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Why Automate Visualizations?
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Hint: We want to augment users (new 
capabilities, improved quality/speed).



Charts can make data more accessible
5

• Reduced cognitive load

• Effective and expressive

• Compared to tabular 
representations of data ..

• Reduced cognitive load
• Effective and expressive
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Creating visualizations is 

EFFORTFUL.



Visualization authoring is effortful
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• Generating hypothesis and questions 
regarding data.

Hypothesis Visual Encoding Implementation (code)
   1  2  3

• Identifying appropriate visual encoding 
strategies (chart type, data transformations 
etc.) that support hypothesis.

• Writing code to implement visualizations
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• Many (novice) users lack the skills to select 
appropriate visual encodings and to write code 
that implement visualizations.

• Automated approaches can help  (augment)  
with tasks 2 and 3.

Effective visual encoding and implementation can be 
challenging for novice users.

Visualization authoring is effortful

Hypothesis Visual Encoding Implementation (code)
   1  2  3



More so ..
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Visualization Recommendation
(CompassQL, Voyager 2, VizML)

Visualization Ranking
(VizDeck, Draco, Deep Eye)

• Existing approaches to automated viz are limited.

• Depend on heuristics and hand engineered 
features which need to be manually updated.

• Does not leverage knowledge codified within 
existing visualization examples.

 



A Scalable, learning based approach?
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Data2Vis a (deep) learning based approach to automated visualization

Approach
• Formulate visualization authoring as a machine learning 

problem.
• Identify data sampling strategies that enable training with 

(limited) data
• Design metrics that enable evaluation of models
• Present a model  that learns to map raw data to generated 

visualizations.
• Declare that we have solved AGI.



Related Work
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Automated Visualization Tools
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Automated Visualization
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Voyager2 Draco Deep Eye VizML

Recommend 
visualizations based 
on partial 
specifications 
provided by users.

Recommend 
univariate and 
bivariate plots 
based on a set of 
enumerated 
heuristics.

Modeling 
visualization 
design 
knowledge as a 
collection of 
constraints, learn 
weights for soft 
constraints from 
experimental 
data. 

Uses learned 
binary classifier + 
learning to rank 
algorithms to rank 
visualizations as 
“Good or Bad” 
based on 
examples.

Train a model to 
predict parts of 
visualization 
specifications -  
visual encoding 
choices (x,y 
axis) - using 
hand 
engineered 
features.

Wongsuphasawat  et 
al 2016

Moritz  et al 2018 Luo  et al 2018 Hu  et al 2018



Neural Synthesis Models
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DNNs for Neural Synthesis
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Sketch RNN (Ha et al, 2017 )



DNNs for Neural Synthesis
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Models that  learn human-like creative 
processes. 

• SketchRNN: Generate Stroke based drawings 
for common  objects (Ha et al 2017)

• Text to image synthesis. (Reed et al 2016)

• Google Smart Compose and Smart Reply  (Kannan 
et al 2016)

 



Code Generation Models
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DNNs for Code Generation
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Models that  learn to generate code. 

• Domain  Specific Language Translation (Yin et al 
2017, Zhong et al, 2017 )

• Natural Language to SQL (Dong & Lapata 2016, Zhong et al, 
2017 )

• TCG (trading card games)  to Python and Java 
Language specification. (Ling et al 2016)

 



Neural Machine Translation Models
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DNNs for Machine Translation
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• Family of Encoder-Decoder Models that learn 
mappings from an input sequence to an output 
sequence. (Britz et al 2017)

• Frequently referred to as Seq2Seq models, but 
have applications for non-sequential problems 
e.g. Image Captioning, Text Summarization, Code 
Generation.

• Non-sequential applications are enabled by 
Bi-Directional RNNs and Attention Mechanisms

 



DNNs for Machine Translation
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BiDirectional RNNs

• Consists of both a forward RNN (reads input sequence 

and calculates forward hidden states) and a backward RNN 
(reads input sequence in reverse order and calculates backward hidden 

states). (Shuster et al 1997).

• Generates an hidden state that is a 
concatenation of both forward and backward 
RNNs.



DNNs for Machine Translation
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Attention Mechanism

Allows a model to focus on aspects of an input 
sequence while generating output tokens

○ Makes translation models robust to 
performance degradation while generating 
lengthy sequences.

○ Enables the learning of mappings between 
source and target sequences of different 
lengths.

○ Allows for interpretability explorations.



Model
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Problem Formulation
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• Formulate as a neural translation problem (sequence to 
sequence models).

• Learn mappings from raw data to visualization specification 
in an End-to-End trainable task.

 

Data
Input data in JSON | { "country": "AUS", "il": "0.058” ..}

Visualization Specification
Vega Lite Spec  | { ”y": {”field”:”gender”, ”type”: ..}



Model Input
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Model Input

JSON Data
(Non-nested)

Data
Input data in JSON | { "country": "AUS", "il": "0.058” ..}

Visualization Specification
Vega Lite Spec  | { ”y": {”field”:”gender”, ”type”: ..}

[{"Time":"152","size":"4.51","treat":"ozone","tree":"1"},{"Time":"174","si
ze":"4.98","treat":"ozone","tree":"1"},{"Time":"201","size":"5.41","treat":"
ozone","tree":"1"},{"Time":"227","size":"5.9","treat":"ozone","tree":"1"},{
"Time":"258","size":"6.15","treat":"ozone","tree":"1"},{"Time":"152","size
":"4.24","treat":"ozone","tree":"2"},{"Time":"174","size":"4.2","treat":"ozo
ne","tree":"2"},{"Time":"201","size":"4.68","treat":"ozone","tree":"2"},{"Ti
me":"227","size":"4.92","treat":"ozone","tree":"2"},{"Time":"258","size":"
4.96","treat":"ozone","tree":"2"},{"Time":"152","size":"3.98","treat":"ozo
ne","tree":"3"},{"Time":"174","size":"4.36","treat":"ozone","tree":"3"},{"Ti
me":"201","size":"4.79","treat":"ozone","tree":"3"},{"Time":"227","size":"
4.99","treat":"ozone","tree":"3"},{"Time":"258","size":"5.03","treat":"ozo
ne","tree":"3"},{"Time":"152","size":"4.36","treat":"ozone","tree":"4"}]



Model Output
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Model Output

Vega Lite
JSON 
specification.

Data
Input data in JSON | { "country": "AUS", "il": "0.058” ..}

Visualization Specification
Vega Lite Spec  | { ”y": {”field”:”gender”, ”type”: ..}



Mapping
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Data
Input data in JSON | { "country": "AUS", "il": "0.058” ..}

Visualization Specification
Vega Lite Spec  | { ”y": {”field”:”gender”, ”type”: ..}

[{"Time":"1992","size":"4.51","tre
at":"ozone","tree":"1"}
…
…
...
,{"Time":"1993","size":"4.98","tre
at":"ozone","tree":"1"}]

{"encoding": {"detail": {"type": 
"temporal", "timeUnit": "week", 
"field": "Time"}, "x": {"type": 
"quantitative", "field": "size", 
"bin": true}, "y": {"aggregate": 
"count", "field": "*", "type": 
"quantitative"}}, "mark": "area"}



Training Data
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• 4300 Vega Lite specifications based on 11 
datasets generated using CompassQL (Poco et al 2017).

• CompassQL is based on 
• Heuristics and rules which enumerate cluster 

and rank visualizations according to known 
data properties and perceptual considerations.

• Filtered manually to remove problematic 
instances

• 1-3 variables per chart, multiple chart types.
• “MNIST” for automated visualization 

experimenbts



Sampling strategy
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• Repetitive sampling of datum to visualization.

• Training data is generated by sampling examples
• Training pair consists of single row from 

dataset (JSON) and visualization specification 
(JSON)

• 50 random pairs selected from each example
• Data normalized (replace field names with normalized 

values e.g. str0, str1, num0, num1)
• 215k pairs after sampling



Training Data Pair
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Data
Input data in JSON | { "country": "AUS", "il": "0.058” ..}

Visualization Specification
Vega Lite Spec  | { ”y": {”field”:”gender”, ”type”: ..}

{"Time":"1993","size":"4.51","trea
t":"ozone","tree":"1"}

{"encoding": {"detail": {"type": 
"temporal", "timeUnit": "week", 
"field": "Time"}, "x": {"type": 
"quantitative", "field": "size", 
"bin": true}, "y": {"aggregate": 
"count", "field": "*", "type": 
"quantitative"}}, "mark": "area"}



Training Data Transformation
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Data
Input data in JSON | { "country": "AUS", "il": "0.058” ..}

Visualization Specification
Vega Lite Spec  | { ”y": {”field”:”gender”, ”type”: ..}

{"dt0":"152","num0":"4.51","str

0":"ozone","num1":"1"}

{"encoding": {"detail": {"type": 
"temporal", "timeUnit": "week", 

"field": "dt0"}, "x": {"type": 

"quantitative", "field": "size", 
"bin": true}, "y": {"aggregate": 
"count", "field": "*", "type": 
"quantitative"}}, "mark": "area"}

• We apply transformations to the data, replace 
numeric, string and date fields with short forms 
num0, str0, dt0.



Training Data Transformation
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Data
Input data in JSON | { "country": "AUS", "il": "0.058” ..}

Visualization Specification
Vega Lite Spec  | { ”y": {”field”:”gender”, ”type”: ..}

• We apply transformations to the data, replace 
numeric, string and date fields with short forms 
num0, str0, dt0.

• Transformation  provides following benefits
• Reduce overall vocabulary size
• Prevent LSTMs from learning specific field names
• Reduce overall sequence length (faster training, 

less memory)



Model
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Encoder/Decoder Model Model based on architecture by Britz et al 2017



Model Training
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• Character tokenization strategy
• Dropout Rate of 0.5
• Fixed learning rate (0.0001)
• Adam optimizer
• 20,000 steps
• Final log perplexity of 0.032
• Maximum seq length of 500
 
The training code is based on the Google 
Seq2Seq implementation (Britz et al 2017)
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CLOUDERA DATA SCIENCE WORKBENCH
Accelerate Machine Learning from Research to Production

For data scientists

• Experiment faster
Use R, Python, or Scala with on-demand 
compute and secure CDH data access

• Work together 
Share reproducible research with your 
whole team

• Deploy with confidence
Get to production repeatably and 
without recoding

For IT professionals

• Bring data science to the data
Give your data science team 
more freedom while reducing the 
risk and cost of silos

• Secure by default 
Leverage common security and 
governance across workloads

• Run anywhere
On-premises or in the cloud



Model Training
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● Docker/Kubernetes based
● Analyze your data
● Train models (run, track, compare)
● Deploy APIs
● Multi tenant, collaborative, secure 



Evaluation
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Model Evaluation
38

• Diagnostic Metrics

• Language Syntax Validity 
A measure of how well the model learns the rules of 
the visualization language (JSON). 
% of all generated examples that are valid JSON

• Grammar Syntax Validity
A measure of how well the model learns the 
visualization grammar (Vega Lite).
% of all generated examples that compile in Vega Lite.



Beam Search Decoding
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• Expands all possible 
next steps and keeps 
the k most likely, 
where k is a 
user-specified 
parameter.

• We leverage beam 
search in generating 
diverse specifications 
based on same data.



Qualitative Results
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Model learns to generate multivariate and bivariate plots

Model is shown random data from the Rdataset collection not used in training.



Qualitative Results
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Model learns to perform selections using categorical fields (yes/no, male/female, 
state, country etc.)

Model is shown random data from the Rdataset collection not used in training.



Qualitative Results
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Beam search decoding (k=15) generates diverse chart types (bar, 
area, line)

Model is shown random data from the Rdataset collection not used in training.



Quantitative Evaluation
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• Evaluation Metrics
• We train 3 models - 

■ No attention (Bidirectional), 
■ Attention (Unidirectional), 
■ Attention (Bidirectional) 

• Test each model with various values for beam width 
k (5, 10, 15).

• Compute mean metric for 100 randomly selected 
datasets from the Rdataset collection.



Quantitative Evaluation
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- All models learn to generate valid JSON syntax.
- Bidrectional models perform better than unidirectional models on both 

metrics on the average.
- Attention based models do significantly better on Grammar metric.
- Attention based BiDirectional Models (with beam width k=15) have the best 

performance for generating valid “plotable” Vega Lite specifications.

• Evaluation Metrics
Beam width (k=5) Beam width (k=10) Beam width (k=15) Beam width (k=20)

No Attn Attn No Attn Attn No Attn Attn No Attn Attn

bi uni bi bi uni bi bi uni bi bi uni bi

Language 
Validity 0.96 0.892 0.826 0.937 0.898 0.897 0.967 0.76 0.901 0.97 0.838 0.878

Grammar 
Validity 0.304 0.772 0.824 0.487 0.898 0.897 0.628 0.696 0.902 0.63 0.813 0.878



Attention Plots
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Example attention plots for a visualization generation case (a) Model learns to pay attention to field name 
"str" in generating the "string" field type applied to the field. (b) Model learns to pay attention to the field 
name "num0" and its value in specifying the "quantitative" field type applied to the field

Attention plots show the model learns to pay attention to input data in generating 
aspects of visualization specification



Summary
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• Limited Training Data
Our current dataset, while sufficient for 
demonstrating the viability of our approach, has 
limited coverage of real world use cases.

• Phantom Fields
In 10~20% of cases, the model generates 
specifications with fields not in the 
dataset. In practice we can detect this at runtime and keep exploring 
beam search generation until valid specs are generated.



Evaluation
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Limitations
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• Training Data
Our current dataset, while sufficient for 
demonstrating the viability of our approach, has 
limited coverage of real world use cases.

• Conditioned Generation
Current model does not support conditioned 
visualization generation.

• Phantom Fields
In 10~20% of cases, the model generates 
specifications with fields not in the dataset. In 
practice we can detect this at runtime and keep exploring beam search 
generation until valid specs are generated.
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• Ofcourse … there are failure cases!



Future Work
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• Additional Data Collection.
Curating a more diverse dataset that enables training a more robust model.

• Extending Data2Vis to Generate Multiple Plausible 
Visualizations.
Explore approaches (e.g. conditioned GANs or VAEs) to train a model that 
generates multiple valid visualizations with specified conditions.

• Targeting Additional Grammars 
Training models that map input data to multiple different visualization 
specification languages (e.g. Vega, ggplot2, D3 etc.). 

• Natural Language and Visualization Specification
Training models that generate visualizations based on  natural language text 
and input data. 

• Browser deployment
Javascript library that provides fast generation in the browser.



Summary
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Formulating data visualization as a sequence to 
sequence problem works well. The following insights 
were useful.

○ Transformations which scaffold the learning 
process.

○ Bidirectional RNNs which significantly enable 
learning complex non-sequential mappings. 

○ Repetitive sampling and beam search 
decoding  for multiple visualization 
generation.



Contributions
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• Formulate automated visualization as a neural 
translation problem (map data to visualization specifications)

• End-to-End trainable model for visualization 
generation

• Training strategy (data generation, 
transformations etc.)

• Metrics for evaluating End-to-End visualization 
generation systems

• Sample code and demo

https://github.com/victordibia/data2vis



Code and Trained Model
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Github: 
https://github.com/victordibia
/data2vis

Paper:
https://arxiv.org/abs/1804.03126



Thanks.
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Victor Dibia
victor.dibia@gmail.com


