
 Data2Vis

Victor Dibia
Research Engineer, Cloudera Fast Forward Labs

 March 21, 2019

Automatic Generation of Data
Visualizations Using
Sequence-to-Sequence
Recurrent Neural Networks.

Çağatay Demiralp
Megagon Labs

Why Automate Visualizations?

3

4

Hint: We want to augment users (new
capabilities, improved quality/speed).

Charts can make data more accessible
5

• Reduced cognitive load

• Effective and expressive

• Compared to tabular
representations of data ..

• Reduced cognitive load
• Effective and expressive

6

Creating visualizations is

EFFORTFUL.

Visualization authoring is effortful
7

• Generating hypothesis and questions
regarding data.

Hypothesis Visual Encoding Implementation (code)
 1 2 3

• Identifying appropriate visual encoding
strategies (chart type, data transformations
etc.) that support hypothesis.

• Writing code to implement visualizations

8

• Many (novice) users lack the skills to select
appropriate visual encodings and to write code
that implement visualizations.

• Automated approaches can help (augment)
with tasks 2 and 3.

Effective visual encoding and implementation can be
challenging for novice users.

Visualization authoring is effortful

Hypothesis Visual Encoding Implementation (code)
 1 2 3

More so ..
9

Visualization Recommendation
(CompassQL, Voyager 2, VizML)

Visualization Ranking
(VizDeck, Draco, Deep Eye)

• Existing approaches to automated viz are limited.

• Depend on heuristics and hand engineered
features which need to be manually updated.

• Does not leverage knowledge codified within
existing visualization examples.

A Scalable, learning based approach?
10

Data2Vis a (deep) learning based approach to automated visualization

Approach
• Formulate visualization authoring as a machine learning

problem.
• Identify data sampling strategies that enable training with

(limited) data
• Design metrics that enable evaluation of models
• Present a model that learns to map raw data to generated

visualizations.
• Declare that we have solved AGI.

Related Work

11

Automated Visualization Tools

12

Automated Visualization
13

Voyager2 Draco Deep Eye VizML

Recommend
visualizations based
on partial
specifications
provided by users.

Recommend
univariate and
bivariate plots
based on a set of
enumerated
heuristics.

Modeling
visualization
design
knowledge as a
collection of
constraints, learn
weights for soft
constraints from
experimental
data.

Uses learned
binary classifier +
learning to rank
algorithms to rank
visualizations as
“Good or Bad”
based on
examples.

Train a model to
predict parts of
visualization
specifications -
visual encoding
choices (x,y
axis) - using
hand
engineered
features.

Wongsuphasawat et
al 2016

Moritz et al 2018 Luo et al 2018 Hu et al 2018

Neural Synthesis Models

14

DNNs for Neural Synthesis
15

Sketch RNN (Ha et al, 2017)

DNNs for Neural Synthesis
16

Models that learn human-like creative
processes.

• SketchRNN: Generate Stroke based drawings
for common objects (Ha et al 2017)

• Text to image synthesis. (Reed et al 2016)

• Google Smart Compose and Smart Reply (Kannan
et al 2016)

Code Generation Models

17

DNNs for Code Generation
18

Models that learn to generate code.

• Domain Specific Language Translation (Yin et al
2017, Zhong et al, 2017)

• Natural Language to SQL (Dong & Lapata 2016, Zhong et al,
2017)

• TCG (trading card games) to Python and Java
Language specification. (Ling et al 2016)

Neural Machine Translation Models

19

DNNs for Machine Translation
20

• Family of Encoder-Decoder Models that learn
mappings from an input sequence to an output
sequence. (Britz et al 2017)

• Frequently referred to as Seq2Seq models, but
have applications for non-sequential problems
e.g. Image Captioning, Text Summarization, Code
Generation.

• Non-sequential applications are enabled by
Bi-Directional RNNs and Attention Mechanisms

DNNs for Machine Translation
21

BiDirectional RNNs

• Consists of both a forward RNN (reads input sequence

and calculates forward hidden states) and a backward RNN
(reads input sequence in reverse order and calculates backward hidden

states). (Shuster et al 1997).

• Generates an hidden state that is a
concatenation of both forward and backward
RNNs.

DNNs for Machine Translation
22

Attention Mechanism

Allows a model to focus on aspects of an input
sequence while generating output tokens

○ Makes translation models robust to
performance degradation while generating
lengthy sequences.

○ Enables the learning of mappings between
source and target sequences of different
lengths.

○ Allows for interpretability explorations.

Model

23

Problem Formulation
24

• Formulate as a neural translation problem (sequence to
sequence models).

• Learn mappings from raw data to visualization specification
in an End-to-End trainable task.

Data
Input data in JSON | { "country": "AUS", "il": "0.058” ..}

Visualization Specification
Vega Lite Spec | { ”y": {”field”:”gender”, ”type”: ..}

Model Input
25

Model Input

JSON Data
(Non-nested)

Data
Input data in JSON | { "country": "AUS", "il": "0.058” ..}

Visualization Specification
Vega Lite Spec | { ”y": {”field”:”gender”, ”type”: ..}

[{"Time":"152","size":"4.51","treat":"ozone","tree":"1"},{"Time":"174","si
ze":"4.98","treat":"ozone","tree":"1"},{"Time":"201","size":"5.41","treat":"
ozone","tree":"1"},{"Time":"227","size":"5.9","treat":"ozone","tree":"1"},{
"Time":"258","size":"6.15","treat":"ozone","tree":"1"},{"Time":"152","size
":"4.24","treat":"ozone","tree":"2"},{"Time":"174","size":"4.2","treat":"ozo
ne","tree":"2"},{"Time":"201","size":"4.68","treat":"ozone","tree":"2"},{"Ti
me":"227","size":"4.92","treat":"ozone","tree":"2"},{"Time":"258","size":"
4.96","treat":"ozone","tree":"2"},{"Time":"152","size":"3.98","treat":"ozo
ne","tree":"3"},{"Time":"174","size":"4.36","treat":"ozone","tree":"3"},{"Ti
me":"201","size":"4.79","treat":"ozone","tree":"3"},{"Time":"227","size":"
4.99","treat":"ozone","tree":"3"},{"Time":"258","size":"5.03","treat":"ozo
ne","tree":"3"},{"Time":"152","size":"4.36","treat":"ozone","tree":"4"}]

Model Output
26

Model Output

Vega Lite
JSON
specification.

Data
Input data in JSON | { "country": "AUS", "il": "0.058” ..}

Visualization Specification
Vega Lite Spec | { ”y": {”field”:”gender”, ”type”: ..}

Mapping
27

Data
Input data in JSON | { "country": "AUS", "il": "0.058” ..}

Visualization Specification
Vega Lite Spec | { ”y": {”field”:”gender”, ”type”: ..}

[{"Time":"1992","size":"4.51","tre
at":"ozone","tree":"1"}
…
…
...
,{"Time":"1993","size":"4.98","tre
at":"ozone","tree":"1"}]

{"encoding": {"detail": {"type":
"temporal", "timeUnit": "week",
"field": "Time"}, "x": {"type":
"quantitative", "field": "size",
"bin": true}, "y": {"aggregate":
"count", "field": "*", "type":
"quantitative"}}, "mark": "area"}

Training Data
28

• 4300 Vega Lite specifications based on 11
datasets generated using CompassQL (Poco et al 2017).

• CompassQL is based on
• Heuristics and rules which enumerate cluster

and rank visualizations according to known
data properties and perceptual considerations.

• Filtered manually to remove problematic
instances

• 1-3 variables per chart, multiple chart types.
• “MNIST” for automated visualization

experimenbts

Sampling strategy
29

• Repetitive sampling of datum to visualization.

• Training data is generated by sampling examples
• Training pair consists of single row from

dataset (JSON) and visualization specification
(JSON)

• 50 random pairs selected from each example
• Data normalized (replace field names with normalized

values e.g. str0, str1, num0, num1)
• 215k pairs after sampling

Training Data Pair
30

Data
Input data in JSON | { "country": "AUS", "il": "0.058” ..}

Visualization Specification
Vega Lite Spec | { ”y": {”field”:”gender”, ”type”: ..}

{"Time":"1993","size":"4.51","trea
t":"ozone","tree":"1"}

{"encoding": {"detail": {"type":
"temporal", "timeUnit": "week",
"field": "Time"}, "x": {"type":
"quantitative", "field": "size",
"bin": true}, "y": {"aggregate":
"count", "field": "*", "type":
"quantitative"}}, "mark": "area"}

Training Data Transformation
31

Data
Input data in JSON | { "country": "AUS", "il": "0.058” ..}

Visualization Specification
Vega Lite Spec | { ”y": {”field”:”gender”, ”type”: ..}

{"dt0":"152","num0":"4.51","str

0":"ozone","num1":"1"}

{"encoding": {"detail": {"type":
"temporal", "timeUnit": "week",

"field": "dt0"}, "x": {"type":

"quantitative", "field": "size",
"bin": true}, "y": {"aggregate":
"count", "field": "*", "type":
"quantitative"}}, "mark": "area"}

• We apply transformations to the data, replace
numeric, string and date fields with short forms
num0, str0, dt0.

Training Data Transformation
32

Data
Input data in JSON | { "country": "AUS", "il": "0.058” ..}

Visualization Specification
Vega Lite Spec | { ”y": {”field”:”gender”, ”type”: ..}

• We apply transformations to the data, replace
numeric, string and date fields with short forms
num0, str0, dt0.

• Transformation provides following benefits
• Reduce overall vocabulary size
• Prevent LSTMs from learning specific field names
• Reduce overall sequence length (faster training,

less memory)

Model
33

Encoder/Decoder Model Model based on architecture by Britz et al 2017

Model Training
34

• Character tokenization strategy
• Dropout Rate of 0.5
• Fixed learning rate (0.0001)
• Adam optimizer
• 20,000 steps
• Final log perplexity of 0.032
• Maximum seq length of 500

The training code is based on the Google
Seq2Seq implementation (Britz et al 2017)

35 © Cloudera, Inc. All rights
reserved.

CLOUDERA DATA SCIENCE WORKBENCH
Accelerate Machine Learning from Research to Production

For data scientists

• Experiment faster
Use R, Python, or Scala with on-demand
compute and secure CDH data access

• Work together
Share reproducible research with your
whole team

• Deploy with confidence
Get to production repeatably and
without recoding

For IT professionals

• Bring data science to the data
Give your data science team
more freedom while reducing the
risk and cost of silos

• Secure by default
Leverage common security and
governance across workloads

• Run anywhere
On-premises or in the cloud

Model Training
36

● Docker/Kubernetes based
● Analyze your data
● Train models (run, track, compare)
● Deploy APIs
● Multi tenant, collaborative, secure

Evaluation

37

Model Evaluation
38

• Diagnostic Metrics

• Language Syntax Validity
A measure of how well the model learns the rules of
the visualization language (JSON).
% of all generated examples that are valid JSON

• Grammar Syntax Validity
A measure of how well the model learns the
visualization grammar (Vega Lite).
% of all generated examples that compile in Vega Lite.

Beam Search Decoding
39

• Expands all possible
next steps and keeps
the k most likely,
where k is a
user-specified
parameter.

• We leverage beam
search in generating
diverse specifications
based on same data.

Qualitative Results
40

Model learns to generate multivariate and bivariate plots

Model is shown random data from the Rdataset collection not used in training.

Qualitative Results
41

Model learns to perform selections using categorical fields (yes/no, male/female,
state, country etc.)

Model is shown random data from the Rdataset collection not used in training.

Qualitative Results
42

Beam search decoding (k=15) generates diverse chart types (bar,
area, line)

Model is shown random data from the Rdataset collection not used in training.

Quantitative Evaluation
43

• Evaluation Metrics
• We train 3 models -

■ No attention (Bidirectional),
■ Attention (Unidirectional),
■ Attention (Bidirectional)

• Test each model with various values for beam width
k (5, 10, 15).

• Compute mean metric for 100 randomly selected
datasets from the Rdataset collection.

Quantitative Evaluation
44

- All models learn to generate valid JSON syntax.
- Bidrectional models perform better than unidirectional models on both

metrics on the average.
- Attention based models do significantly better on Grammar metric.
- Attention based BiDirectional Models (with beam width k=15) have the best

performance for generating valid “plotable” Vega Lite specifications.

• Evaluation Metrics
Beam width (k=5) Beam width (k=10) Beam width (k=15) Beam width (k=20)

No Attn Attn No Attn Attn No Attn Attn No Attn Attn

bi uni bi bi uni bi bi uni bi bi uni bi

Language
Validity 0.96 0.892 0.826 0.937 0.898 0.897 0.967 0.76 0.901 0.97 0.838 0.878

Grammar
Validity 0.304 0.772 0.824 0.487 0.898 0.897 0.628 0.696 0.902 0.63 0.813 0.878

Attention Plots
45

Example attention plots for a visualization generation case (a) Model learns to pay attention to field name
"str" in generating the "string" field type applied to the field. (b) Model learns to pay attention to the field
name "num0" and its value in specifying the "quantitative" field type applied to the field

Attention plots show the model learns to pay attention to input data in generating
aspects of visualization specification

Summary
46

• Limited Training Data
Our current dataset, while sufficient for
demonstrating the viability of our approach, has
limited coverage of real world use cases.

• Phantom Fields
In 10~20% of cases, the model generates
specifications with fields not in the
dataset. In practice we can detect this at runtime and keep exploring
beam search generation until valid specs are generated.

Evaluation

47

Limitations
48

• Training Data
Our current dataset, while sufficient for
demonstrating the viability of our approach, has
limited coverage of real world use cases.

• Conditioned Generation
Current model does not support conditioned
visualization generation.

• Phantom Fields
In 10~20% of cases, the model generates
specifications with fields not in the dataset. In
practice we can detect this at runtime and keep exploring beam search
generation until valid specs are generated.

49

• Ofcourse … there are failure cases!

Future Work
50

• Additional Data Collection.
Curating a more diverse dataset that enables training a more robust model.

• Extending Data2Vis to Generate Multiple Plausible
Visualizations.
Explore approaches (e.g. conditioned GANs or VAEs) to train a model that
generates multiple valid visualizations with specified conditions.

• Targeting Additional Grammars
Training models that map input data to multiple different visualization
specification languages (e.g. Vega, ggplot2, D3 etc.).

• Natural Language and Visualization Specification
Training models that generate visualizations based on natural language text
and input data.

• Browser deployment
Javascript library that provides fast generation in the browser.

Summary
51

Formulating data visualization as a sequence to
sequence problem works well. The following insights
were useful.

○ Transformations which scaffold the learning
process.

○ Bidirectional RNNs which significantly enable
learning complex non-sequential mappings.

○ Repetitive sampling and beam search
decoding for multiple visualization
generation.

Contributions
52

• Formulate automated visualization as a neural
translation problem (map data to visualization specifications)

• End-to-End trainable model for visualization
generation

• Training strategy (data generation,
transformations etc.)

• Metrics for evaluating End-to-End visualization
generation systems

• Sample code and demo

https://github.com/victordibia/data2vis

Code and Trained Model
53

Github:
https://github.com/victordibia
/data2vis

Paper:
https://arxiv.org/abs/1804.03126

Thanks.

54

Victor Dibia
victor.dibia@gmail.com

