

GTC 2019 Mar 2019

San Jose, CA

Microsoft AI & Research

Using Deep Learning to Transform Internet Scale Web Searches

Guhan Suriyanarayanan, Principal Program Manager guhans@microsoft.com

Adi Oltean, Principal Software Engineer adi.oltean@microsoft.com

Agenda

- Introduction
- Key Challenges
- Trade-offs A Visual Taxonomy
- Case Studies
 - \cdot Cost to serve: BERT
 - Model fit: Temporal/spatial breakdown: word-based RNNs
 - Model fit: Quantization: ELMO

International PC share growth – Bing Network 2015 2018

United States	31.4%	34.7%
United Kingdom	17.6%	21%
France	11.3%	15.7%
(+) Canada	15.2%	20.8%
Australia	10.9%	15.4%
Germany	7.5%	20.7%

The Evolution of Search

Intelligent Answers

 what clothing do people wear in silicon valley

 Images
 Videos

 Maps
 News
 Shopping

 My saves

18,900,000 Results Any time 🔻

Silicon Valley, of course, is known for its casual dress, which means **t-shirts**, **jeans and sneakers**. But don't be fooled, techies care a lot more about fashion than they let on. Or put another way, there's a lot of code in the Silicon Valley dress code. In fact, engineer Alexey Komissarouk boasted he could tell if people were in tech and what they did by just looking at their dress.

Silicon Valley has a dress code? You better believe it www.marketplace.org/2014/01/28/tech/silicon-valley-has-dress-code-you-better-believe-it

Is this answer helpful? ו 🛑

Living rooms require three types of lighting: **ambient, task, and accent**. Ambient light provides a room with overall illumination, task lighting directs light to certain work zones, and accent lights highlight specific objects. Within those basic requirements are a world of options.

15 Beautiful Living Room Lighting Idea... www.thespruce.com/living-room-lighting-ideas ...

Feedback

11 Different Types of Living Room Lighting Ideas www.homestratosphere.com/types-of-living-roo...

Ceiling Fan with Light. One of the most popular ways to ...
Ceiling Lamps. Ceiling lamps

Visual Search

- Image similarity match
- Deep Learning vector encoding
- Approximate nearest neighborhood search
- Search in several hundred million images in a few milliseconds
- Significant improvement to image recall

Related images

Object Detection

what clothing do people wear in silicon valley

Q

0

Multiple Perspectives

		is kale bad for you	٥
All Images Videos Maps News	Shopping My saves	All Images Videos Maps	News Shopping My saves
Select one to refine your search		261,000 Results Any time 🔻	
Coffee Perspectives from the web		Kale Perspectives from the web	
You could burn more fat . Caffeine is found in almost every over-the- counter fat-burning supplement commercially available today. And for good reason. It's been shown to increase metabolism by 3 to 11 percent, and to increase the burning of fat from 10 to 29 percent, depending on your body type. 9 Surprising Reasons Why Coffee Is Really Good for Yo	earch Showing Harmful Effects of eine. More than 4 cups of coffee ed to early death. Caffeine sumption may raise blood ssure. Increased risk of heart tocks among young adults. eine linked to gout attacks. ast Tissue Cysts In Women. eine could cause incontinence. eine may cause insomnia. Harmful Effects of Caffeine ineinformer.com	Like spinach, kale contains oxalic acid which can be harmful if consumed to excess. If you are eating a lot of raw foods high in oxalic acid, adding kale to the mix might not be the best idea. On the other hand, kale's oxalic acid content is fairly low, so it is unlikely to be a problem in and of itself. 4 answers: Is eating raw kale bad for you? - Quora quora.com	Kale is the main ingredient in. the smoky kale chiffonade recipe. For a green, kale is unusually high in fiber This helps create the bulk you need to fill you up and to keep you full fo a good amount of time. Kale is also an excellent source of nutrients, especially vitamin A and calcium. Health Benefits of Kale - Kale HowStuffWorks home.howstuffworks.com

Entity Recognition

Segments

Speech

- Provides a very natural interaction model on mobile devices
- Uses Bing Speech API for Speech Recognition
- Uses Azure Neural TTS Service for Speech Synthesis

Slide from Keynote

What it Means for Each Al Model

Trade-offs between multiple priorities, all of which are important:

- Accuracy of Results
- Execution Latency
- Cost to Serve
- Time to Market

Agenda

- Introduction
- \cdot Key Challenges
- Trade-offs A Visual Taxonomy
- Case Studies
 - \cdot Cost to serve: BERT
 - Model fit: Temporal/spatial breakdown: word-based RNNs
 - Model fit: Quantization: ELMO

Challenge #1 – Model accuracy

- Bing relies on many models in production
 - \cdot Tracking their accuracy over time is a challenge
- Also what about versioning?
 - \cdot Newer models may perform very well on a certain class of queries
 - \cdot But perform poorly on a existing set of queries
- So you might need to keep both versions side-by-side
 - Model overlapping -> platform under-utilization?
- Sometimes the constraints of the latency can be met while slightly sacrificing accuracy
 - Example: quantization

Challenge #2: Latency

- Latency is tied directly with user experience
 - Slow service -> lost customers
 - \cdot Large-scale services can allow measuring DSAT to a very fine degree
 - \cdot Changing latency bar even by 50 ms has noticeable impact on engagement metrics
- Latency is challenging to keep under control in complex systems
 - \cdot An occasional "spike" (say 10% of cases) might be OK in a simple system
 - But in a complex system with unreliable components you will have constant perf degradation
- For this reason we measure latency at@ 99% or 99.9%
 - Quantified over a standard interval (ex: 5 min) or volume of requests (100K)

Challenge #2: Latency (cont.)

- Typical metrics
 - · Average (inverse of throughput in sequential systems)
 - 50% (not always the same as average)
 - 99% (most likely used to characterize performance)
 - 99.9% (useful to detect anomalies)
- Other metrics
 - Delta between 50% and 99% can be a measure of "spikiness"
 - Can be relative to the 50% or absolute value

Challenge #2: Latency (cont.)

- How to deal with spikiness at large scale?
 - Solution #1 = two servers
 - $\cdot\,$ Send the request to two machines
 - \cdot Pick the first one
 - \cdot Pros = fast, easy to implement. Cons = expensive (2x the cost0
 - Solution#2 = Cross-server cancellation
 - \cdot Send the request to one machine
 - \cdot Wait 1..2 ms for ack
 - · If not received, send the request to an additional server
 - \cdot Pick one of the two
 - Pros = much lower cost than solution #1. Cons = 1..2 ms added to the latency

Challenge #3: Cost to serve

- Depends on the hardware cost
 - Obviously, newer GPUs like Nvidia Tesla V100 have higher cost per GPU
 - \cdot But in some cases they might offer higher throughput
- Also depends on hardware utilization
 - \cdot Smaller GPUs like P4/T4 are "safer" to saturate
 - Larger GPUs like P40/P100 are more expensive and harder to utilize at 100%
 - Interference between separate tasks/inferences
 - · GPU saturation causes drop in performance, affecting many co-hosted models
 - It is harder to co-host models in a multi-tenancy fashion, but possible
 - MPS (Multi-processing extensions) introduced in V100
 - TensorRT Inference Server (allows sharing a CUDA context across multiple models)

Challenge #3: Cost to serve (cont.)

- Comparison across multiple HW platforms can be daunting
 - Solution strive for Apples-to-apples comparison
 - · Always use a meaningful metric such as ops/\$/hour
- Example: CPU versus GPU comparison
 - \cdot CPUs can be cheaper than GPUs
 - \cdot For a significant fraction of inference scenarios, CPUs are the right choice
 - $\cdot\,$ And there is nothing wrong with that
 - GPUs make sense <u>only</u> when inference latency in GPUs for the equivalent model is much faster
 - Example: if the target is 15 ms (already achievable on CPU) and GPUs are 2x more expensive then GPU inference needs to be at least 2..3x faster than CPU inference latency
 - You can still achieve the 15 ms target latency with room to spare (used in queuing requests)
 - \cdot Ops/\$ HW cost is still better since you need ½ or less GPU instances

Challenge #4: Shipping!

- Asymmetric distribution of effort vs. complexity
- It's easy to write and iterate small prototypes
 - Takes a lot of experimentation effort (training, etc)
 - · Many approaches are tried in parallel low effort
- Assuming you have some candidate models
 - Then more effort needed to optimize the model and ship it
 - But optimization/shipping takes time
 - What if it doesn't meet the bar? -> Wasted effort
 - \cdot The feedback loop isn't always clear
- How can we unblock the data scientists?

Model fit

- A common problem during shipping inference model is ensuring that the models are not bottlenecked by the memory architecture
 - Example: large weight/bias vectors that won't fit in "local" GPU memory
 - Can significantly slow down operations like GEMM, dot-product, etc.
- Solutions
 - Temporal breakdown of computational nodes in the graph
 - Separate computational graph into smaller operations that can individually execute much faster while minimizing DRAM access
 - Spatial breakdown
 - · Reorganize larger multiplication operations into groups of smaller operations
 - May even improve parallelism
 - Model quantization
 - Reduce precision of model parameters
- Bottom line: achieving "model fit" fast is critical for agility

Agenda

- Introduction
- Key Challenges
- Trade-offs A Visual Taxonomy
- Case Studies
 - Cost to serve: BERT
 - Model fit: Temporal/spatial breakdown: word-based RNNs
 - Model fit: Quantization: ELMO

Shipping tradeoffs - a visual taxonomy

Example 1: the ideal case

- Everything fits!
- There is at least one model that meets
 - Throughput/latency
 - \cdot Meets the shipping bar
 - Example: < 10 ms @ 99%
 - \cdot Cost efficiency
 - Allows serving traffic within budget
 - Accuracy
 - Better than previous models

Example 2: nothing fits

- No model that meets
 - Throughput/latency
 - \cdot Meets the shipping bar
 - Example: < 10 ms @ 99%
 - \cdot Cost efficiency
 - \cdot Allows serving traffic within budget
 - Accuracy
 - $\cdot\,$ Better than previous models

Example 3: Almost a good fit

• You can have any two out of three ...

Example 3: Almost a good fit (cont.)

- You can have any two out of three ...
- But what if you can tweak the system?
 - \cdot Use an older HW
 - · At a slight expense on latency

Example 3: Almost a good fit (cont.)

- You can have any two out of three ...
- But what if you can tweak the system?
 - \cdot Use an older HW
 - · At a slight expense on latency

Agenda

- Introduction
- Key Challenges
- Trade-offs A Visual Taxonomy
- Case Studies
 - \cdot Cost to serve: BERT
 - Model fit: Temporal/spatial breakdown: word-based RNNs
 - Model fit: Quantization: ELMO

Case study: BERT base: latency vs. HW type

- BERT-base based model
 - 12-layers
 - Input size = 20
 - Batch = 10
- HW
 - Nvidia Tesla M60
 - · Azure VM = Standard_NV6
 - Nvidia Tesla P40
 - · Azure VM = Standard_ND6
 - GTX 1070

Batch size 🖵

Sum of Latency

BERT base - ops/\$ vs. HW type

50

40

30

20

10

0

- BERT-base based model
 - 12-layers
 - \cdot Input size = 20
 - Batch = 5, 10, 20
- HW
 - Nvidia Tesla M60
 - · Azure VM = Standard NV6
 - Nvidia Tesla P40
 - · Azure VM = Standard_ND6
 - (Azure prices in US West 2)
- Conclusion
 - P40 more efficient for batch=5

Agenda

- Introduction
- Key Challenges
- Trade-offs A Visual Taxonomy
- Case Studies
 - Cost to serve: BERT
 - · Model fit: Temporal/spatial breakdown: word-based RNNs
 - Model fit: Quantization: ELMO

Model fit technique #1: Temporal/spatial breakdown

Diagram source: <u>https://devblogs.nvidia.com/optimizing-recurrent-neural-networks-</u> <u>cudnn-5</u>

Case study: Typical word-based RNNs

- Hidden dimensions = ~100
- Input size = 100 (or more)
- Output size = 100
- Bi-directional
- Time steps = 100+ (one timestep per word in a sentence/paragraph)

Problem:

- Native TensorFlow execution is slow
 - 20K kernel invocations
 - 5 us/invocation
 - ~100 ms delay
- We need a custom implementation [1]
 - TensorFlow custom op for RNN execution
 - Collaboration with Nvidia

[1] - S81039 – GTC 2018: Accelerating Machine Reading Comprehension Models Using GPUs

Block-persistent RNNs – perf results

- Time is averaged over back-to-back 100 iterations (different input data)

- 40 timesteps

- 1) For K80 and M40 we used CUDNN_RNN_ALGO_STANDARD, since grid persistent approach is supported starting from Pascal.
- 2) For P4 we chose CUDNN_RNN_ALGO_PERSIST_STATIC, and it is more than 2x faster than block persistent.

Block-persistent RNNs results – joint collaboration with NVidia

	cuDNN		Blockpersistent	
	Batch 1	Batch 5	Batch 1	Batch 5
K80	9.30	6.52	1.77	1.87
M40	2.78	2.90	0.95	1.00
P4	0.25	1.06	0.68	0.72

GPU Inference Optimization - GRNN

* GRNN: Low-Latency and Scalable RNN Inference on GPUs. Connor Holmes, Daniel Mawhirter, Yuxiong He, Feng Yan, Bo Wu. To Appear @ Eurosys 2019.

Agenda

- Introduction
- Key Challenges
- Trade-offs A Visual Taxonomy
- Case Studies
 - Cost to serve: BERT
 - Model fit: Temporal/spatial breakdown: word-based RNNs
 - \cdot Model fit: Quantization: ELMO

Model fitting technique #2: quantization

- Case study: ELMO [1]
 - Deep contextualized word representation that models both (1) complex characteristics of word use (e.g., syntax and semantics), and (2) how these uses vary across linguistic contexts (i.e., to model polysemy).
- Characteristics
 - Main block: Very large LSTM, 4-layer
 - Hidden states = 4096
 - Hard to fit in memory
- We can improve model fit through quantization
 - Latency greatly improved
 - We might need more expensive HW (INT8 support is only in V100)
 - Model accuracy suffers
- [1] <u>https://allennlp.org/elmo</u>

ELMO - INT8 quantization details

Projection bi-LSTM from the last stage dominates the execution time 2 layer bi-LSTM, 512 input, 4096 hidden, 512 projection

Batch 1, 100 timesteps, takes about 70 ms on P40 in FP32 when using cuDNN

Reduce precision to INT8 to meet latency requirements

We choose conservative quantization approach, keep as much as possible in FP32

Custom implementation (Joint collaboration with Nvidia):

- 1) Single cuBLAS call per layer for input GEMMs for all timesteps (done in FP32)
- 2) Elementwise ops kernel in FP32
- 3) Custom MatVec kernel for recurrent part (at batch 1)
 - Input / Output vectors are FP32
 - Recurrent weights are quantized once
 - All math is FP32, so older GPU architectures can be used as well

ELMO - INT8 - Results

- Only hidden and projection weights are quantized, input weights and all bias are in FP32
- In the quantization scheme (e.g. <u>https://arxiv.org/abs/1609.08144v2</u>), each row has a separate scale factor rowMax = max(abs(row)) scale = 127.0 / rowMax quantRow = int(round(row * scale))

Results at batch 1

	cuDNN FP32, ms	Custom INT8, ms
P40, ECC ON	70.0	20.7
V100, ECC ON	41.9	11.9

Conclusions

- Complex engineering tradeoffs when shipping models in production
- Use proper metrics when deciding inference platform
 - Ops/\$/hour
 - \cdot Hardware acceleration choices (CPU vs. GPU, choice of HW)
- Achieving model fit is critical for agility
 - Custom ops: Temporal/spatial breakdown
 - \cdot Quantization

Guhan Suriyanarayanan, guhans@microsoft.com Adi Oltean, adi.oltean@microsoft.com

Please don't forget to rate our talk!

Thank You

