
Carl Case, NVIDIA

MIXED PRECISION TRAINING OF
DEEP NEURAL NETWORKS

2

OUTLINE

1. What is mixed precision training?

2. Considerations and methodology for mixed precision training

3. Automatic mixed precision

4. Performance guidelines and practical recommendations

3

OUTLINE

1. What is mixed precision training?

2. Considerations and methodology for mixed precision training

3. Automatic mixed precision

4. Performance guidelines and practical recommendations

4

MIXED PRECISION TRAINING
Motivation

Reduced precision (16-bit floating point) for speed or scale

Full precision (32-bit floating point) to maintain task-specific accuracy

By using multiple precisions, we can avoid a pure tradeoff of speed and accuracy

Goal: maximize use of reduced precision under the constraint of matching accuracy of full
precision training with no changes to hyperparameters

5

TENSOR CORES
Hardware support for accelerated 16-bit FP math

Peak throughput of 125 TFLOPS (8x FP32) on V100

Inherently mixed precision: internal accumulation occurs in FP32 for accuracy*

Used by cuDNN and cuBLAS libraries to accelerate matrix multiply and convolution

Exposed in CUDA as WMMA. See:
https://devblogs.nvidia.com/programming-tensor-cores-cuda-9/
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#wmma

*FP16 accumulator is also
available for inference

FP16
storage/input

Full precision
product

Sum with
FP32

accumulator

more products

https://devblogs.nvidia.com/programming-tensor-cores-cuda-9/
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#wmma

6

MIXED PRECISION TRAINING
In a nutshell

Goal

Keep stored values in half precision: weights and activations, along with their gradients

Use Tensor Cores to accelerate math and maintain accuracy

Benefits

Up to 8x math speedup (depends on arithmetic intensity)

Half the memory traffic

Half the memory storage

Can enable larger model or batch sizes

7

MIXED PRECISION TRAINING

8GPU training of ResNet-50
(ImageNet classification) on DGX-1

NVIDIA mxnet-18.08-py3 container

Total time to run full training
schedule in mixed precision is well
under four hours

2.9x speedup over FP32 training

Equal validation accuracies

No hyperparameters changed

Minibatch = 256 per GPU

With Tensor Cores

8

MIXED PRECISION IS GENERAL PURPOSE
Models trained to match FP32 results (same hyperparameters)

Image Classification

AlexNet

DenseNet

Inception

MobileNet

NASNet

ResNet

ResNeXt

VGG

XCeption

Detection / Segmentation

DeepLab

Faster R-CNN

Mask R-CNN

Multibox SSD

NVIDIA Automotive

RetinaNet

UNET

Generative Models (Images)

DLSS

Partial Image Inpainting

Progress GAN

Pix2Pix

Speech

Deep Speech 2

Tacotron

WaveNet

WaveGlow

Language Modeling

BERT

BigLSTM

8k mLSTM (NVIDIA)

Translation

FairSeq (convolution)

GNMT (RNN)

Transformer (self-

attention)
Recommendation

DeepRecommender

NCF

10

MIXED PRECISION SPEEDUPS
Not limited to image classification

Model
FP32 -> M.P.

Speedup
Comments

GNMT (Translation) 2.3x Iso-batch size

FairSeq Transformer

(Translation)

2.9x

4.9x

Iso-batch size

2x lr + larger batch

ConvSeq2Seq

(Translation)
2.5x 2x batch size

Deep Speech 2

(Speech recognition)
4.5x Larger batch

wav2letter (Speech

recognition)
3.0x 2x batch size

Nvidia Sentiment

(Language modeling)
4.0x Larger batch

*In all cases trained to
same accuracy as FP32
model

**No hyperparameter
changes, except as
noted

11

MIXED PRECISION IN DL RESEARCH
Both accelerates and enables novel research

Large Scale Language Modeling: Converging on 40GB of Text in Four Hours [NVIDIA]

“We train our recurrent models with mixed precision FP16/FP32 arithmetic, which speeds up
training on a single V100 by 4.2X over training in FP32.”

Scaling Neural Machine Translation [Facebook]

“This paper shows that reduced precision and large batch training can speedup training by nearly
5x on a single 8-GPU machine with careful tuning and implementation.”

If you want to hear more:

“Taking Advantage of Mixed Precision to Accelerate Training Using PyTorch” [S9832]

Today (Mar. 18th) at 2pm in room 210D

https://arxiv.org/abs/1808.01371
https://arxiv.org/abs/1806.00187

12

OUTLINE

1. What is mixed precision training?

2. Considerations and methodology for mixed precision training

3. Automatic mixed precision

4. Performance guidelines and practical recommendations

13

MIXED PRECISION METHODOLOGY
For training

Goal: training with FP16 is general purpose, not only for a limited class of applications

In order to train with no architecture or hyperparameter changes, we need to give
consideration to the reduced precision inherent in using only 16 bits

Note: true for any reduced precision format, though specifics may be different

Three parts:

1. Model conversion, with careful handling of non-Tensor Core ops

2. Master weight copy

3. Loss scaling

14

1. MODEL CONVERSION
For Tensor Core ops

For most of the model, we make simple type updates to each layer:

Use FP16 values for the weights (layer parameters)

Ensure the inputs are FP16, so the layer runs on Tensor Cores

15

1. MODEL CONVERSION
Pointwise and reduction ops

Common operations that are not matrix multiply or convolution:

Activation functions: ReLU, sigmoid, tanh, softplus

Normalization functions: batchnorm, layernorm, sum, mean, softmax

Loss functions: cross entropy, L2 loss, weight decay

Miscellaneous: exp, log, pointwise-{add, subtract, multiply, divide}

We want to maintain the accuracy of these operations, even though they will not run on
Tensor Cores

16

POINTWISE AND REDUCTION OPS
Principles

Tensor Cores increase precision in two ways:

1. Each individual multiply is performed in high precision

2. The sum of the products is accumulated in high precision

For non-TC operations, we want to adhere to those same principles:

1. Keep intermediate or temporary values in high precision

2. Perform sums (reductions) in high precision

FP16
storage/input

Full precision
product

Sum with
FP32

accumulator

more products

17

POINTWISE AND REDUCTION OPS
1. Intermediate and temporary values in high precision

For pointwise operations, generally fine to operate directly on FP16 values.

Exception: FP32 math and storage recommended for ops where 𝑓(𝑥) ≫ |𝑥| (or same for
grads). Examples: Exp, Log, Pow.

Most common to see these non-FP16-compatible ops as temporary values in loss or
activation functions. Op fusion can reduce need
for FP32 storage.

18

POINTWISE AND REDUCTION OPS
2. Perform sums / reductions in high precision

Common to normalize a large set of FP16 values in, e.g., a softmax layer

Two choices :

Sum all the values directly into an FP16 accumulator, then perform division in FP16

Perform math in high precision (FP32 accumulator, division), then write the final result in FP16

The first introduces the possibility of compounding precision error

The second does what Tensor Cores do: limit reduced precision to final output

This is the desired behavior

19

POINTWISE AND REDUCTION OPS
Practical recommendations

Nonlinearities: fine for FP16

Except: watch out for exp, log, pow

Normalization: input /output in FP16; intermediate results stored in FP32

Ideally: fused into single op. Example: cuDNN BatchNorm

Loss functions: input / output in FP32

Also: attention modules (softmax)

20

2. MASTER WEIGHTS
At each iteration of training, perform a weight update of the form 𝑤𝑡+1 = 𝑤𝑡 − 𝛼∇t

𝑤𝑡’s are weights; ∇t’s are gradients; 𝛼 is the learning rate

As a rule, gradients are smaller than weights, and learning rate is less than one

Consequence: weight update can be a no-op, since you can’t get to next representable
value

Conservative solution: keep a high-precision copy of weights so small updates accumulate
across iterations

1.5 +
1

10241.5
… …1.5 −

1

10241.0 2.0

No-op weight update

21

3. LOSS SCALING

Range representable in FP16: ~40 powers of 2

Gradients are small:

Some lost to zero

While ~15 powers of 2 remain unused

Loss scaling:

Multiply loss by a constant S

All gradients scaled up by S (chain rule)

Unscale weight gradient (in FP32) before weight update

Weights

Activations

Weight
Grads

Activation
Grads

22

3. LOSS SCALING
Automatically choosing a scale factor S

Intuition:

Start with a very large scale factor

If an Inf or a NaN is present in the gradient, decrease the scale
And skip the update, including optimizer state

If no Inf or NaN has occurred for some time, increase the scale

23

3. LOSS SCALING
Automatic scaling: our recommendation

Many possible settings of algorithm specifics – in our experience, a wide range of values
below all work equally well

Contrast with: learning rate tuning

Specific values we recommend:

Initialize loss scale to 2^24

On single overflow, multiply scale by 0.5

After 2000 iterations with no overflow, multiply scale by 2.0

Note: implies a skip rate of 1/2000 in steady-state

Described in detail at https://docs.nvidia.com/deeplearning/sdk/mixed-precision-
training/index.html#scalefactor

https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html#scalefactor

24

OUTLINE

1. What is mixed precision training?

2. Considerations and methodology for mixed precision training

3. Automatic mixed precision

4. Performance guidelines and practical recommendations

25

ENABLING MIXED PRECISION
Review: recipe for FP16

Model conversion:

Switch everything to run on FP16 values

Insert casts to FP32 for loss function and normalization / pointwise ops that need full precision

Master weights:

Keep FP32 model parameters

Insert casts to use FP16 copies during forward / backward passes of the model

Loss scaling:

Scale the loss value, unscale the gradients in FP32

Check gradients at each iteration to adjust loss scale and skip on overflow

26

AUTOMATING MIXED PRECISION
Automate everything from the previous slide

Key observation: nothing in the recipe requires domain-specific knowledge

Instead, framework software itself can transform existing model code to run with mixed
precision fully automatically

Details vary by framework, but the core ideas are simple:

Automatic loss scaling with optimizer wrapping

Straightforward: create a wrapper object that manipulates loss and gradients in such a way the base
optimizer only ever sees the true FP32 gradient values on non-overflow iterations

Automatic casting with op classification

Framework specifics in subsequent talks (see slide 30 for reference)

27

AUTOMATIC CASTING
Basic idea

Details vary by framework, but all of them provide an interface of operations that transform
or mutate tensor data

What we want:

A static graph of all operations that occur during training

An oracle that identifies the optimal type for each operation

Maximize speed under the constraint of full accuracy

We can do without a static graph by making runtime type decisions

We can do without an oracle by pre-committing to a conservative set of rules

In practice, however, these rules almost always match “by-hand” mixed precision

28

AUTOMATIC CASTING
Operation classification

We divide the universe of operations into three kinds:

Whitelist: ops for which using FP16 enables Tensor Core acceleration

Eg: MatMul, Conv2d

Blacklist: ops for which FP32 is required for accuracy

Eg: Exp, Sum, Softmax, Weight updates

Everything else: ops that can run in FP16, but only worthwhile if inputs already FP16

Eg: Relu, Add (pointwise), MaxPool

29

AUTOMATIC CASTING
Operation classification

Given these lists, we can use simple rules to make types decisions, either in a static graph
or at runtime:

Whitelist: always run in FP16, casting if necessary

Blacklist: always run in FP32, casting if necessary

Everything else: run in the existing input type

In practice, these rules capture the same intuition as “by-hand” conversion:

Cast inputs and create weight copies to use FP16 and run on Tensor Cores

Keep activations in FP16 so long as pointwise ops do not require full precision

Cast to FP32 to compute the loss

30

MORE ON AUTOMATIC MIXED PRECISION
Talks later today

PyTorch: “Automatic Mixed Precision in PyTorch” [S9998]

1:00 – 1:50pm, Room 210A

MXNet: “MXNet Computer Vision and Natural Language Processing Models Accelerated with
NVIDIA Tensor Cores” [S91003]

2:00 – 2:50pm, Room 210A

TensorFlow: “Automated Mixed-Precision Tools for TensorFlow Training” [S91029]

3:00 – 3:50pm, Room 210A

31

OUTLINE

1. What is mixed precision training?

2. Considerations and methodology for mixed precision training

3. Automatic mixed precision

4. Performance guidelines and practical recommendations

32

DEBUGGING MIXED PRECISION
Notes and what to watch for

The “unreasonable effectiveness of gradient descent”

Bugs in code for mixed precision steps often manifest as slightly worse training accuracy

Be sure to follow good software engineering practices, especially testing

Common mistakes:

Gradients not unscaled correctly before weight update (AdaGrad / Adam will try to handle this!)

Gradient clipping or regularization improperly using scaled gradients

Incorrectly synchronizing master weight updates across multiple GPUs

Not running loss function in FP32

Highly recommend using automatic mixed precision tools

33

GETTING THE MOST FROM TENSOR CORES
Performance guidelines

Three levels of optimization to best use Tensor Cores:

1. Satisfy Tensor Core shape constraints

2. Increase arithmetic intensity

3. Decrease fraction of work in non-Tensor Core ops

34

GETTING THE MOST FROM TENSOR CORES
Satisfy Tensor Core shape constraints

Matrix multiplication:

All three dimensions (M, N, K) should be multiples of 8

Convolution:

Number of channels for input and output should be multiples of 8

Note: this isn’t always required. See https://devblogs.nvidia.com/tensor-ops-made-easier-in-cudnn/.

https://devblogs.nvidia.com/tensor-ops-made-easier-in-cudnn/

35

GETTING THE MOST FROM TENSOR CORES
Satisfy Tensor Core shape constraints

In practice:

Choose minibatch a multiple of 8

Choose layer dimensions to be multiples of 8

For classification problems, pad vocabulary to a multiple of 8

For sequence problems, pad sequence length to a multiple of 8

“Am I using Tensor Cores?”

cuBLAS and cuDNN are optimized for Tensor Cores, coverage is always increasing

Run with nvprof and look for “s[some digits]” in kernel name

Eg: volta_fp16_s884gemm_fp16_128x128_ldg8_f2f_nn

36

GETTING THE MOST FROM TENSOR CORES
Increase arithmetic intensity

Arithmetic intensity is the amount of math per byte of input data

Simple math for why we care about arithmetic intensity:

V100 GPU has 125TFLOPs math throughput, 900 GB/s memory bandwidth

If there are fewer than ~140 FLOPs per input byte, then memory bandwidth is limiting factor

As FLOPs/byte decreases below the threshold of ~140, Tensor Core acceleration decreases too

37

GETTING THE MOST FROM TENSOR CORES
Increase arithmetic intensity

Increase arithmetic intensity in model implementation:

Concatenate weights and gate activations in recurrent cells

Concatenate activations across time in sequence models

Increase arithmetic intensity in model architecture:

Prefer dense math (vanilla convolutions vs. depth separable convolutions)

Prefer wider layers – often little speed cost

Of course, always prefer accuracy first!

38

GETTING THE MOST FROM TENSOR CORES
Decrease non-Tensor Core work

If 50% of the training routine runs on Tensor Cores, then the maximum speedup is 2x, even
if Tensor Cores were infinitely fast

This is a simple consequence of Amdahl’s Law

Can speed up non-Tensor Core ops by hand

Custom CUDA op implementation + framework integration

Cutting-edge work on speeding up non-Tensor Core ops automatically with compiler tools

TensorFlow: XLA

PyTorch JIT

39

GETTING THE MOST FROM TENSOR CORES
Learn more

“Tensor Core Performance: The Ultimate Guide” [S9926]

Tomorrow (Mar. 19th), 3:00 – 3:50pm, Marriott Hotel Ballroom 4

40

RESOURCES

Model implementations, including mixed precision: https://developer.nvidia.com/deep-
learning-examples

Automatic mixed precision: https://developer.nvidia.com/automatic-mixed-precision

Reading:

“Mixed Precision Training” (ICLR 2018): https://arxiv.org/abs/1710.03740

Mixed precision guide: https://docs.nvidia.com/deeplearning/sdk/mixed-precision-
training/index.html

https://developer.nvidia.com/deep-learning-examples
https://developer.nvidia.com/automatic-mixed-precision
https://arxiv.org/abs/1710.03740
https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html

41

CONCLUSION

Mixed precision training is a general-purpose technique with tremendous benefits:

Math and memory speedups

Memory savings, enabling larger models (or minibatches)

Accuracy matches FP32 training across a wide range of models (all we have tried)

Significant speedups are common and getting more common with each new library release

Enabling mixed precision depends on a specific methodology:

Model conversion with special care for pointwise and reduction ops

Safe updates with master weights and loss scaling

Frameworks have support to fully automate the methodology

