
Microsoft AI & Research

Keyword based
Search

Natural Language
Search

Voice, Vision

Context-Based
Search

Traditional IR

AUTB streams Inverted index

User Engagement

User clicks,
metawords

Inverted index

AI

Deep Learning Vectors

•

•

•

•

•

•

•

•

AI
Conversational
Search

•

•

•

•

 Key Challenges

Ideas

Experiments

Trained

models

Shipped

models

 Trade-offs – A Visual Taxonomy

“Maximum bar” metrics

Model latency

(milliseconds @ 99)

Cost of HW

($/ops)
Error rate

(1%)

Model footprint

Throughput

(@ given 99% latency)

Cost efficiency

(ops/$)
Model accuracy

(99%)

Model fit

“Minimum bar” metrics

Model latency

Cost of HW

Model error rate

Model latency

Cost of HW Model error rate

Latency

Cost of HW

Model error

rate

Latency

Cost of HW

Model

error rate

Model

error rate
Cost

Latency

 Cost to serve: BERT

 Model fit: Temporal/spatial breakdown: word-based RNNs

Case study: Typical word-based RNNs
- Hidden dimensions = ~100
- Input size = 100 (or more)
- Output size = 100
- Bi-directional
- Time steps = 100+ (one timestep per word in a

sentence/paragraph)

Problem:
- Native TensorFlow execution is slow

- 20K kernel invocations
- 5 us/invocation
- ~100 ms delay

- We need a custom implementation [1]
- TensorFlow custom op for RNN execution
- Collaboration with Nvidia

Diagram source: https://devblogs.nvidia.com/optimizing-recurrent-neural-networks-

cudnn-5

Model fit technique #1: Temporal/spatial
breakdown

[1] - S81039 – GTC 2018: Accelerating Machine Reading Comprehension Models Using GPUs

https://devblogs.nvidia.com/optimizing-recurrent-neural-networks-cudnn-5

cuDNN Blockpersistent

Batch
1 Batch 5 Batch 1 Batch 5

K80 9.30 6.52 1.77 1.87

M40 2.78 2.90 0.95 1.00

P4 0.25 1.06 0.68 0.72

- Time is averaged over back-to-back 100 iterations (different input data)
- 40 timesteps

1) For K80 and M40 we used CUDNN_RNN_ALGO_STANDARD, since grid persistent approach is supported
starting from Pascal.

2) For P4 we chose CUDNN_RNN_ALGO_PERSIST_STATIC, and it is more than 2x faster than block persistent.

Block-persistent RNNs results – joint collaboration with NVidia Latency

Cost of

HW
Model

accuracy

GRNN

0

0.5

1

1.5

2

2.5

3

1 5 10 15 20 25 30 35 40 45 50

La
te

n
cy

 (
m

s)

Batch Size

CharRNN

* GRNN: Low-Latency and Scalable RNN Inference on GPUs. Connor Holmes, Daniel Mawhirter,

Yuxiong He, Feng Yan, Bo Wu. To Appear @ Eurosys 2019.

0

2

4

6

8

10

12

14

16

18

20

0 10 20 30 40 50

La
te

n
cy

 (
m

s)

Batch Size

Text Classification

GRNN

cuDNN Persistent

cuDNN Traditional

/ TensorRT

 Model fit: Quantization: ELMO

• Case study: ELMO [1]
• Deep contextualized word representation that models

both (1) complex characteristics of word use (e.g., syntax
and semantics), and (2) how these uses vary across
linguistic contexts (i.e., to model polysemy).

• Characteristics
• Main block: Very large LSTM, 4-layer

• Hidden states = 4096

• Hard to fit in memory

• We can improve model fit through quantization
• Latency greatly improved

• We might need more expensive HW (INT8 support is
only in V100)

• Model accuracy suffers

Latency

Cost of HW

Model

error rate

[1] - https://allennlp.org/elmo

https://allennlp.org/elmo

Projection bi-LSTM from the last stage dominates the execution time

2 layer bi-LSTM, 512 input, 4096 hidden, 512 projection

Batch 1, 100 timesteps, takes about 70 ms on P40 in FP32 when using cuDNN

Reduce precision to INT8 to meet latency requirements

Custom implementation (Joint collaboration with Nvidia):

1) Single cuBLAS call per layer for input GEMMs for all timesteps (done in FP32)

2) Elementwise ops kernel in FP32

3) Custom MatVec kernel for recurrent part (at batch 1)

• Input / Output vectors are FP32

• Recurrent weights are quantized once

• All math is FP32, so older GPU architectures can be used as well

We choose conservative quantization approach, keep as much as possible in FP32

• Only hidden and projection weights are quantized, input weights and all bias are in FP32

• In the quantization scheme (e.g. https://arxiv.org/abs/1609.08144v2), each row has a separate scale factor

rowMax = max(abs(row))

scale = 127.0 / rowMax

quantRow = int(round(row * scale))

Results at batch 1

cuDNN FP32, ms Custom INT8, ms

P40, ECC ON 70.0 20.7

V100, ECC ON 41.9 11.9

https://arxiv.org/abs/1609.08144v2

