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n Motivations

Problems we try to solve

- Academic:
- Difficult to train with large-batch and on clusters
- Industrial:
- Complex/arbitrary training pipelines for models from different fields

- S5eparation between experimental models and distributed trained industrial-
level models



n Motivations

Problems for academic research:

Two Challenges in large-batch distributed training:

How to maintain the same accuracy with large mini-batch training with 5GD?

How to achieve near-linear scalability on large clusters?



n Motivations

Solution: Tencent Jizhi

A High Performance Distributed Deep Learning Training Platform

Tensor Fusion

Hierarchical
Ring Allreduce

Input Pipeline  c\vp BWD
FP16/FP32

LARS

Model Update
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Goals for industrial applications:

High-Performance: Integration of general optimization strategies

Efficiency: Modular feature combinations and flexible resource management

Usability: Automate/5tandardize 5tages in ITL pipeline



E System Implementation and
Optimizations




H System Implementation and Optimizations

Can we train Imagellet using 1024 GPUs with a batch size of 64K?

How fast can we do it?



H System Implementation and Optimizations

Optimization Techniques for Large-Batch Training

Mixed-precision training with LARS

Improvements on model architecture

Improvements on communication strategies



H System Implementation and Optimizations

Mixed-precision Training with LARS

Layer-wise Adaptive Rate 5caling:

5et local learning rate per layer to stabilize the rate scaling:

|w!|

T VL)

Awi =y : VL(WI{)

Can be used with momentum and weight decay in 5GD:

Algorithm 1 SGD with LARS. Example with weight decay, momentum and polynomial LR decay.

Parameters: base LR vy, momentum m, weight decay 3, LARS coefficient 1, number of steps 7'
Init: ¢ = 0, v = 0. Init weight w, for each layer [
while ¢ < T for each layer [ do

gl < VL(w!) (obtain a stochastic gradient for the current mini-batch)

V¢ < Yo * (1I — %)2 (compute the global learning rate)
L, [|w || !
)\E < Al (compute the local LR \")

Viyq mvl + vi1 % A% (¢! + Bw!) (update the momentum)

w! 41 w! — v 11 (update the weights)

end while




H System Implementation and Optimizations

Mixed-precision Training with LARS

A different story for FP16:
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H System Implementation and Optimizations

Mixed-precision Training with LARS

FP16
(Weight, Grad)

FP16ToFP32

FP16
(Weight, Grad)

FWD BWD

FP32
(Weight, Grad)

FP32ToFP16
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Mixed-precision Training with LARS

Table 1: Effectiveness of using LARS on ResNet-50

Mini-Batch Size Number of Epochs LARS Top-1 Accuracy

64K 90 NO 713.2%
64K 90 YES 76.2%




H System Implementation and Optimizations

Improvements on IModel Architecture

Do not do weight decay on bias and \beta, \gamma in BI:

A typical practice to penalize only the weights of the affine transfarmation at
each layer and leaves the biases unreqularized:

r+1 t OE

W, =W — ——Aw
I Uﬂw?

Do not penalize the trainable params \beta, \gamma in BI:

. Xi — HB
Xi £
Vol + €

yi —(y%i +(f)= BN, p(xi)
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Improvements on IModel Architecture

Do not do weight decay on bias and \beta, \gamma in BI:

Effect of Regularization with b, f and y for AlexNet

Batch Epochs Regularize b, f andy Topl

64K 95 Yes 39.83%
64K 95 No 37.1%

Effect of improvements to ResNet-50 Training

Batch No Decay BN Topl

64K X 71.9%
64K v 76.2%
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Improvements on IModel Architecture

Insert Bl layer after Pool5 in AlexlNet

Conv5/RelU

g

Conv5/RelU
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Improvements on IModel Architecture

Insert Bl layer after Pool5 in AlexlNet
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Figure 4: Feature Map Distribution of Pool5(a) and Pool5-
BN5(b) of AlexNet as shown in Figure 3. (the horizontal axis
is the training steps, the vertical axis is the feature map dis-
tributions.)
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Improvements on IModel Architecture

Insert Bl layer after Pool5 in AlexlNet

Batch No Decay Bias No Decay BN pool5 BN Top-1 Accuracy

64K X X X 55.8%
64K X v X 56.3%
64K v X X 56.4%
64K v v X 57.1%
64K v v v 538.8%
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Improvements on Communication

For large batch training with distributed synchronized 5GD,
efficient gradients aggregation across all GPUs after each
iteration is crucial to the training performance



H System Implementation and Optimizations

Improvements on Communication

NCCL 1

=)

Multi-GPU
Multi-node

GPU Multi-GPU

NCCL 2.0 alone cannot solve the problem:

In a cluster with k GPUs, Ring all-reduce will split the data on each GPU into k chunks and do the reduce in k-1 iterations

When k gets larger, the messages passing between nodes will become smaller and fail to utilize the full bandwidth of the network
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Tensor Size(Byte)

H System Implementation and Optimizations

Improvements on Communication

Tensor Fusion:
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Improvements on Communication

Hierarchical All-Reduce:

Intra Ring over PCIE/NVLink
p GPUs, p/k groups:

Ring All-Reduce #steps: 2(p-1)

R
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z
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Inter Ring over GPU Direct RDMA

Hierarchical All-Reduce #steps: 4(k-1)+2(p/k-1]
In our case: p=1024, k=16 achieves the best performance
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Broadcast over PCIE/NVLink
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Improvements on Communication

Hybrid All-Reduce:
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Topl-accuracy

Results

H System Implementation and Optimizations

Both IModels Converge to >= baseline accuracy:
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Results

Both IModels Converge to >= baseline accuracy, and fast!

Table 4: Compare AlexNet training with different teams

Team Batch Hardware Software | Top-1 Accuracy  Time
You et al. [27] | 512 DGX-1 station NVCafte 58.8% 6h 10m
You et al. [27] | 32K CPU x 1024 Intel Cafte 58.6% 11min

This work 64K  Tesla P40 x 512 TensorFlow 58.8% 5m
This work 64K Tesla P40 x 1024 TensorFlow 58.7% 4m

Table 5: Compare ResNet-50 training with different teams

Team Batch Hardware Software | Top-1 Accuracy Time

He et al. [13] 256 Tesla P100 x 8 Cafte 75.3% 29h

Goyal et al. [12] 8K Tesla P100 X 256 Cafte2 76.3% 1h
Cho et al. [4] 8K Tesla P100 X 256 Torch 75.0% 50min
Codreanu et al. [5] | 32K KNL x 1024 Intel Cafte 75.3% 42min
You et al. [27] 32K KNL x 2048 Intel Cafte 75.4% 20min
Akiba et al. [2] 32K Tesla P100 x 1024 Chainer 74.9% 15min
This work 64K  Tesla P40 X 1024 TensorFlow 76.2% 8.7m
This work 64K  Tesla P40 x 2048 TensorFlow 75.8% 6.6m




Results

Also we scale (almaost) linearly:
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H System Implementation and Optimizations
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Future Works

AutollL and Network Optimizations

[More Communication Optimizations

Maore Optimizers: 5econd-0Order Optimization

Maore Execution Methods: Asynchronized Training
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B Introduction of Jizhi Platform

What is the Jizhi Platform?

- A General-purpose Al Platform

- A Distinctive Al Accelerating Platform



B Introduction of Jizhi Platform

Architecture of Jizhi Platform

Al Applications Game Al Medical Al

= = Large Batchsize Optimization Model & Computing  Flexible Resources
J I1Z h I P Ia tfﬂrm AutoliL Convergence Algorithm Strategy integration Power Analysis Scheduler

Al Framewaork

CNTI( |

Coming soon

Al Infrastructure kubernetes docker

. ‘* <A NVIDIA. At Mellanox ‘:?

The Platform has served for more than 5 internal businesses and created the
practical commercial value.
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B Introduction of Jizhi Platform

Features of Tencent Jizhi

- High Efficiency
- Integrating more than 60% computing resources of Tencent into one unified pool
- Increasing Utilization Rate through Flexible 5trateqy
- High priority : Exclusive with budget

- Low priority : 5hared once idle
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B Introduction of Jizhi Platform

Features of Tencent Jizhi

- High Performance:
- [Model level optimization [LARS, Mix precision training, etc.)
. Framewaork level optimization [(5tate-of-Art optimizer and loss function, etc.)

. Platform level optimization [Tensor fusion, Hierarchical allreduce, etc.)



B Introduction of Jizhi Platform

Features of Tencent Jizhi

- High Performance

Training with real data on NVIDIA® Tesla P40 Training with real data on NVIDIA® Tesla P40 Training time of ResNet-50(90 epochs) on ImageNet
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- Allocating more than 1000 GPUs for a single task
Running on Super large-scale cluster with near-linear speedup

And 5upporting large batch size without significant accuracy loss

Training time of AlexNet(100 epochs) on ImageNet
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ﬂ Introduction of Jizhi Platform

Features of Tencent Jizhi

- High Usability
- Automatic parallelization / Transparent to Model Engineers
- Simple High-level API [network, dataset]

- Support secondary development through an Open API set

Network( ) : get_train_filename_Llist(
“ params) :

.params = params
get_valid_filename_Llist(

inference( images):

cal_loss_accuracy_and_others( input_data):

get_samples(

cal_accuracy_and_others( input_data):



H Introduction of Jizhi Platform

Ul of Tencent Jizhi
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B Introduction of Jizhi Platform

Ul of Tencent Jizhi
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n Case Studies

Appliance on Game Al

. a DotaZ2-like IMOBA Game

- Reinforcement Learning

Action a;

>

Reward r,

Reinforcement Learning Setup



n Case Studies

Appliance on Game Al

. 128k batch size for 5v5 on 128 GPUs

- Exceeding OpenAl (111 vs ~560K rounds/day) on the same number of GPUs

Game Type GPU Batch size Speedup

Baseline 8 GPUs 8k --
5v5

Jizhi 128 GPUs 128K 13.6




n Case Studies

Appliance on Automatic S5peech Recognition

- L5TIM model/ DI model
- Super Large-scale Dataset

. 100 thousand or even hundreds of thousands
hours corpus

- Larger than 10 TB
- More Than 3 months/epoch on 4 * Tesla M40
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n Case Studies

Appliance on Automatic S5peech Recognition

- Training time reduced from more than 3 months to 20 hours

samples/s 1 epoch Speedup
Baseline 4 GPU 210 2194h --
Jizhi 4 GPU 956 482h 4.55

Jizhi 120 GPU /53 20h 107
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H Problems and Countermeasures

MNaode affinity is not always satisfied

- The assigned nodes are not always under the same switch

. Imbalance Bandwidth between different nodes

How to maximize performance in this case?



H Problems and Countermeasures

Counter measure

. R E d u c i n g b a n d Wi d t h "E q u i ['E m e n t 5 b y Algorithm 1: BlockMomentumSGD with Nesterov Block Momentum:

Input:
e The initial model wq;

e Training data with labels A’;

: HsynChrUnUUS tfaining algorithm e Block momentum 7z and learning rate =g ;

e Synchronization period n ;
e Number of workers K :

S5uch as BMUF(Kai et al. 2016)[1] Initialization: vo = 0

fort=1..... 1T.do
eforkel, ..., K parallel do

- - - 1. Initialize the local models: w*) = w,_; — ngv,_
- Gradient compression algorithm e ik marat- M e
forr=1,::ndo
e Draw a mini-batch from A’ ;
h d . e Calculate gradient on the current mini-batch;

5 u C_ ds D eep Gl' aaient CDmpr essian e (optionally) Additional gradient processing, e.g., SGD momentum or adagrad
[yU]Un Lin et al' 2017J[E] e Update model parameters to wH)

end

(k) k)

3. Send block gradient g, = wy’ — w), to the master;

end
e Aggregate and filter block gradients:

ve =1gvi_1 + (1 —78)ee Y g4
k

Wy = W1 — Uy

end

[1] https://www.microsoft.com/en-us/research/publication/scalable-training-deep-learning-machines-incremental-block-training-intra-block-parallel-optimization-
blockwise-model-update-filtering/
[2] https://arxiv.org/abs/1712.01887



H Problems and Countermeasures

Hyper-parameter tuning can be expensive

- Too many tunable parameters
- Training with one hyper-parameter set takes too long (e.q. ASR]

- Limited budget for GPU time



ﬂ Problems and Countermeasures

Counter measure

S5econd-aorder Optimization

- Hessian-free algorithm(James et al. 2012)"

- Distributed K-FAC (Jimmy et al. 2017) (]

Loss

[1] http://www.cs.toronto.edu/~jmartens/docs/HF _book_chapter.pdf

[2] https://fjimmylba.qgithub.io/papers/nsync.pdf

Loss

wi

Algorithm 1 The Hessian-free optimization method

I: for n =1.2.... do

2

3
4:
3:
6
7.

gn + V[(6y)
compute/adjust A by some method
define the function B, (d) = H(#,)d + Ad
pr +— CG-Minimize( By, —gn)
Hﬂ+1 — 0, + Pn
end for
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Imbalance Computing Resource

- Computing resource should be evenly distributed across batches

- But sometimes there is not enough GPUs with the same type in pool
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Counter measure

- Asynchronous Decentralized Training Algorithm

- Such as AD-P5GD(Xiangru et al. 2018) !

Algorithm 1 AD-P5GD (logical view)

b
Require: Initialize local models {x}}"_, with the same initialization, learning rate -y, batch size M, and
total number of iterations K.
1: fork=0,1,...,K—1do
2: Randomly sample a worker i}, of the graph G and randomly sample an averaging matrix Wj. which
can be dependent on i.

3 Randomly sample a batch ¢ ; = ( i’h, I-:E" o _:r’j y) from local data_ of the i;-th worker.
4 Compute the stochastic gradient locally g (£; &) := Ef’L VF(&F; ;;gj}.

5 Average local modes by ? _[I}r+1f2‘_x%+1f2" . :-:E_Jr”;] — [I}[,.ﬁ‘%,. .. ,J{i’]w;;

i Update the local model x}*,; + xjf,, ,» — 78:(%; &) and X, Iic+1,f:-:* Vi # i

7: end for

8: Output the average of the models on all workers.

“Note that Line 4 and Line 5 can run in parallel.

[1] https://arxiv.org/abs/1710.06952
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