Tencent iEiH

Training Imagellet in 4
minutes with Tencent Jizhi

Yangzihao Wang, Haidong Rong
Cloud Architecture Platform Dept. TEG at Tencent

Agenda

- [Notivations

- 5ystem implementation and optimizations
- Introduction of Jizhi Platform

- Case Studies

- Problems and Countermeasures

BF Motivations

n Motivations

Problems we try to solve

- Academic:
- Difficult to train with large-batch and on clusters
- Industrial:
- Complex/arbitrary training pipelines for models from different fields

- S5eparation between experimental models and distributed trained industrial-
level models

n Motivations

Problems for academic research:

Two Challenges in large-batch distributed training:

How to maintain the same accuracy with large mini-batch training with 5GD?

How to achieve near-linear scalability on large clusters?

n Motivations

Solution: Tencent Jizhi

A High Performance Distributed Deep Learning Training Platform

Tensor Fusion

Hierarchical
Ring Allreduce

Input Pipeline c\vp BWD
FP16/FP32

LARS

Model Update

n Motivations

Goals for industrial applications:

High-Performance: Integration of general optimization strategies

Efficiency: Modular feature combinations and flexible resource management

Usability: Automate/5tandardize 5tages in ITL pipeline

E System Implementation and
Optimizations

H System Implementation and Optimizations

Can we train Imagellet using 1024 GPUs with a batch size of 64K?

How fast can we do it?

H System Implementation and Optimizations

Optimization Techniques for Large-Batch Training

Mixed-precision training with LARS

Improvements on model architecture

Improvements on communication strategies

H System Implementation and Optimizations

Mixed-precision Training with LARS

Layer-wise Adaptive Rate 5caling:

5et local learning rate per layer to stabilize the rate scaling:

|w!|

T VL)

Awi =y : VL(WI{)

Can be used with momentum and weight decay in 5GD:

Algorithm 1 SGD with LARS. Example with weight decay, momentum and polynomial LR decay.

Parameters: base LR vy, momentum m, weight decay 3, LARS coefficient 1, number of steps 7'
Init: ¢ = 0, v = 0. Init weight w, for each layer [
while ¢ < T for each layer [do

gl < VL(w!) (obtain a stochastic gradient for the current mini-batch)

V¢ < Yo * (1I — %)2 (compute the global learning rate)
L, [|w || !
)\E < Al (compute the local LR \")

Viyq mvl + vi1 % A% (¢! + Bw!) (update the momentum)

w! 41 w! — v 11 (update the weights)

end while

H System Implementation and Optimizations

Mixed-precision Training with LARS

A different story for FP16:

18% r—T—T— T T T 1

I I
Weight Gradient 220 -

i
I
. R L
L A A A S R A
T
W40
109 [F
s Yt M

6% [-rioe e i b b

Percentage of total gradients

L AR HEEE T S S

20 [

oo L1 1

-44 -42 -40 -38 -36 -34 -32 -30 -28 -26 -24 -22 -20 -18 -16 -14 -12-10 -8 6 4 -2 O

Exponent value

12

H System Implementation and Optimizations

Mixed-precision Training with LARS

FP16
(Weight, Grad)

FP16ToFP32

FP16
(Weight, Grad)

FWD BWD

FP32
(Weight, Grad)

FP32ToFP16

13

[2 | System Implementation and Optimizations

Mixed-precision Training with LARS

Table 1: Effectiveness of using LARS on ResNet-50

Mini-Batch Size Number of Epochs LARS Top-1 Accuracy

64K 90 NO 713.2%
64K 90 YES 76.2%

H System Implementation and Optimizations

Improvements on IModel Architecture

Do not do weight decay on bias and \beta, \gamma in BI:

A typical practice to penalize only the weights of the affine transfarmation at
each layer and leaves the biases unreqularized:

r+1 t OE

W, =W — ——Aw
I Uﬂw?

Do not penalize the trainable params \beta, \gamma in BI:

. Xi — HB
Xi £
Vol + €

yi —(y%i +(f)= BN, p(xi)

[2 | System Implementation and Optimizations

Improvements on IModel Architecture

Do not do weight decay on bias and \beta, \gamma in BI:

Effect of Regularization with b, f and y for AlexNet

Batch Epochs Regularize b, f andy Topl

64K 95 Yes 39.83%
64K 95 No 37.1%

Effect of improvements to ResNet-50 Training

Batch No Decay BN Topl

64K X 71.9%
64K v 76.2%

H System Implementation and Optimizations

Improvements on IModel Architecture

Insert Bl layer after Pool5 in AlexlNet

Conv5/RelU

g

Conv5/RelU

17

[2 | System Implementation and Optimizations

Improvements on IModel Architecture

Insert Bl layer after Pool5 in AlexlNet

350

300
250
200
150
120

100 100

50 60
20
20

0 200 400 600 800 1000 1200 1400 1600 1800 0 200 400 600 800 1000 1200 1400 1600 1800

(a) (b)

Figure 4: Feature Map Distribution of Pool5(a) and Pool5-
BN5(b) of AlexNet as shown in Figure 3. (the horizontal axis
is the training steps, the vertical axis is the feature map dis-
tributions.)

[2 | System Implementation and Optimizations

Improvements on IModel Architecture

Insert Bl layer after Pool5 in AlexlNet

Batch No Decay Bias No Decay BN pool5 BN Top-1 Accuracy

64K X X X 55.8%
64K X v X 56.3%
64K v X X 56.4%
64K v v X 57.1%
64K v v v 538.8%

H System Implementation and Optimizations

Improvements on Communication

For large batch training with distributed synchronized 5GD,
efficient gradients aggregation across all GPUs after each
iteration is crucial to the training performance

H System Implementation and Optimizations

Improvements on Communication

NCCL 1

=)

Multi-GPU
Multi-node

GPU Multi-GPU

NCCL 2.0 alone cannot solve the problem:

In a cluster with k GPUs, Ring all-reduce will split the data on each GPU into k chunks and do the reduce in k-1 iterations

When k gets larger, the messages passing between nodes will become smaller and fail to utilize the full bandwidth of the network

21

Tensor Size(Byte)

H System Implementation and Optimizations

Improvements on Communication

Tensor Fusion:
2.E+08 I
| 1.E+07 Fused Tensor A ' Fused Tensor B
FUSEd Tensor A : Fused Tensor B () | (
2.E+08 ¢ >, € > 9.E+06 :
l
1.E+08 8.E+06 |
|
1.E+08 . 7.E+06 :
Q
2 6.E+06 !
1.E+08 -]
@ l
- 5.E+06]
8.E+07 s |
2 4.E+06 |
6.E+07 & :
3.E+06 :
l
4.E+07 2 E+06
2.E+07 1.E+06
0.E+00 — . e — | ! 0.E+00
1 2 3 456 7 8 91011121314151617 18 19 20 21 22 23 24 25 26 """‘ﬂﬂﬂERQQEQQK‘EQE‘EEgEﬁEEEEEE

AlexNet Tensors ResNet-50 Tensors

H System Implementation and Optimizations

Improvements on Communication

Hierarchical All-Reduce:

Intra Ring over PCIE/NVLink
p GPUs, p/k groups:

Ring All-Reduce #steps: 2(p-1)

R

.

o ©
o« ©
z
@ ©

Inter Ring over GPU Direct RDMA

Hierarchical All-Reduce #steps: 4(k-1)+2(p/k-1]
In our case: p=1024, k=16 achieves the best performance

-

N

N

J

rr"_

\

\.

ZMIAN

Broadcast over PCIE/NVLink

23

H System Implementation and Optimizations

Improvements on Communication

Hybrid All-Reduce:

Speed (ms)

160

140

100

80

60

0 -, »

20

A,

O .

| | | |
1024-nccl_allreduce —=—

1024-hierachical —&—

[} ‘.‘

(\)

Ly

5x107 1x108 1.5x108 2x108
Tensor Size(Bytes)

2.5x108

3x108

Topl-accuracy

Results

H System Implementation and Optimizations

Both IModels Converge to >= baseline accuracy:

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

| | | | | | | |
ResNet-50 64K LARS No-BN-decay ——— ‘
ResNet-50 64K No-BN-decay ——
ResNet-50 64K LARS BN-decay
~ ResNet-50 64K BN-decay
2/ N\ Vi ¥ | i | | i
10 20 30 40 50 60 70 80 90

Epoch (ResNet-50)

Topl-accuracy

0.6

0.5

0.4

0.3

0.2

0.1

Epoch (AlexNet)

! | | | | | |
| | AlexNet 64K LARS —— AlexNet 64K Improved ——
| | | | | | | | |

0 10 20 30 40 50 60 70 80 90

100

[2 | System Implementation and Optimizations

Results

Both IModels Converge to >= baseline accuracy, and fast!

Table 4: Compare AlexNet training with different teams

Team Batch Hardware Software | Top-1 Accuracy Time
You et al. [27] | 512 DGX-1 station NVCafte 58.8% 6h 10m
You et al. [27] | 32K CPU x 1024 Intel Cafte 58.6% 11min

This work 64K Tesla P40 x 512 TensorFlow 58.8% 5m
This work 64K Tesla P40 x 1024 TensorFlow 58.7% 4m

Table 5: Compare ResNet-50 training with different teams

Team Batch Hardware Software | Top-1 Accuracy Time

He et al. [13] 256 Tesla P100 x 8 Cafte 75.3% 29h

Goyal et al. [12] 8K Tesla P100 X 256 Cafte2 76.3% 1h
Cho et al. [4] 8K Tesla P100 X 256 Torch 75.0% 50min
Codreanu et al. [5] | 32K KNL x 1024 Intel Cafte 75.3% 42min
You et al. [27] 32K KNL x 2048 Intel Cafte 75.4% 20min
Akiba et al. [2] 32K Tesla P100 x 1024 Chainer 74.9% 15min
This work 64K Tesla P40 X 1024 TensorFlow 76.2% 8.7m
This work 64K Tesla P40 x 2048 TensorFlow 75.8% 6.6m

Results

Also we scale (almaost) linearly:

200000

150000

100000

images/second

50000

H System Implementation and Optimizations

Resllet-50

Original

|
Ideal

256

512
GPUs

1024

images/second

50000

40000

30000

20000

10000

Alexlet
| |
Ideal Tensor Fusion
- Float32 Allreduce Hybrid+Fusion+FP16 — -
Float1_6 Allreduce

64

128

256

GPUs

512

H System Implementation and Optimizations

Future Works

AutollL and Network Optimizations

[More Communication Optimizations

Maore Optimizers: 5econd-0Order Optimization

Maore Execution Methods: Asynchronized Training

Agenda

- [Notivations

- 5ystem implementation and optimizations
- Introduction of Jizhi Platform

- Case Studies

- Problems and Countermeasures

B Introduction of Jizhi Platform

B Introduction of Jizhi Platform

What is the Jizhi Platform?

- A General-purpose Al Platform

- A Distinctive Al Accelerating Platform

B Introduction of Jizhi Platform

Architecture of Jizhi Platform

Al Applications Game Al Medical Al

= = Large Batchsize Optimization Model & Computing Flexible Resources
J I1Z h I P Ia tfﬂrm AutoliL Convergence Algorithm Strategy integration Power Analysis Scheduler

Al Framewaork

CNTI(|

Coming soon

Al Infrastructure kubernetes docker

. ‘* <A NVIDIA. At Mellanox ‘:?

The Platform has served for more than 5 internal businesses and created the
practical commercial value.

32

B Introduction of Jizhi Platform

Features of Tencent Jizhi

- High Efficiency
- Integrating more than 60% computing resources of Tencent into one unified pool
- Increasing Utilization Rate through Flexible 5trateqy
- High priority : Exclusive with budget

- Low priority : 5hared once idle

33

B Introduction of Jizhi Platform

Features of Tencent Jizhi

- High Performance:
- [Model level optimization [LARS, Mix precision training, etc.)
. Framewaork level optimization [(5tate-of-Art optimizer and loss function, etc.)

. Platform level optimization [Tensor fusion, Hierarchical allreduce, etc.)

B Introduction of Jizhi Platform

Features of Tencent Jizhi

- High Performance

Training with real data on NVIDIA® Tesla P40 Training with real data on NVIDIA® Tesla P40 Training time of ResNet-50(90 epochs) on ImageNet

ResNet-50 AlexNet 0

11— [0 60
B0
= 5]
rrrrrrrrrr =0
20000 =
RODDOD E A0
@
|||||||||| g 30
10001 = 20
20 15
. 20000 i
6.6
10
N S e -
8 fid 128 256 512 1324 B Fid 128 256 512 1024 0
Goyal et al. Cho et al. You etal. Akiba et al. BEFinE
ya
OIDEAL "™Tencent DIDEAL ™Tencent (Facehook) (IBM) (UC Berkeley) (PN, Inc.) (This work)

- Allocating more than 1000 GPUs for a single task
Running on Super large-scale cluster with near-linear speedup

And 5upporting large batch size without significant accuracy loss

Training time of AlexNet(100 epochs) on ImageNet

5E
48
40
c
£ 32
_— m e e e = = = ===
E 74 No Test data

= ; ":‘ .
"
16) r : N 11
g / [B iy a
#, | “,
5 14 W |
Goyal et al. Cho et al. Akibaetal. Youetal. BEFineE
(Facebook) (IBM) (PN, Inc.) (UC Berkeley) [This work)

39

ﬂ Introduction of Jizhi Platform

Features of Tencent Jizhi

- High Usability
- Automatic parallelization / Transparent to Model Engineers
- Simple High-level API [network, dataset]

- Support secondary development through an Open API set

Network() : get_train_filename_Llist(
“ params) :

.params = params
get_valid_filename_Llist(

inference(images):

cal_loss_accuracy_and_others(input_data):

get_samples(

cal_accuracy_and_others(input_data):

H Introduction of Jizhi Platform

Ul of Tencent Jizhi

* TRACE

(N
-
c
0o
ah

B

BEE

num_epoch
batch_size

Ir
val_dataset size
left_context
right_context
display_accuracy_
feat_dim
num_class

train_dataset_size

+

10

0.0001
10000
30

30

1

40
12485
50000

W N N N N N N N N N

37

B Introduction of Jizhi Platform

Ul of Tencent Jizhi

{F51F(5: rosie-speech (32e148cc)

BIZE A

e gict
EEEER

rosiezhang
E=A4l-rosie

Sfileshuffle-2w-rosie (alef@1e0e)

=IRFIER(T)

accuracy

Sere 1 " EERIEEET

Bt

-
© >3
-
[L
o A o ? :
2 eW -

8IEFTE: 15 F&l

TEZER

9 TE!
Running, JL#EI8
=

Wi WBSE

FEE SR dataset_rosie_speech (4a%9a8c3¢)

BE

FIf | E55F

IEE=

38

K7¥ Case Studies

n Case Studies

Appliance on Game Al

. a DotaZ2-like IMOBA Game

- Reinforcement Learning

Action a;

>

Reward r,

Reinforcement Learning Setup

n Case Studies

Appliance on Game Al

. 128k batch size for 5v5 on 128 GPUs

- Exceeding OpenAl (111 vs ~560K rounds/day) on the same number of GPUs

Game Type GPU Batch size Speedup

Baseline 8 GPUs 8k --
5v5

Jizhi 128 GPUs 128K 13.6

n Case Studies

Appliance on Automatic S5peech Recognition

- L5TIM model/ DI model
- Super Large-scale Dataset

. 100 thousand or even hundreds of thousands
hours corpus

- Larger than 10 TB
- More Than 3 months/epoch on 4 * Tesla M40

42

n Case Studies

Appliance on Automatic S5peech Recognition

- Training time reduced from more than 3 months to 20 hours

samples/s 1 epoch Speedup
Baseline 4 GPU 210 2194h --
Jizhi 4 GPU 956 482h 4.55

Jizhi 120 GPU /53 20h 107

E Problems and Countermeasures

H Problems and Countermeasures

MNaode affinity is not always satisfied

- The assigned nodes are not always under the same switch

. Imbalance Bandwidth between different nodes

How to maximize performance in this case?

H Problems and Countermeasures

Counter measure

. R E d u c i n g b a n d Wi d t h "E q u i ['E m e n t 5 b y Algorithm 1: BlockMomentumSGD with Nesterov Block Momentum:

Input:
e The initial model wq;

e Training data with labels A’;

: HsynChrUnUUS tfaining algorithm e Block momentum 7z and learning rate =g ;

e Synchronization period n ;
e Number of workers K :

S5uch as BMUF(Kai et al. 2016)[1] Initialization: vo = 0

fort=1..... 1T.do
eforkel, ..., K parallel do

- - - 1. Initialize the local models: w*) = w,_; — ngv,_
- Gradient compression algorithm e ik marat- M e
forr=1,::ndo
e Draw a mini-batch from A’ ;
h d . e Calculate gradient on the current mini-batch;

5 u C_ ds D eep Gl' aaient CDmpr essian e (optionally) Additional gradient processing, e.g., SGD momentum or adagrad
[yU]Un Lin et al' 2017J[E] e Update model parameters to wH)

end

(k) k)

3. Send block gradient g, = wy’ — w), to the master;

end
e Aggregate and filter block gradients:

ve =1gvi_1 + (1 —78)ee Y g4
k

Wy = W1 — Uy

end

[1] https://www.microsoft.com/en-us/research/publication/scalable-training-deep-learning-machines-incremental-block-training-intra-block-parallel-optimization-
blockwise-model-update-filtering/
[2] https://arxiv.org/abs/1712.01887

H Problems and Countermeasures

Hyper-parameter tuning can be expensive

- Too many tunable parameters
- Training with one hyper-parameter set takes too long (e.q. ASR]

- Limited budget for GPU time

ﬂ Problems and Countermeasures

Counter measure

S5econd-aorder Optimization

- Hessian-free algorithm(James et al. 2012)"

- Distributed K-FAC (Jimmy et al. 2017) (]

Loss

[1] http://www.cs.toronto.edu/~jmartens/docs/HF _book_chapter.pdf

[2] https://fjimmylba.qgithub.io/papers/nsync.pdf

Loss

wi

Algorithm 1 The Hessian-free optimization method

I: for n =1.2.... do

2

3
4:
3:
6
7.

gn + V[(6y)
compute/adjust A by some method
define the function B, (d) = H(#,)d + Ad
pr +— CG-Minimize(By, —gn)
Hﬂ+1 — 0, + Pn
end for

H Problems and Countermeasures

Imbalance Computing Resource

- Computing resource should be evenly distributed across batches

- But sometimes there is not enough GPUs with the same type in pool

ﬂ Problems and Countermeasures

Counter measure

- Asynchronous Decentralized Training Algorithm

- Such as AD-P5GD(Xiangru et al. 2018) !

Algorithm 1 AD-P5GD (logical view)

b
Require: Initialize local models {x}}"_, with the same initialization, learning rate -y, batch size M, and
total number of iterations K.
1: fork=0,1,...,K—1do
2: Randomly sample a worker i}, of the graph G and randomly sample an averaging matrix Wj. which
can be dependent on i.

3 Randomly sample a batch ¢ ; = (i’h, I-:E" o _:r’j y) from local data_ of the i;-th worker.
4 Compute the stochastic gradient locally g (£; &) := Ef’L VF(&F; ;;gj}.

5 Average local modes by ? _[I}r+1f2‘_x%+1f2" . :-:E_Jr”;] — [I}[,.ﬁ‘%,. .. ,J{i’]w;;

i Update the local model x}*,; + xjf,, ,» — 78:(%; &) and X, Iic+1,f:-:* Vi # i

7: end for

8: Output the average of the models on all workers.

“Note that Line 4 and Line 5 can run in parallel.

[1] https://arxiv.org/abs/1710.06952

50

l-' :
Thanks /|

