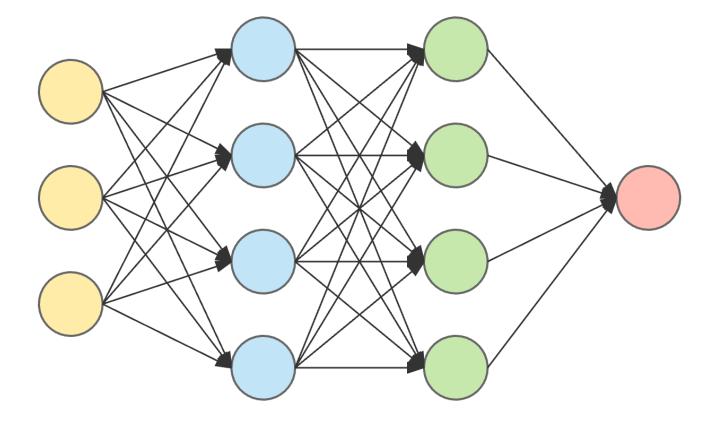
NeuroCAD for Spiking Neural Network

Bidirectional Interleaved Complementary Hierarchical Neural Networks Brent Oster, SinduKumari, ORBAI

What is Artificial Intelligence?

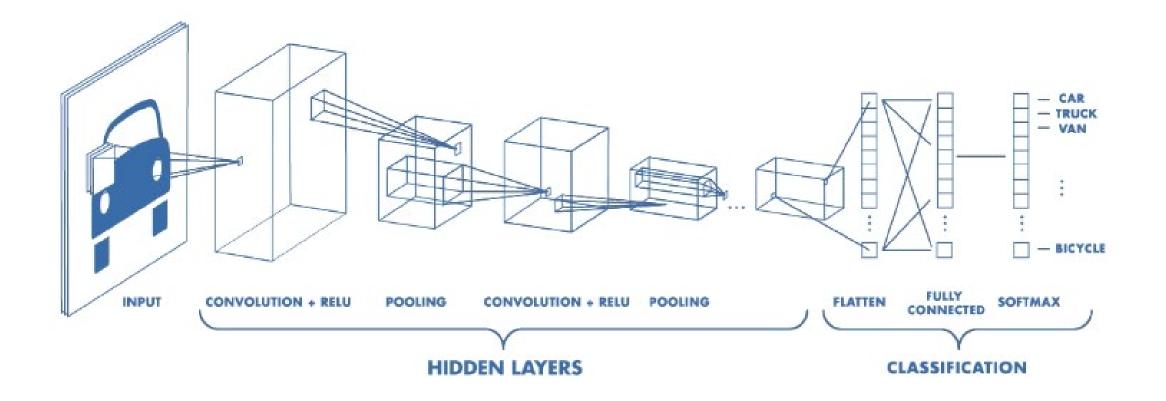
- Computer simulation that can do useful operations and tasks
 - Learn how to perform these tasks without explicit instructions
 - Learn by doing, on-the fly, from practice and experience
 - Learn to do a wide variety of tasks that humans can do
 - Have cognition, intuition and able to estimate given sparse information
 - Be able to control physical robots, drones, etc. intelligently
- Is Deep Learning artificial intelligence?

Deep Learning with 'Neural' Networks is State of Art Today

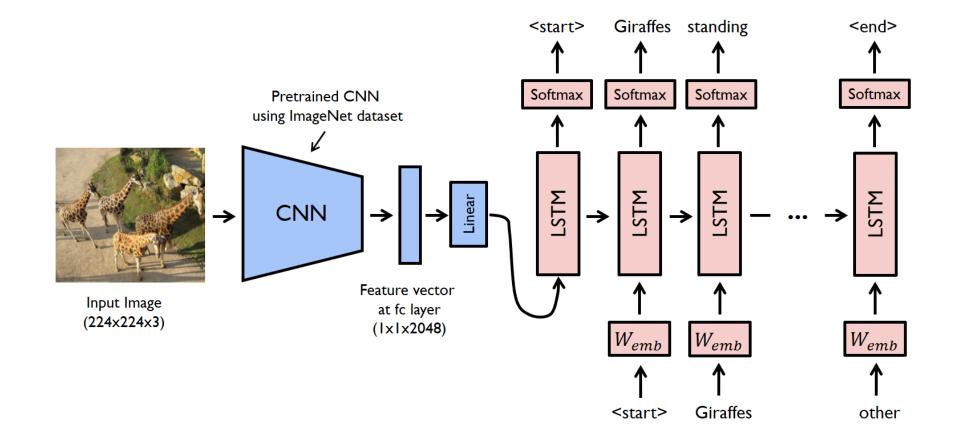


input layer hidden layer 1 hidden layer 2 output layer

Convolutional Neural Networks – Image Recognition



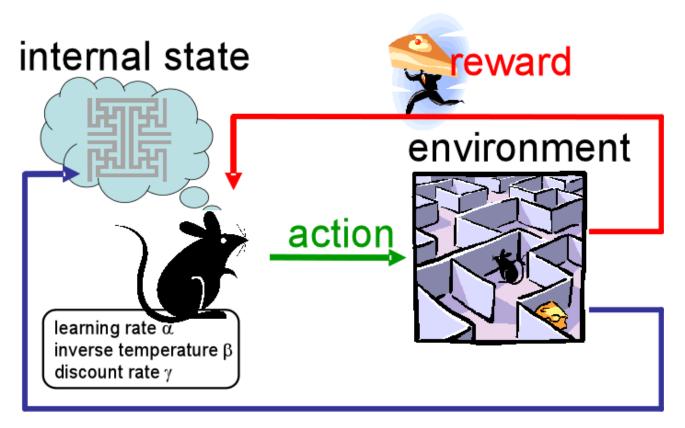
CNN – RNN Hybrid for Vision



Recurrent Neural Networks – Language, Speech



Reinforcement Learning – Control Al



observation

Generative Adversarial Neural Networks (GAN) Unsupervised (Dynamic?) Learning?

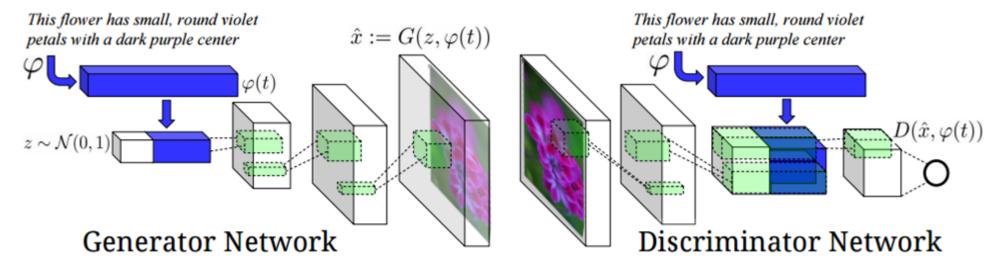


Figure 2. Our text-conditional convolutional GAN architecture. Text encoding $\varphi(t)$ is used by both generator and discriminator. It is projected to a lower-dimensions and depth concatenated with image feature maps for further stages of convolutional processing. Network Architecture

Performance Capture Human to Train Robot AI?

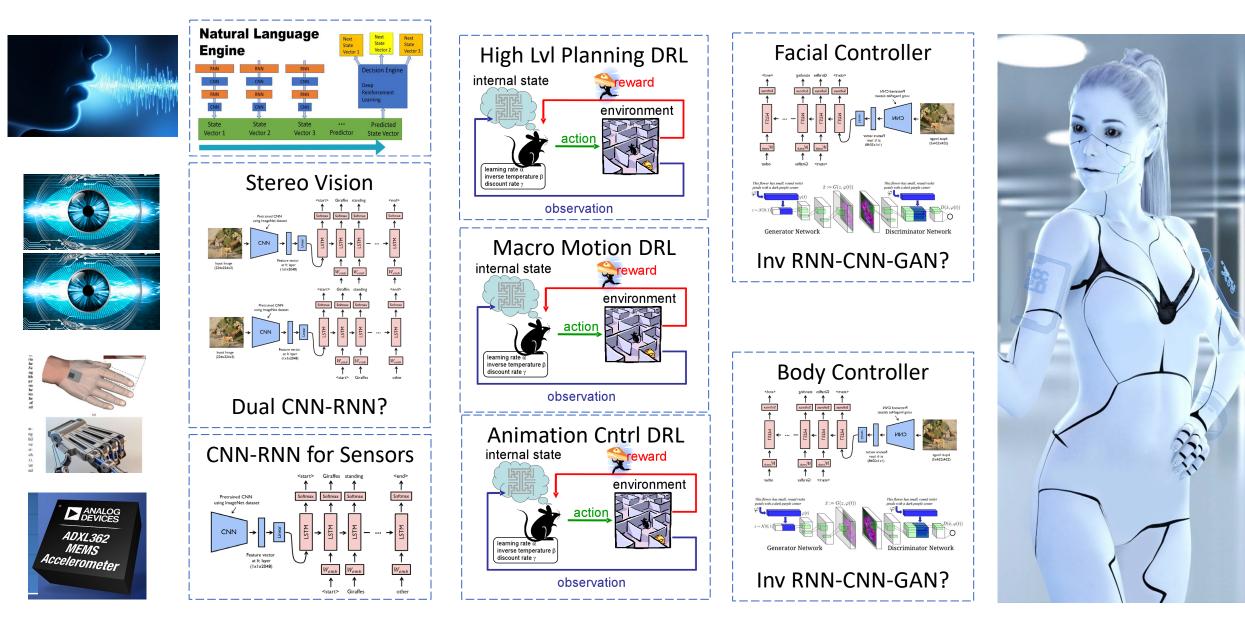
Intensive Performance Capture of Individual

Use as Training Dataset for Android Mimic Al

Motion Facial Expressions Voice & Speech Mannerisms



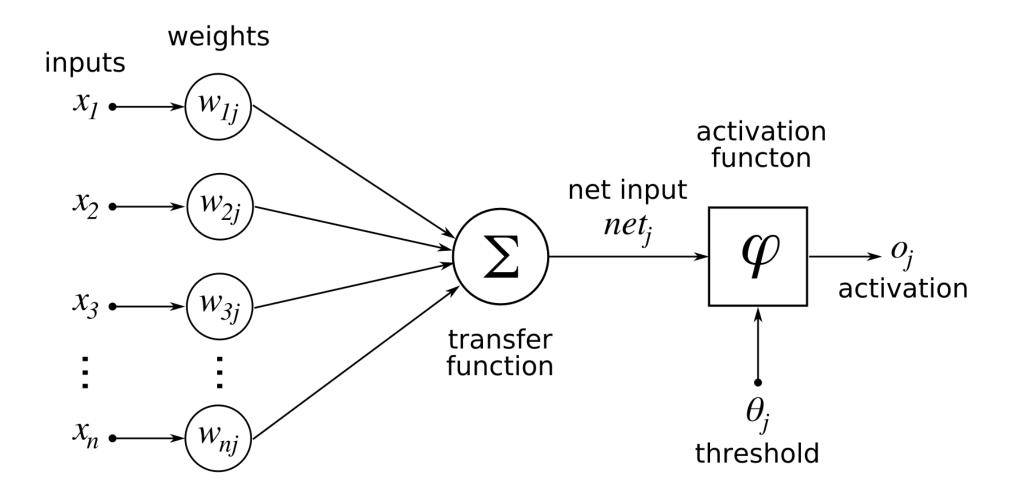
Building a Humanoid Robot AI with Deep Learning Tech



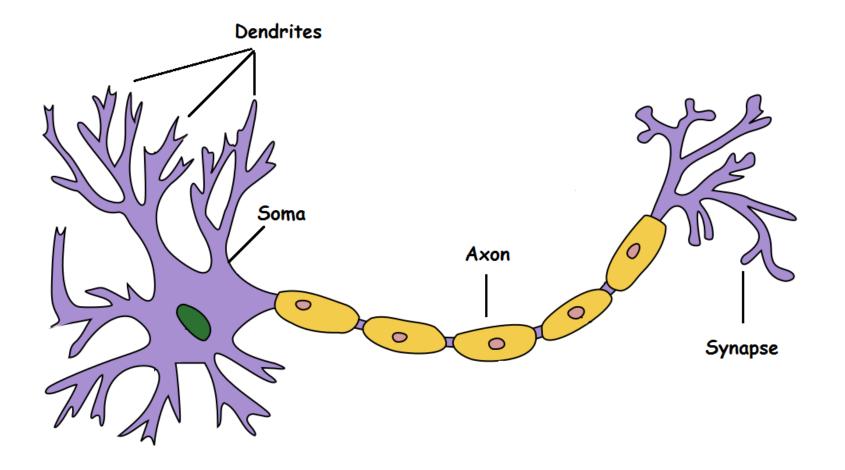
Deep Learning is NEVER Going Work for THAT!

- Deep Learning is only able to:
 - Learn from structured, formatted, and usually labelled data
 - Do very narrow tasks within the domain of that data
 - Requires large amounts of data to make accurate predictions
- Deep Learning CANNOT:
 - Learn to do general tasks or multiple tasks with same network architecture
 - Does not work well on unstructured real-world data
 - Can not stack multiple layers of DL implementations and have it train
 - Learn from experience in a real-life dynamic environment
 - Have cognition, intuition, or operate with sparse data, reach human AI

Deep Learning 'Neurons' Are Too Simplistic



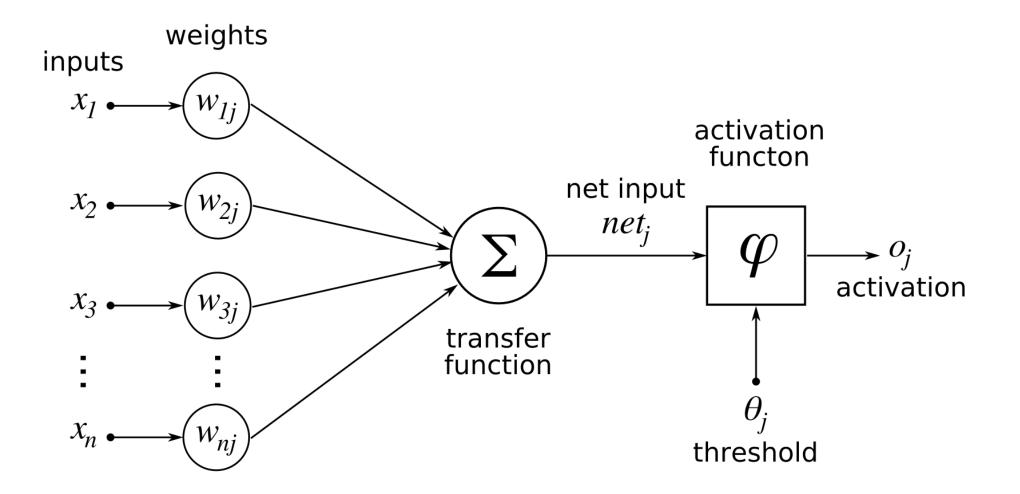
Real Biological Neurons are Very Sophisticated Electro-Chemical Computers

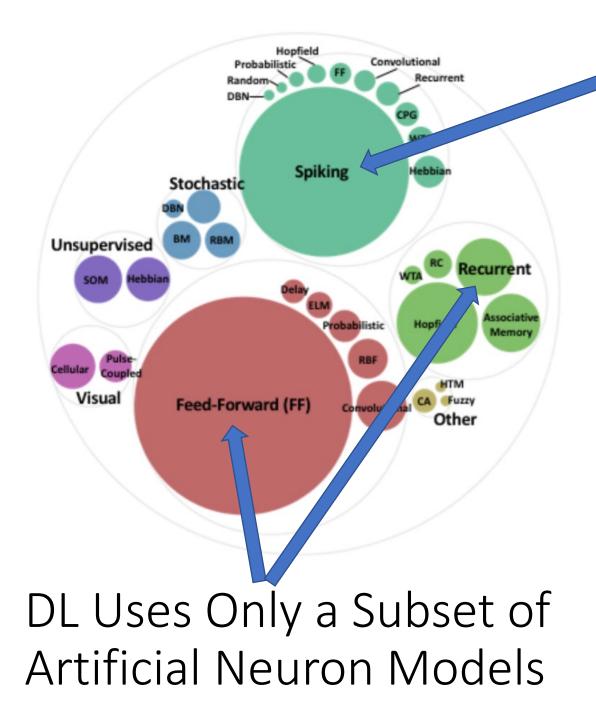


How Does a Biological Neuron Work (roughly)?

- The neuronal body integrates inputs from the dendrites coming into it
 - Integrates incoming signals in both space and time
 - Some dendrites excite, some inhibit, adding or subtracting from the potential
 - Neuronal body 'fires' when action potential (-55mv) is reached across cell wall
- When the neuronal body fires, a spike train is transmitted down the axon
 - Transmitted along axon, branches, and is amplified (and modified) along the way
 - Signal in **time and space** that carries more information than a simple amplitude
- Spiking signal is further modified at synapse
 - Axon spike train stimulates neurotransmitter release from pre-synaptic side
 - Neurotransmitters drift across synapse, modified by ambient neurochemistry
 - Receptors on post-synaptic side integrate chemical signal, firing at a threshold
 - A spike train propagates down the dendrite to the next neuron
 - If both the pre and post synaptic neuron fire close together: synapse strengthens

Do you still call this a 'Neuron'?





Spiking Neuron Models Behave more like real neurons

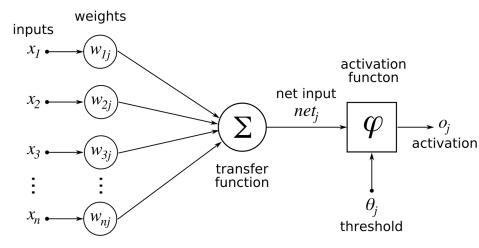
-Time-domain signals that propagate

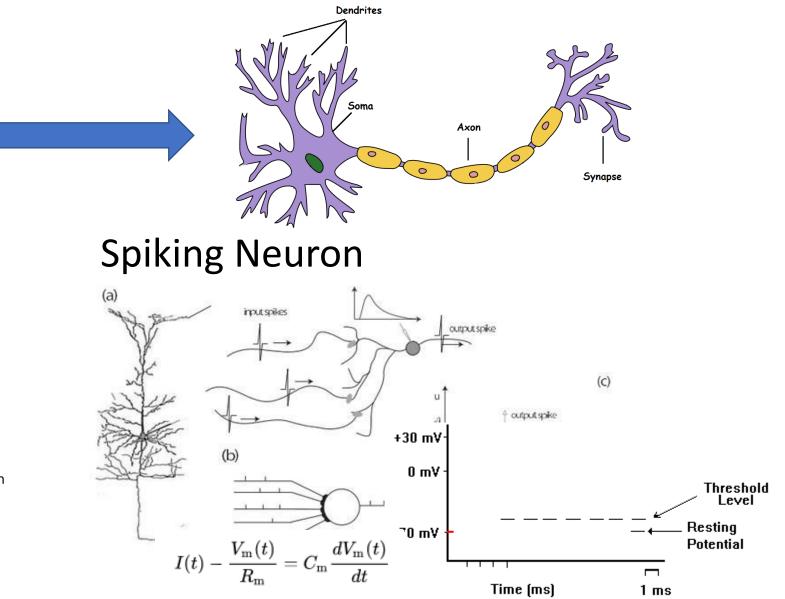
- Information encoded in spikes
- Time-domain integration of spikes
- Integration in neuron and synapse
- Complex signal processing system
- Time dependency, lag in signals
- Allows waves, cascades, feedback
- Synapses that strengthen with use
 Hebbian Learning
- Unsupervised associative learning

A Spiking Neuron is More Like a Biological Neuron



Deep Learning Neuron

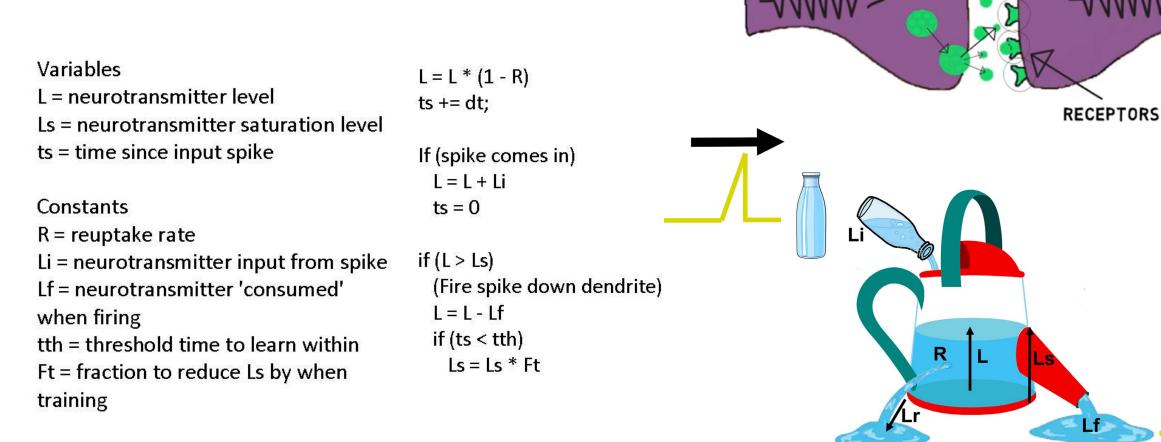




Link to BICHNN Demo

https://youtu.be/bthVbbbV_PM

NeuroCAD Synapse Model 'Leaky Watering Can'



NEUROTRANSMITTER

VESICLES

So, How Do We Train Spiking Neural Networks?

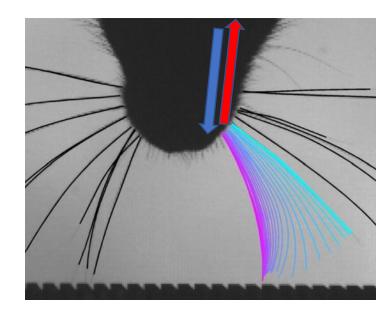
- This has remained an unsolved problem since they were developed in 1955
- Most Deep Learning uses back-propagation
 - Data is fed forward through the network and produces an output
 - A difference is computed between that output and a known label for the data
 - That difference is fed backwards through the network, adjusting the weights
 - This is repeated many times for the entire dataset till weights converge
- Back propagation does NOT generally work with spiking neural nets
 - SNN signals propagate in time, with complex integration at neuron and synapse
 - There is no way to back-drive these signals, compute derivatives and adjust weights
 - But somehow all moving life on earth manages to learn with a similar architecture
 - Hebbian learning if pre & post synaptic neuron fire together, synapse strengthens
 - But this only allows the entire network to learn if it is first properly structured

The Quest for a Spiking Neural Net That Can Learn

Miguel Nicolelis – Brazilian Neuroscience Researcher World expert in brain-machine interfaces, and measurement

Tickling a Rat's Whiskers

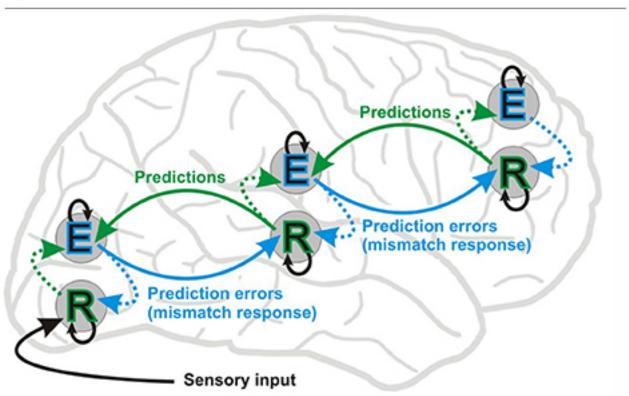
- Measuring neurological response to stimulating a rat's whiskers
- Probes were inserted at various spots in the neural path and brain
- Researcher would stimulate the rat's whiskers
- Probes could watch the signal travel from the whisker to the brain
- But there were also signals moving from the brain to the whisker
- Even when the whisker was not being stimulated, they were there
- The signal from brain to whisker was predicting the stimulus
- The two neural networks were interacting!
- Comparing the prediction and stimulus 'trains' the neural net how to perceive and predict the environment!
- EUREKA! Is this how the mammalian sensory cortex trains?

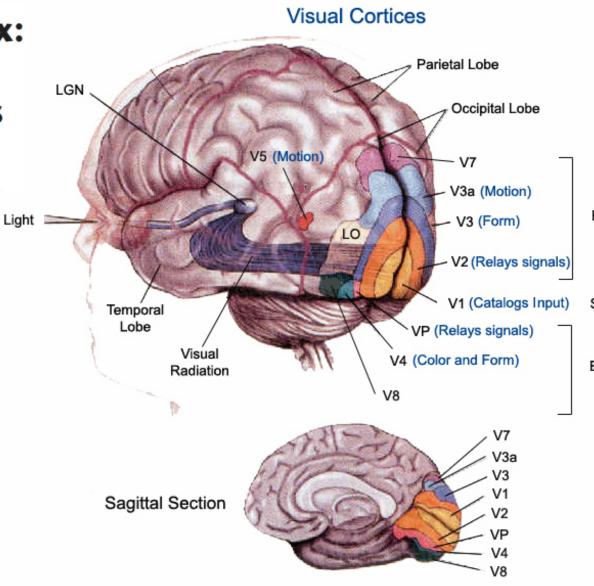


The Biological Inspiration for BICHNN

Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects

Rajesh P. N. Rao¹ and Dana H. Ballard²

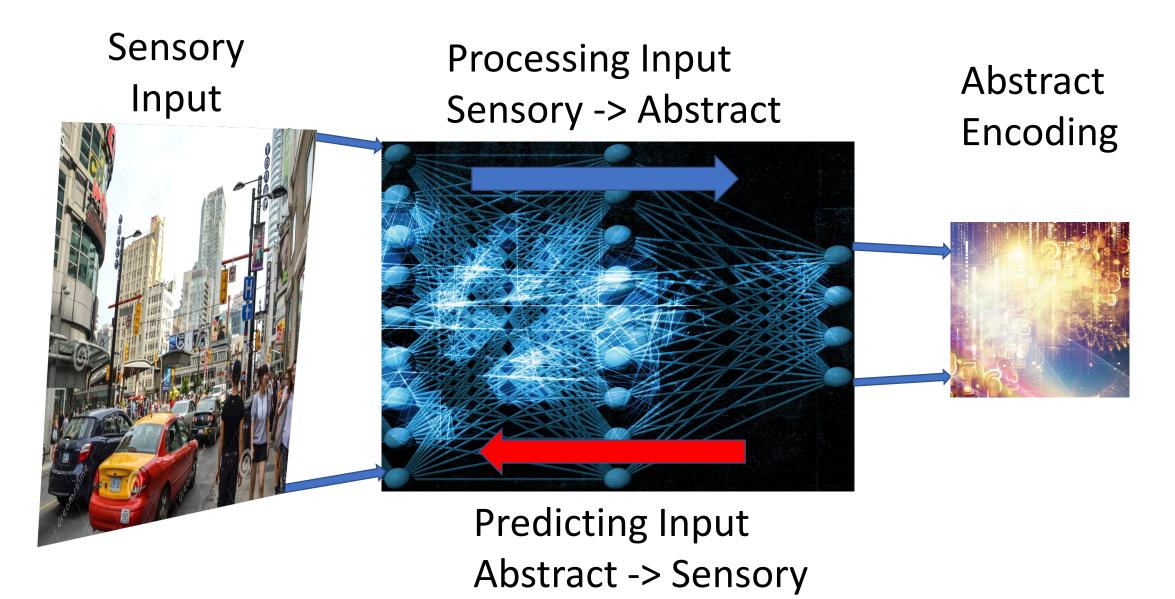




Bidirectional Interleaved Complementary Hierarchical Neural Nets

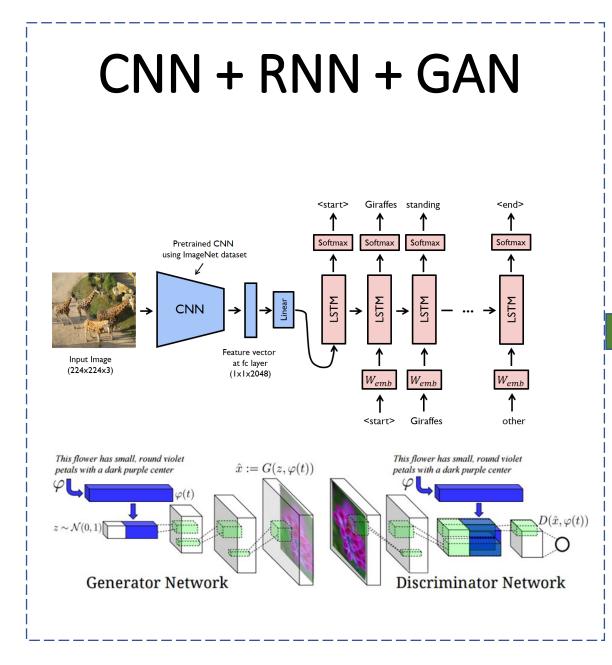
- Sensory perception is a dynamic, interactive process, NOT static
- Signals from the sensor are hierarchically processed into abstractions
- Abstractions are processed in the opposite direction into sensory output
- Close your eyes, picture a 'Fire Truck'. Your visual cortex works in reverse!
- These Bidirectional Interleaved Complementary Networks interact
- The two networks train each other to do their complementarity tasks
- Basically like the generator and discriminator of a GAN, only interleaved
- Signals can be bounced between sensor and abstract, like dreaming
- What we expect to sense actually influences what we really sense

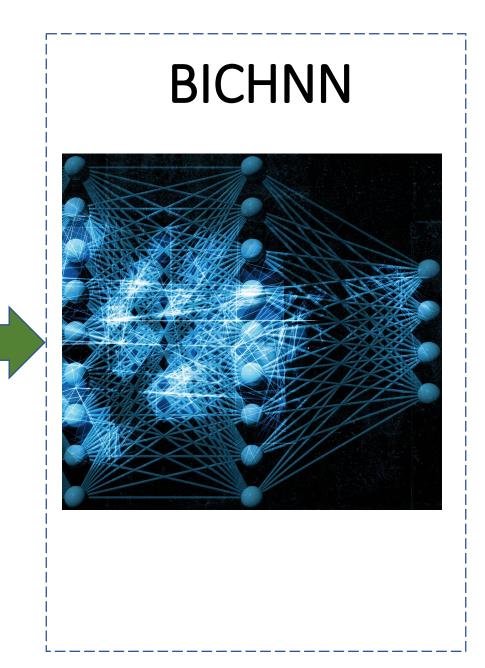
Bidirectional Interleaved Complementary Hierarchical Neural Nets



BICHNN – A Useful New Tool For AI

- Can replace CNN, RNN, and make them self-training
- Replaces GANs and Autoencoders, is more accurate, and powerful
- More powerful and easier to train for sensory applications as well
- Network architecture that can perform useful operations and tasks
- Learns how to perform these tasks without explicit instructions
- Learn by doing, on-the fly, from practice and experience
- Can be combined into multi-modal sensory systems to learn associatively
- Learn to do a wide variety of tasks that humans can do (in time)
- Generally applicable to speech, vision, sensory, and control



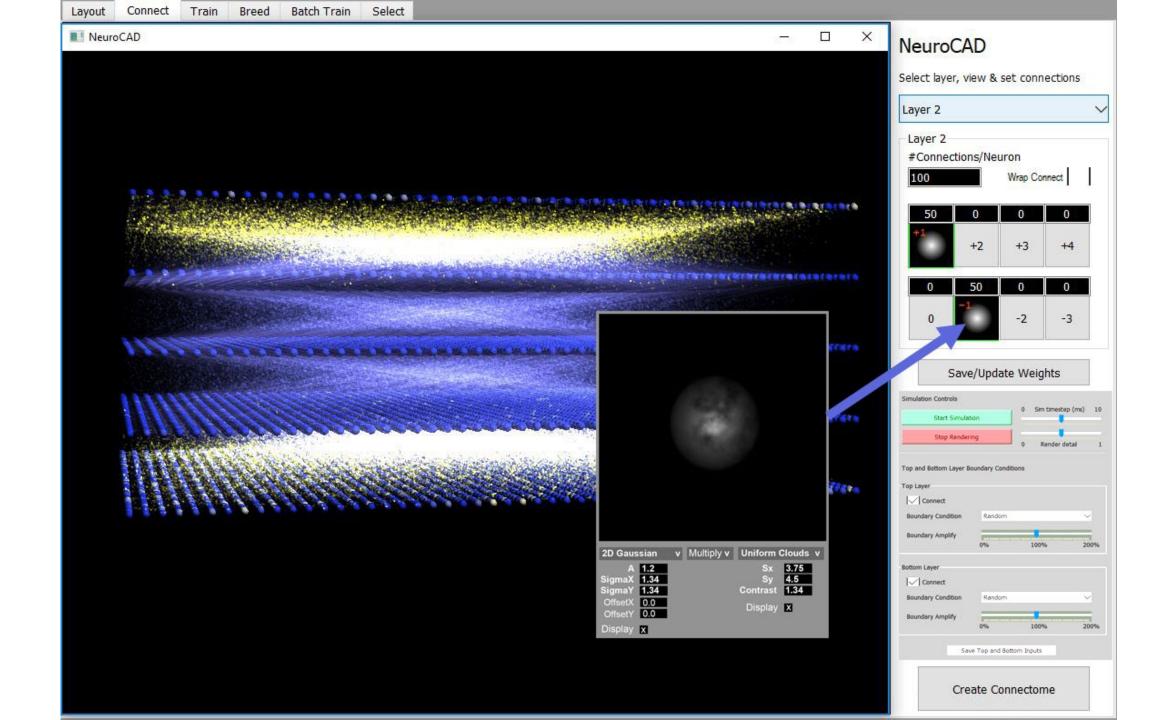


Architecting Spiking Neural Nets is Difficult

- Moderate sized spiking NN: 1 million spiking neurons
- 1 Billion connections & synapses
- 3D geometry is important because signals travel
- Time-dependent circuits, complex relationships
- NO design methodologies, intuition how to connect
- Like throwing 1 billion strands of spaghetti at a wall
- Never going to come up with functional architectures
- Especially not ones that can train and learn
- We need new design tools, new methodologies

NeuroCAD

- Design software for architecting and testing Spiking Neural Networks
- NeuroCAD UI workflow for SNN design using Genetic Algorithms
 - Layout Lay out layers of neurons and position them
 - Connection Connect the layers of neurons stochastically
 - Testing Run simulations of the SNN in your test harness
 - Selection Select the best performing versions of your network
 - Breeding Cross-breed and mutate the best performing nets
 - Iterate Run testing on the new batch till converged to solution
- Build more advanced AI than has ever been possible

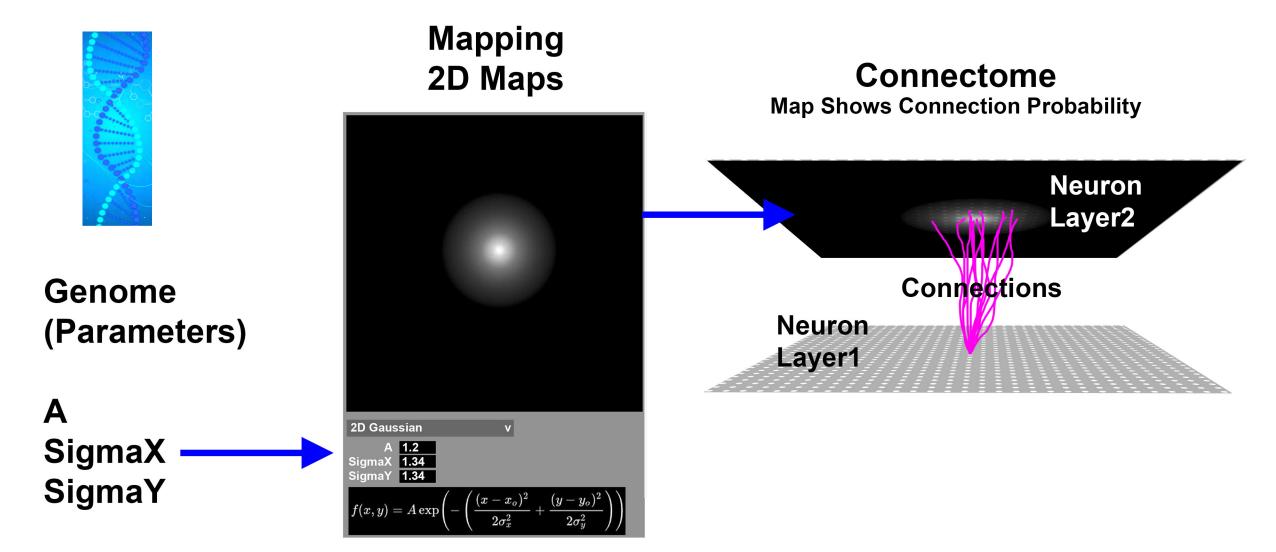


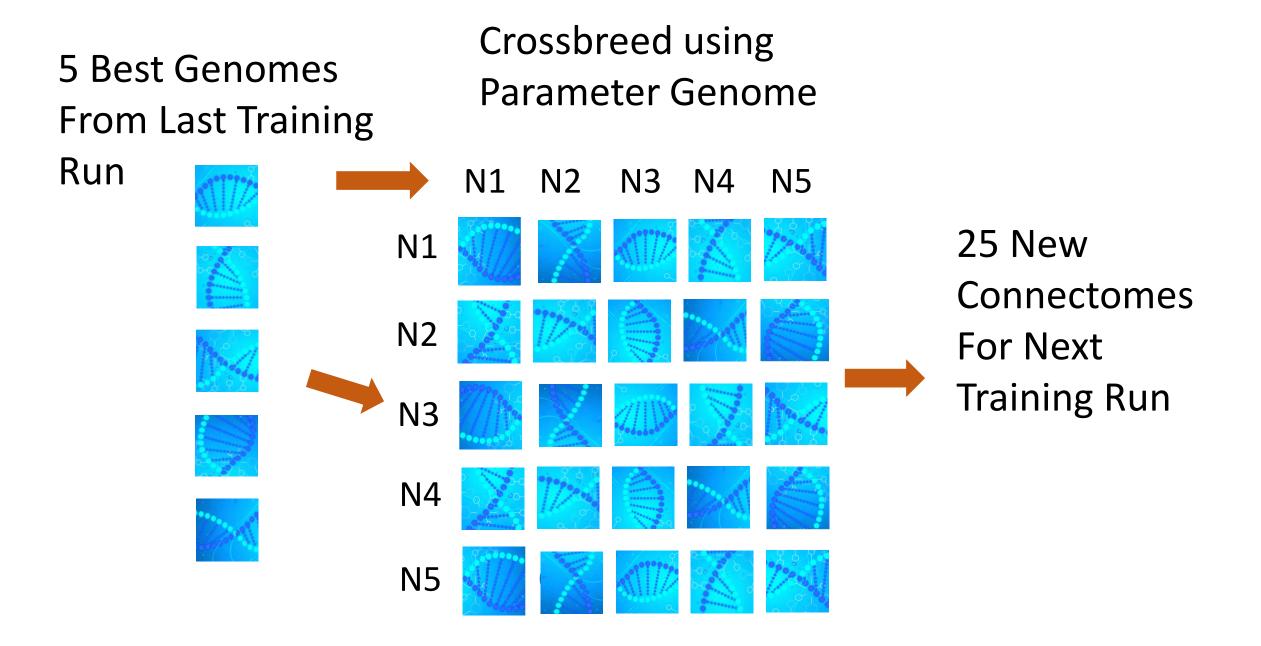
NeuroCAD Genome – Connectome Expansion

- The human brain has 100B Neurons, 100T Connections
- All of this grows from the blueprint of only 8000 genes
- 8000 genes -> 100 trillion neural connection connectome
- This is one heck of a decompression algorithm!
- You need genes to do genetic algorithms, to breed and mutate
- NeuroCAD uses a few hundred parameters as genome
- These are expanded into 2D procedural maps and mixed in tree
- Output is a 2D probability map for connection of LayerN -> LayerM
- Genome Parameters -> 2D Procedural Maps -> Connectome

Defining the NeuroCAD Connectome Algorithmically

Parameters (Genome) -> 2D Algorithms -> 2D Probability Maps -> Connectome

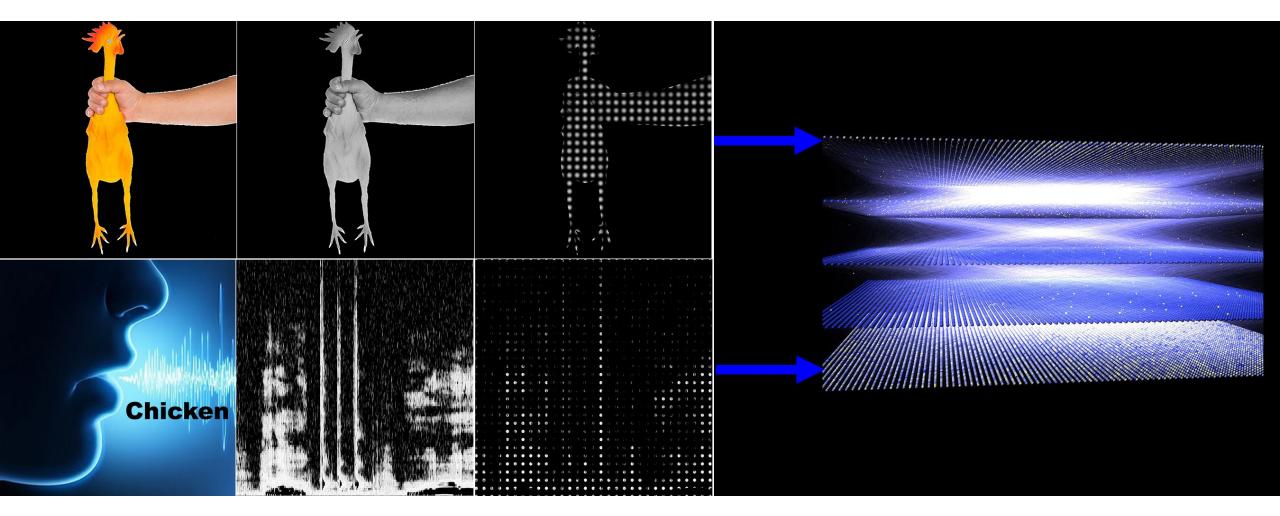




NeuroCAD

NeuroCAD is a software tool with a GUI for designing Spiking Neural Networks. It allows the user to lay out the layers of spiking neurons, connect them up algorithmically, crossbreed and mutate them to generate a population of similar neural nets, then run simulations on them, train them, cull the underperformers, and then crossbreed the top performing designs and continue the genetic algorithms till a design emerges that meets the performance criteria set by the designer.

Associative Learning with BICHNN



Applications

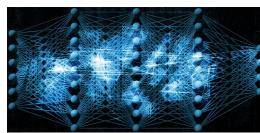
Cognition and Learning

SPEECH & NLP

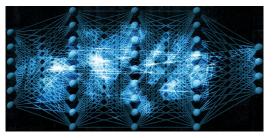
Vision/Sensors

Building a Humanoid Robot AI with BICHNN

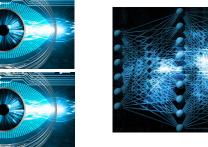
BICHNN Speech



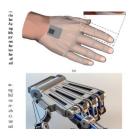
BICHNN Facial Animation

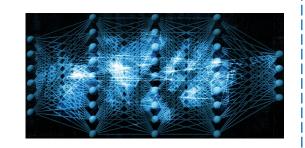


BICHNN Robot Controller



BICHNN Vision





BICHNN Sensory

Building an Auto (or Drone) AI with BICHNN

