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Outline

1. Need for image interpretation beyond image
classification

2. Integrating multiple data types with images

3. Making Al clinical predictions and providing
explanation

4. Evaluation of Al algorithms
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Outline

1. Need for image interpretation beyond image
classification
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Deep learning: Image classification

« High-level abstractions of image features hierarchical, non-linear
transformations

« Higher-level features (layers) are defined from lower-level ones, and
represent higher levels of abstraction

* Most suitable for classification problems
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Image classification in medical imaging

“Benign or cancer lesion?”

Stanford University
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There are other important medical
needs beyond image classification...
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Key medical applications beyond
classification

Disease detection
Lesion segmentation
Treatment selection

Response assessment

o &~ w b Pk

Clinical prediction (of response or future
disease)

Stanford University



People (and their diseases) differ...
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“Precision Medicine”

« Patient care often lacks specificity
(“One size fits all” does not usually
apply in medicine)

* There are “subtypes” of disease
(e.g., many types of “breast cancer” needing
specific therapy for each type)

* Precise diagnoses based on “electronic
phenotyping” and molecular profiling enables
treatments that are tailored to unique
characteristics of each patient

* Requires accurate methods of prediction based
on disease phenotypes

> Key opportunity for Big Data and Al methods

Stanford University
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Prediction

« Disease in patients evolves over time (longitudinally)

Sum of Vaximum Lesion Diameters Over Time
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- Patient data (images and text reports/notes) are acquired longitudinally

 We need prediction models need to account for longitudinal data
inputs

Stanford University
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Progression of age related macular
degeneration eye disease

 AMD changes over time
« Some patients progress to wet AMD
« The time to AMD progression is unpredictable
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Prediction model (RNN)

Many-to-many RNN using two-layer one-directional stacked stateful Long
short-term memory (LSTM)

Long-term memory during training encodes information about entire
temporal visit sequence

Short-term memory passes immediate state between successive nodes
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“Precision Health”

« A paradigm shift, focusing on prediction and
prevention, rather than relying exclusively on
diagnosis and treatment of existing disease

* Prevents or forestalls the development of disease

* Reduces costs and morbidity and improves patient
care

* Requires accurate methods of prediction based on
monitoring people’s health status

» Key opportunity for Big Data and Al methods

Stanford University
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Deep learning for predicting future cancer risk

Image texture feature maps preserve discriminative spatially-dependent features
and augment data in multi-channel CNN
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Performance (ROC) of different approaches
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Explosion in electronically-accessible medical records
data provides opportunity to learn models to help with
these prediction problems

Stanford University



Growth in electronic patient data
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Source: https://www.healthit.gov/sites/default/files/data-brief/2014HospitalAdoptionDataBrief. pdf
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Outline

2. Integrating multiple data types with images
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Integrating various types of data (e.g., images +
clinical notes) Is needed

Computerized model:

Disease detection 4

Diagnosis

Treatment response - "“ (! ’f‘)
evaluation

Clinical prediction
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Dealing with narrative text — feature
generation

Pathology, radiology report and clinical notes

1. Rule-based and dictionary-based information
extraction

2. Bag of word based methods
Statistical methods
4. Word embeddings - Word2Vec, GolVe

Lo

Stanford University
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ldentifying core terms from unstructured
narrative text

10 4 Sinus-related terms

sinus, sinuses, sinusitis,
sphenoid_sinus,
right_maxillary_sinus,
maxillary_sinuses,
sphenoid_sinuses,
left_maxillary_sinus

Pharynx-related terms
e~ pharynx, hypopharynx,
oropharynx, nasopharynx,
trachea, larynx

Suture-related terms
sutures, suture, synostosis,

"10 1 lambdoid, sagittal, coronal

Word embedding using deep Iearhing (4,442 words)
projected in two dimensions

Unsupervised deep learning algorithms can discover annotation from
texts without the need of supplying specific domain knowledge

Stanford University
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Word embedding + classification model

« Stores each word in as a point in space, where it is represented by a
vector of fixed number of dimensions.

» Unsupervised, built just by reading huge corpus

« Can be used as features to train a supervised model with a small
subset of annotation
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Word embedding Document classification
Mikolov, Distributed representations of words and phrases and
their compositionality Stanford University
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Outline

3. Making Al clinical predictions and providing
explanation
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Objective

= Create a dynamic model that takes as input
longitudinal visit data ordered according to the date of
VISItS.

= Computes as output a probability of future clinical
events for each visit considering the current and all the
historic time points.

? I Output:Prediction
I
Model: Analyse current and historic

] visit data

[

1

{ - em wmm 000 8 g\

| I Input: Visit data

l /' Ordered based on time stamp

N-

Visit note t1 Visit note Visit note Visit note
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Under-utilization of NLP in EHR-based research

—#— ¢lectronic health records  —#— natural language processing
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Number of Publications

The number of natural language processing (NLP)-related articles compared to the number of electronic
health record (EHR) articles from 2002 through 2015

Yanshan Wang et. al., Clinical information extraction applications: A literature review, JBI 2018

Stanford University
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Challenges

HISTORY: This 69-year-old male returns today immediately upon completion of his renal/bladder ultrasound scan in MMC X-Ray
Department. The patient had presented to this office one week ago (XX) with acute onset of lower urinary tractsymptoms including
nocturia x 5, weakness of his urinary flow and a sensation of incomplete bladder emptying. However, during the course of the nextfew
days, his symptoms gradually resolved. The patient is now relatively asymptomatic from the urologic standpoint having returned to his
baseline.  Preliminary report concerning his renal/bladder ultrasound scan indicates continued presence of a hypoechogenic focus
within the upper pole of the right kidney unchanged from his previous exam in February of this year. Initial bladder volume then was
626 cc with postvoid residual of 104 cc. Today initial bladder volume is 572 cc with postvoid residual of 197 cc. Prostate volume was
estimated at 24 cc (February 20XX), increased to 33 cc (today). The patient has been taking Proscar 5 mgdaily since July XX.
Laboratoryresults include urinalysis with 1-5 RBCs/HPF, 0-rare WBCs/HPF, hemostix "trace" positive, and leukocyte esterase "negative."
Urine culture showed "no growth" on thatdate. GU EXAM: Trim, generally healthy appearing male with normal, circumcised penis,
adequate meatus. Testes aresomewhat atrophic and descended bilaterally. Digital rectal exam reveals a prostate gland which is not
particularly enlarged (1-2+ enlarged at most), rubbery consistency compressible throughout with smooth surface, intact superior and
lateral marginsand shallow median groovepresent. There is no gross nodularity or asymmetry present.  IMPRESSION: Acute onset
of lower urinary tract symptoms one week ago which proved to be transitory andresolved spontaneously. Urinalysis and urine culture
failed to indicate any evidence of urinaryinfection asthe underlying cause of this problem. However, the patient is noted to have
rather significant postvoid residual urine (104 ccin February this year and 197 cctoday). The prostate gland is modestly enlarged (24 cc
in February, 33 cctoday) despite ongoing Proscar therapy. However, itis likely the prostate gland would be considerably more
enlarged and the patient more consistently symptomatic (urinary outflow obstructive symptoms (had he not been on Proscar during
the pastfive years. PLAN: As the patient's lower urinarytractsymptoms have resolved for the most part, it was elected to merely
follow him along conservatively for the time being. If the patient develops recurrence of lower urinary tract symptoms, particularly
urinary outflow obstructive symptoms, then further urologic intervention may be considered including TUR prostate ifindicated. The
patient will keep us posted concerning his urologic status.

1. How to extracttherelevantsentences?

2. How to determinesentiment of the sentence towards a targeted task?

3. How to label thefull notes when multiple sentences reflect different
sentiments?

4

Stanford University




adequatetorule  and possible

against and probable
declined cannotexclude
declines cannotr/o
demonstrateno chance

could lead

Semantic dictionary generation

Report Semanticdictionary Neural word Context-aware visit
condenser mapping embedding vector creation

Unsupervised embedding of reports

Input: Corpus of radiology reports Output: Vector representation of reports
Copyright © Stanford University 2019




Ontocrawler: generation of domain dictionary

= Createdan ontology crawler using SPARQL that grabs the sub-classes and
synonyms of the domain-specific terms from NCBO bio-portal.
» Generate a focuseddictionary for each domain of radiology.

Key terms 0 Domain-specific dictionary
) — !
0 —
. —
JQ, | /(‘j ID y |
/., —>| Ontocrawler L —
6 o 6 b o ©
o o 0o O 0 Y
‘_\\ ’ \ __f'! \ .‘I‘ -
O b q O O b _ : © Key terms
::, \ ’ \ ,’f j..f
d. O O b O O O Seleted class
— i Not Seleted
Ontology in Bioportal: Subtree selection O

selected by ID

« {‘apoplexy’, ‘contusion’, ‘hematoma’, ...} = ‘hemorrhage’

Stanford University
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Context-depe

nded document vector creation

Radiology impression:

1. Removal of right frontal subdural drain. Stable right subdural hematoma layering along the tentorium and
posterior falx, and stable minimal leftward midline shift. 2. Paranasal sinus disease.
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Application of IWE

CT reports —

- Banerjee |, Madhavan S, Goldman RE, Rubin DL. Intelligent Word Embeddings of
Free-Text Radiology Reports. AMIA Annual Symposium 2017

 Banerjee |, Chen MC, Lungren MP, Rubin DL. Radiology Report Annotation using
Intelligent Word Embeddings. Journal of Biomedical Informatics November 2017

* Banerjee I. et. al., Comparative Effectiveness of Convolutional Neural Network
(CNN) and Recurrent Neural Network (RNN) Architectures for Radiology Text Report
Classification, Journal of Artificial Intelligence in Medicine, 2018.

Mammograms —

 Imon Banerjee, Selen Bozkurt, Emel Alkim, Daniel L. Rubin, Automatic Inference of
BIRADS Final Assessment Categories from Narrative Mammography Report
Findings, Journal of Biomedical Informatics, (in press).

Ultrasound

* Imon Banerjee, Hailey H. Choi, Terry Desser, and Daniel L. Rubin. "A Scalable
Machine Learning Approach for Inferring Probabilistic US-LI-RADS Categorization." ,
AMIA Annual Symposium (2018).

« 2 papers in RSNA 2018

Multiple clinical narratives

« Imon Banerjee, Kevin Li, ..., James D. Brooks, Daniel L. Rubin, Tina Hernandez-
Boussard, Weakly supervised natural language processing for assessing treatment-
related side effects following prostate cancer treatment, JAMIA Open, 2019.

* Manuscript submitted to Journal of Clinical oncology

Stanford University
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Study 1: Prognostic Estimates of Survival
In Metastatic Cancer Patients (only notes)

= Only in United States around 500,000 patients develop metastatic cancer
every yeatr.

= Several studies have shown overutilization of aggressive medical
interventions and protracted radiation treatment in patients close to the end
of life.

= |nability to accurately estimate patient life expectancy likely explains why
physicians tend to choose overly-aggressive treatments for some patients.

= Leads to increased morbidity and healthcare costs, while other patients
may be under-treated and denied access to effective treatments that could
reduce symptoms or even extend survival.

A robust ML model that predicts patient survival would have major impact on the quality of
careand quality of lifein metastatic cancer patients.

Banerjee |, Gensheimer MF, Wood DJ, Henry S, Chang D, Rubin DL. Probabilistic Prognostic Estimates of Survival in
Metastatic Cancer Patients (PPES-Met) Utilizing Free-Text Clinical Narratives. Nature Scientific Reports

Stanford University
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PPES-Met model

Survival Survival Survival Survival
prediction prediction prediction prediction
PR ek, selemirtenertetiories, it b, Selerlerleeelerenterelersinloeelermiemtes TIEETA
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Dataset used In the study

Characteristic

No. of patients

Metastatic cancer database

(MetDB)
13,523

Palliative radiation dataset

(PrDB)
899

1400

Age 61.5 (IQR51.2 - 70.5) 65.0 (IQR55.8 - 72.2)

Sex M: 6621 (49%); M: 460 (51.1%);
F:6902 (51%) F:439 (48.9%)

Primary site Breast: 1493 (11.0%) Breast: 141 (15.7%)
Endocrine: 211 (1.6%) Endocrine: 0 (0%)
Gastrointestinal: 3575 Gastrointestinal: 145 (16.1%)
(26.4%) Genitourinary:1504  Genitourinary:112 (12.5%)
(11.1%) Gynecologic: 849 Gynecologic:50 (5.6%)
(6.3%) Head and neck: 57 (6.3%)
Head and neck: 506 (3.7%) Skin: 122 (13.6%)
Skin: 453 (3.3%) Thorax:252 (28.0%)
Thorax:2178(16.1%) Other/Multiple/Unknown: 20
Other/Multiple/Unknown: (2.2%)
2754 (20.4%)

Note types

Oncology notes, progress notes, radiology reports,discharge

summary, nursing notes, critical care notes

Copyright © Stanford University 2019
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Survival data - challenges

e—es Actual survival - binary label
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Patient 4: No death info - long follow up
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Training and Evaluation

Model training and validation on MetDB

model accuracy

10

: Category 1: “Survival - positive” stands for survival
PI/ up to 3months starting from the current visit date;
08}

Category 2: “Survival - negative” flagged the non-

Training: 10,293 survival;

patients;
Validation: Category 3: “Zero padding” padded each input

1,938 patients; sequences when is shorter than 1000 and truncated
the historic visits when sequence is longer than
1000

accuracy
o
o

e
=

0.2

— Train
— Valid

0.0F

epoch

Model evaluation: dual strategy

Test: 1818
patients;
899 from PrDB +
919 Randomly
selected from
MetDB

1. Quantitative: measure the overall prognosis estimation accuracy
using the standard statistical metrics

2. Qualitative: evaluate the patient-level performance and perform error
analysis with intelligible longitudinal graph summary for
understanding the basis of prediction.

Stanford University

Copyright © Stanford University 2019



Results: Quantitative Evaluation on PrDB

Tested on 1818 patients with multiple visits

ROC curve: AUC=0.89

1.0 I I 10}
08¢ 08l
@
I
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2 0.6 208
= 2
i G
ks 8
g 0.4} o
= Breast, AUC= 0.92
- Gynecologic, AUC= 0.90
.’ Skin, AUC= 0.90
. - | : e - - Gastrointestinal, AUC= 0.89
02 Py — >3 months survival 028 e - - Endocrine, AUC= 0.88 |
P — < 3 months survival I Other/Unknown/Multiple site, AUC= 0.87
e _ L. L7 - - Genitourinary, AUC= 0.86
Pis Random Prediction — Head and neck, AUC= 0.82
0. UD.D D.IZ D.Id D.IG DTS 10 o -- Randf)m Prediction .
False Positive Rate 00 02 04 Lo 08 08 Lo
1-Specificity
Overall ROCAUC for predicting 3 mo. survival - ROC based multiple primary site
0.89; Confidence interval [0.884 -0.897]
Stanford University
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Results: Quantitative Evaluation on PrDB

Tested on 1818 patients with different primary sites

Survival - negative

% getting no
therapy
62%

7

:

Predicted probability of sunaval
;

5

coo%

Suraval negative

w Mean Probabikty of survwal gettng no therapy =Mean Probability of survival: getting therapy

Comparingwith systematictherapy:
Shows model’s prediction outperformed oncologist’s
expectation of survivaland cancontribute in treatment planning

Stanford University
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Results: Qualitative Evaluation on PrDB

Patient-level performance analysis
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Hover & discover

T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T

12 || *™= Actual survival - binary label
&—& Predicted survival - probability value

5 10 ]
= Diagnosis note: _ _Progress note:
| o Rectal adenocarcinoma Doing well, without complaints
a metastatic to liver Progress note:
£ 0.8 completing radiation, neéds fpllowup
c Oncologist notet:
(@] request CT scans
S Ultrasound finding:
m 0.6 evidence of occlusion bilateral POPv's
g oo ]
) _Critical care note: urgent hospitalization
. Fatigued, poor PO intake
-‘_: _Critical care note:
'_a 04} Hypotension, syncope, massive bilateral PE i
2
() Critical care note:
Ct septic physiology, malignancy in rectum,
sigmoid, likely prostate Transfer note:
0.2 - transfer to floor Treatment note: ]

Critic3al care note:
no jmprovement

0.0 L

dizzy, discharge next day
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No. of days since the firs{ visit

Period of hospitalization

Intelligible longitudinal survival curve of a patient
Stanford University
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Study 2. Prognosis of AMD Disease using
SD-OCT Imaging Biomarkers

(Image + demograhics)

« Age-related macular degeneration (AMD) is the leading cause of
visual loss

* Prediction of AMD progression may allow potential earlier
treatment and better clinical outcomes.

« Most recent machine learning studies utilized genetic information
and predicted the risk of AMD with high accuracy

« However, studied mainly in populations of European ancestry and
predicted long-term AMD progression (>5-years).

* Image-based prediction models also showed success, but limited
by mostly not considering dependencies of longitudinal visit data.

https://arxiv.org/abs/1902.10700

Stanford University
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Objective

« Develop a sequential deep learning technique that can consider
longitudinal visit data — SD-OCT images features and
demographics

* Predict AMD progression using varying number of visit data with
irregular time interval

« Short-term prediction: 3-months, 6-months, 9-months

« Long-term prediction: 12-months, 15-months, 18-months, 21-
months

Stanford University
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Conceptual model

- -
- L I

visit@t, visit@t, visit@t; Input

For a single patient: Patient XXXX

Probabilistic prediction@t,

3-months

Probability of
progression

Probability of non-
progression

Interpretation

Less risk

18-months

21-months

Medium risk

High risk

Absolute certain

Qutput

Deep learning sequential model

Stanford University
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Dataset

HARBOR trial (ClinicalTrials.gov identifier: NCT00891735)
Patients had monthly evaluations with SD-OCT

Demographic Description All fellow | Progressors Non-
Feature eyes (N=149) progressors 12000
(N=671) (N=522)

Age Age of the patient in months at 78.2(8.3) 79.5(7.7) 77.8(8.4) 10000 —

baseline mean (std)
Gender Patient gender: Male/Female % 40.4/59.6% | 30.2/ 43.3/56.7% E 8000

69.8% g

Race Patient Ethnicity: American or | 0.3/1.6/0.4|0/0.7/0/ |0.4/1.9/ 0.6/ 20 T 0eet

Alaska native / Asian / Black or | /96.9/0.3/ | 98.7/0.7/ |96.4/0.2/0% 3 D 1t

African American / White/ Native | 0% 0% 5 2000 — oE

Hawaiian or Pacific Islander / 3938

Multiracial 2424

2000 o e 1039 ——
Smoking Smoking status: Non-smoker / 41.0/48.4/ |38.9/47.0/ | 41.6/48.8/ . [ [ | - -
i 0, 0, 0,

status Previous smoker / Current smoker | 10.6 % 14.1% 9.6 % , 695 |5 = ﬁ ﬁ “
Visual ACUity Visual acuity at baseline of 76.07 76.91 (9.31) 75.83 (13.96) 3 months 6 months 9 months 12 months 15 months 16 months 21 months

observation measured in LogMAR | (13.07) = Number of progressors = Number of non-progressors

scale

: : : Counts of observations
Demographicconsideredin our

analysis

Stanford University
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Extraction of imaging biomarkers

« Each OCT volume was processed using proprietary Cirrus
Review Software and a previously published pipeline?

« 21 imaging features describing presence, number, extent, density
and relative reflectivity of drusen were extracted

3-D Surface View Topographic View B-scan View

Drusen Height

Reflectivity
inside drusen

OCT image processing pipeline - overview

1de Sisternes, Luis, etal. "Quantitative SD-OCT imaging biomarkers as indicatorsof age-related macular degeneration progression." Investigative ophthalmology & visual science
55.11(2014): 7093-7103.

Stanford University
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Deep sequential model - RNN

« Designed a many-to-many RNN model using two-layer one-directional stacked
stateful Long short-term memory (LSTM)

* Long-term memory allows slow weight updates during training and encodes
general information about the whole temporal visit sequence

« Short-term memory has ephemeral activation and passes immediate state
between successive nodes for resetting itself if a fatal condition is
encountered.

( Prediction@T1 ( Prediction@T2 J [ Prediction@T3 J ( Prediction@Tn J
— i 3 i 3 S
e, e ™ e, e ) -

LSTM(20) LSTM(20) »  ISTM(20) |------ —  1STM(20)

_ J \ J
N S P S S i — %
LSTM(50) " stMeso) L e, N A— —  LSTM(50)
L J \ J
—F T T - S—
HEE BB BEE BEE BEEE RN HEE EEN

Demographic  Quantitative image Demographic  Quantitative image Demographic  Quantitative image Demographic  Quantitative image
| features features J\__features features J\__features features ] |__features features ]

Feature vector@ T1 Feature vector@ T2 Feature vector@ T3 Feature vector@ Tn

Deep sequential model: architecture , ,
Stanford University
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Short-term prediction — Comparison

Evaluated on a 10-fold cross validation setting where the original sample
(13,954 time points of total 671 patients)

Random Forest: 0.64+/-0.06 AUC Deep Sequence: 0.96+/-0.02

0.8 0.8
2 0.6 2 0.6
3 3
&
ROC fold 1 (AUC = 0.56) il . ROC fold 1 (AUC = 0.95)
£ 04 ROC fold 2 (AUC = 0.64) £ 0.4 . ROC fold 2 (AUC = 0.98)
ROC fold 3 (AUC = 0.72) e ROC fold 3 (AUC = 0.98)
ROC fold 4 (AUC = 0.66) -~ ROC fold 4 (AUC = 0,97)
ROC fold 5 (AUC = 0.70) s ROC fold 5 (AUC = 0.97)
ROC fold 6 (AUC = 0.60) e ROC fold 6 (AUC = 0.98)
024 ROC fold 7 (AUC = 0.59) 02 ] - ROC fold 7 (AUC = 0.91)
ROC fold 8 (AUC = 0.58) g ROC fold & (AUC = 0.94)
ROC fold 9 (AUC = 0.77) e ROC fold 9 (AUC = 0.98)
ROC fold 10 (AUC = 0.63) L ROC fold 10 (AUC = 0.95)
= Random prediction i == Random prediction
S — 0C (AU 0.06) . —— Mean ROC (AUC = 0.96 + 0.02)
+ 1 std. dev 0.0 v + 1 std. dev.
0.0 0.2 0.4 0.6 0.8 1.0 o 02 04 06 08 10

False Positiv

10-fold cross validation ROC curves: 3-months prediction

AUC-ROC 10-fold Cross-validation

Random Forest Deep Sequence

6-months 0.63+/-0.05 0.83+/-0.04
9-months 0.62+/-0.06 0.79+/-0.01

Stanford University
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Long-term prediction — Comparison

Random Forest: 0.83+/-0.06 AUC Deep Sequence: 0.96+/-0.02

1.0 10 —
-
.
,
r’/ ,
-
"
0.8 0.8 .
-
-
.
-
-
.
,
o
Zos 206
2 £ L
2 e
5 5 .
< & -
H P ROC fold 1 (AUC = 0.87) g P ROC fold 1 (AUC = 0.93)
= 04 e ROC fold 2 (AUC = 0.86) =04 < ROC fold 2 (AUC = 0.93)
< ROC fold 3 (AUC = 0.86) ,” ROC fold 3 (AUC = 0.98)
,
o ROC fold 4 (AUC = 0.79) e ROC fold 4 (AUC = 0.95)
- ROC fold 5 (AUC = 0.92) R ROC fold 5 (AUC = 0.99)
- ROC fold 6 (AUC = 0.81) - ROC fold 6 (AUC = 0.99)
0.2 ,/ ROC fold 7 (AUC = 0.85) 0.2 ’z’ ROC fold 7 (AUC = 0.99)
~ ROC fold 8 (AUC = 0.87) . ROC fold 8 (AUC = 0.98)
’ ROC fold 9 (AUC = 0.83) e ROC fold 9 (AUC = 0.97)
-~ ROC fold 10 (AUC = 0.69) e ROC fold 10 (AUC = 0.97)
,// == Random prediction ’/’ == Random prediction
- —— Mean ROC (AUC = 0.83 = 0.06) - —— Mean ROC (AUC = 0.36 + 0.02)
0.0 + 1 std. dev. 0.0 = 1 std. dev.
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate False Positive Rate

10-fold cross validation ROC curves: 21-months prediction

_ AUC-ROC 10-fold Cross-validation
Random Forest Deep Sequence

12-months 0.64+/-0.06 0.77+/-0.06
15-months 0.69+/-0.06 0.84+/-0.08
18-months 0.74+/-0.06 0.89+/-0.05

Stanford University
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Prediction with varying number of visits In
seguence

0.5 0.96
0.9
0.89
0.85
& 023
0.8
] 0.79
@)
E 0.75
-
=T
0.7
0.65
0.6 981
0.58
0.55
0.5
2 visits 4 wisits b visits B visits 10 visits 12 visits 14 visits 16 visits

Number of visits

=3 -months Random Forest =t=g-months Random Forest =—#—3-months Random Forest =8~ 12-months Random Forest
=i—3-months Deep sequence =s+==Gmonths Deep sequence —#—0-maonths Deep sequence =@~ 12-months Deep sequence

LS AAANSA WA s AAA V wa UA\—J
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Study 3. Risk score assessment for PE
(Structured EMR)

« 27-fold increase in the total number of CT angiography
examinations performed for PE evaluation

- Rate of positive studies declined from 27% to less than 10%

* It has been reported that up to one-third of all PE-CTA imaging
studies are avoidable

« Many problems exist with current guideline and contributes to
clinician noncompliance.

e Other known clinical risk factors NOT included in ANY risk
scores:

Currently in preparation

Stanford University
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PE clinical scorings

PERC Rule for Pulmonary Embollsm 7

Rules out PE if no criteria are presentand pre-test probability i

When to Use + Pearls/Pitfalls « Why Use «

Age 250
HR 2100
Sa0: on room air <95% Yes +1
Yes +1

Unilateral leg swellj

Hemoptysis

Recent surgery or trauma

Prior PE or DVT

Hormone use
Oral contrac
estrogenic hormane:
patients

mone replacem

in males or fei

ll' criteria

If any criteria are positive, the PERC rule cannot be used to rule out PE in this patient.

Copy Results Iy

Next Steps 5

Geneva Score (Revised) for Pulmonary
Embolism i+

Objectifies risk of PE,

When toUse + Pearls/Pitfalls Why Use ~

Age > 65 No 0

Previous DVT or PE

Surgery (unde
limb fracture la

Unilateral lower limb pain

Hemoptysis No 0

Heart rate <75 0

Pain on limb palpation Yes +4

10 points

Moderate risk group: ~20-30% incidence of PE from several studies.

Copy Results I

Next Steps 35

Wells' Criteria for Pulmonary Embolism 7~

Objectifies risk of pulmonary embolism.

When to Use + Pearls/Pitfalls « Why Use «

Clinical signs and symptoms of DVT

PE is #1 diagnosis OR equally likely

the previous &4 weeks

Previous, objectively diagnosed PE or DVT Yes +15

Hemoptysis Yes +1

Malignancy w/ treatment within 6 months or
palliative

No 0 Yes +1

=
S
o

5 0 points.

Moderate risk group: 16.2% chance of PE in an ED population.

Another study assigned scores > 4 as “PE Likely” and had a 28% incidence of PE.

Copy Results Iy

Next Steps 5

Copyright © Stanford University 2019
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Prediction model — Structured EHR only

Prediction

A 4

RIS 80% probability

Machine learning model

Probabilit
ﬁ 4
Demographics
ICD CD ICD ICD
Inpatient meds Inpatient meds Inpatient meds Inpatient meds Yes: Con d u Ct CT exa m
Outpatient Outpatient Outpatient Outpatient
meds meds meds meds
Vitals Vitals Vitals Vitals
Visit@tn e Visit@tl Visit@CT
\ J
Y
[365 - 1] day beforethe CT exam Day of CT exam

Stanford University
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Temporal feature engineering

Information Prior encounters difference with CT date
considered
12 11 10 9mon (8 mon |7 mon |6mon |5mon |4 mon |3 mon|2mon|1mon
mon | mon | mon
Vitals derivation dx /ot
Inpatient Meds ' _ _
Outpatient Meds 614 unique Pharma class: Presence and Frequency of order
Diagnosis code 141 unique code: Presence of code
Laboratory tests 21 uniquetest: Presence of test and latest value
Demographics Age, Gender, Race, Smoking habit: Only latest value
Encounters 12 11 10 9mon |8 mon |7 mon |6 mon |5 mon |4 mon |3 mon|2mon |1mon

mon mon mon

Patient 1 OO0 »e O O 0 P 000 06 o

Patient 2 l ;’ ® 0 o @, ® (\} X @ 00 &

Danographic

Dd e -8

« QOutpatientmeds >

< Diagnosis —
Lab test

Stanford University
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Prediction with autoencoder with attention

Hold-out testset: Stanford 340 cases, Duke 244

True Pasitive Rate

cases
1.0 - 7
’
”
,
PR
’
0.8 - »°
7’
e
2 ot
T ’
E 0.6 1 e
: g
g PR
o 7’
> 0.4 - ’
= R
e
7’
7’
R
0.2 1 PR
,/’ = PE Neural, SHC (area = 0.85)
,/’ = PE Neural, Duke (area = 0.72)
0.0
0.0 0.2 0.4 0.6 0.8

False Positive Rate

Copyright © Stanford University 2019

1.0

1.0+

0.8 -

0.6 1

[

0.2 1

0.0 1

10-fold cross-validation

Encoder: ROC

ROC fold 0 (ALUC = 0.83)
ROC fold 1 (AUC = 0.82)
ROC fold 2 (AUC = 0.84)
ROC fold 3 (AUC = 0.82)
ROC fold 4 (AUC = 0.82)
ROC fold 5 (AUC = 0.81)

Pt ROC fold 6 (AUC = 0.84)
L - ROC fold 7 (AUC = 0.84)
. ROC fold 8 (AUC = 0.85)
ROC fold 9 (AUC = 0.84)
- Luck
—— Mean ROC (AUC = 0.83 + 0.01)
+ 1 std. dev.
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Stanford University




Case 1

PE positive = probability 99%

AST:presence
QOutpatient_VITAMIN B12 PREPARATIONS: Binary
IMMUNOSUPPRESSIVES: Frequeny
ANALGESIC/ANTIPY RETICS, SALICYLATES:Binary
QOutpatient_ ANTIHYPERTENSIVES, SYMPATHOLY TIC:Binary
IRON REPLACEMENT: Binary
bmi
POTASSIUM REPLACEMENT :Binary
QOutpatient STEROID ANTINEOPLASTICS:Binary
ANTIPROTOZOAL DRUGS, MISCELLANEOUS:Frequeny
THYROID HORMONES: Frequeny
Outpatient ANALGESICS, NARCOTICS:Binary
ANTIEMETIC/ANTIVERTIGO AGENTS:Binary
ANTINEOPLASTICS MISCELLANEOUS:Binary
CEPHALOSPORIN ANTIBIOTICS - 15T GENERATION Frequeny
OTHER DISEASES OF INTESTINES AND PERITOMEUM:presence
QOutpatient_ POTASSIUM SPARING DIURETICS: Binary
WATER:Frequeny
ANTIHISTAMINES - 2ND GENERATION:Binary
NARCOTIC ANTAGONIST S Frequeny
OTHER DISEASES OF URINARY SY STEM:presence
Symptoms involving urinary system:presence
NEUROMUSCULAR BLOCKING AGENTS:Binary
BUM:presence |

PLASMA PROTEINS:Binary mm
DU|SE |
LAXATIVES AND CATHARTICS:Frequeny

Stanford University
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Case 2

PE positive = probability 67%

INTELLECTUAL DISABILITIES:presence

ANALGESIC/ANTIPY RETICS NON-SALICY LATE:Frequeny

sp02

VASODILATORS, CORONARY - Frequeny
Outpatient_CEPHALOSPORINS - 3RD GENERATION:Binary
NARCOTIC ANALGESIC AND NON-SALICY LATE ANALGESIC:Frequeny
SELECTIVE SEROTONIN REUPTAKE INHIBITOR (SSRIS):Frequeny
QUINOLOMES:Binary

WATER Frequeny

POTASSIUM REPLACEMENT :Binary

CEREBROVASCULAR DISEASE: presence

Outpatient_DIETARY SUPPLEMENT, MISCELLANEOUS:Binary
Outpatient_ MULTIVITAMIN PREPARATIONS:Binary

TOPICAL ANTIBIOTICS: Fregqueny

OTHER INFECTIOUS AND PARASITIC DISEASES: presence

DISEASES OF MALE GENITAL ORGANS:presence

ANTI-ALCOHOLIC PREPARATIONS:Frequeny

Stanford University
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True Positive Rate

Comparison with clinical scoring

100 Stanford ED patients - manual chart review

1.0 A
0.8 1
'
-
"“
#
0.6
'l
-
#
-
”
’
57
0.4 4 -~
‘s
-

== Neural Network (area = 0.81)
0.2 —8— FlasticMet (area = 0.73)

=8 PERC score [area = 0.51)

Wells score (area = 0.48)
> —8— rGeneva score (area = 0.53)
QL T T T
0.0 0.2 0.4 0.6 o.a

False Positive Rate
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1.0

True Positive Rate

100 Duke ED patients - manual chart review

1.0 1

0.8 1

0.6

0.4 1

0.2

—@— Neural Network (area = 0.81)
=8 ElasticNet (area = 0.74)
—8— PERC score (area = 0.60)
Wells score (area = 0.51)
=@= rGeneva score (area = 0.47)

T T
0.4 0.6 0.8
False Positive Rate

Stanford University
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Outline

Evaluation of Al algorithms

Stanford University



Importance of evaluating Al systems

Everything an Al system “knows” is based on the data upon
which it is trained

Al algorithms may not generalize to new data (wasn’t seen
before)

» Data used to create algorithms can contain bias

= Differences in patient populations (e.g., foreign vs.
domestic

= Differences in equipment/parameters for imaging
Rare disorders/abnormalities may be under-represented

Stanford University
Copyright © Stanford University 2019



Example: Pneumonia detection

158,323 chest radiographs from three institutions

= NIH (30,805 patients)

= Mount Sinai Hospital (MSH; 12,904 patients)

* Indiana (IU; 3,807 radiographs from 3,683 patients)

Task: Detecting radiographic findings consistent with
pneumonia

Result: Al trained on data from individual or multiple
hospital systems did not consistently generalize to
external sites

Zech JR et al., Confounding variables can degrade generalization performance of radiological deep
learning models, arXiv:1807.00431

Stanford University
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Pneumonia detection (cont'd)

Train - Comparison Test Site
Tune Onps . ' AUC (95% C.1.) | Acc. | Sens. | Spec. | PPV | NPV
Site Type (Images)
Internal NIH (N=22,062) 0.750 (0.721-0.778) | 0.255 | 0.951 | 0.247 | 0.015 | 0.998
External MSH (N=8,348) 0.695 (0. Ga?;-ﬂ "’ﬂ[-'h 0476 | 0.950 | 0.212 | 0.401 | 0.8584
NIH External U (N=3,807) 0.725 (0.644-0.807) | 0.190 | 0.974 | 0.182 | 0.012 | 0.999
Superset MSH + NIH (N=30,450) | 0.773 (0.766-0.720) | 0.462 | 0.950 | 0.403 | 0.160 | 0.985
. ]
Superset MSII{—I\J:;IE__]; It 0.787 (0.780-0.793) | 0.470 | 0.950 | 0418 | 0.148 | 0.987
Internal MSH {N¥813§8] 0.802 (0.793-0.812) | 0.617 | 0.950 | 0.432 | 0.482 | 0.940
External NIH (N=22,062) 0.717 (0.687-0.746) | 0.184 | 0.951 | 0.175 | 0.014 | 0.997
MSH External IU (N=3,807) 0.756 (0.674-0. EEE‘:I 0.000 | 0974 | 0.090 | 0.011 | 0.907
Superset MSH + NIH (N=30,450) [ 0.862 (0.856-0.868) | 0.562 | 0.950 | 0.516 | 0.190 | 0.980
. ]
Superset his?ﬂtilﬂ__}; It 0.871 (0.865-0.877) | 0.577 | 0.950 | 0.537 | 0.180 | 0.990
Internal MSH + NIH .[N=’:1ﬂ,45il_] 0.931 (0.927-0.936) | 0.732 | 0.950 | 0.706 | 0.279 | 0.992
MSH - Subset NIH (N=22,062) 0.733 (0.703-0.762) | 0.243 | 0.951 | 0.234 | 0.015 | 0.997
NTH Subset MSH (N=8,388) (0.805 (0.796-0. BLL‘:I 0.630 | 0.950 | 0451 | 0.491 | 0.942
) External [U (N=3,807) 0.815 (0.745-0.885) | 0.238 | 0.974 | 0.230 | 0.013 | 0.999
MSH + NIH + 1U
' S . 3 2 73 5 7 25
Superset (N=34,257) 0.934 (0.929-0.938) | 0.732 | 0.950 | 0.709 | 0.258 | 0.993
*Superset= a test dataset containing data from the same distribution (hospital system) as the training data as
well as external data. Subset = a test dataset containing data from fewer distributions (hospital systems) then
the training data.

Copyright © Stanford University 2019

Zech JR et al., Confounding variables can degrade generalization performance of radiological deep
learning models, arXiv:1807.00431
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Conclusion:

Need to test (and monitor)
performance of Al on
real-world data as part of
adoption iIn clinical practice

Stanford University



Steps for undertaking evaluation

1.

N o gk

Understand the key outputs of the Al algorithm (what is it
predicting?) and decide if that is clinically relevant to
your needs

Choose appropriate evaluation metric (e.g., sensitivity,
specificity, PPV)

Define performance threshold for the metric (e.g., 99%
sensitivity in detecting cancer; this sets a threshold on
false positives)

Collect representative patient samples (test cases)
Establish ground truth for each test case
Evaluate the test cases against the metric
(Implement monitoring strategy)

Stanford University
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Collecting Al performance metrics Iin the
clinical workflow

Rubin, ACR Innovation Radiology
Grant, 2019 Information
System

Dictation
System

Radiologist

Image
Acquisition
System

Reports

Al Metrics Registry

ACR

AMERICON COLLEGE OF

RADIGEESSY Stanford University
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Toolkit for collecting Al performance metrics In
the clinical workflow

Rubin, ACR Innovation Grant, 2019

Procedure < Comparison = IELEINETE - Impression

Normal Andings

. 3 RECIST
Traches and bramchi Pulmonary nodule Findings tient: 7 3225 4503 _El

Plevra - Traches No obstructions in
Not specified

and bronchi trachea or bronchi

Mediastirum and hlar | Mgt upper o fget Location Status |2008-04-03' 2008-06-06 2008-08-06 2008-10-09
Right midade lobe Pulmonary nodule :‘ul.’;‘-:unay):r:‘-" le In “Vef tfacked

Localisation

Heart and vessels Right lower lobe the right upper lobe
ot Thait Masrilie s Ko Left upper labe JI;; rl‘tr|:rl;l' (b pancreas tracked
e liver tracked
Upper abdominal organs No pneumothorax
= e - No plewral effusion. I LeSion Diameters 13.66 12.169 13.843 13.169
Skeletal system = A PRPAE thirbonins
— 7.),3;} == NO pleural thickening n)
s Characterization . :\ni 4 ) No lastinal or tfrom Base“ne‘ 0% -10.92% 1.34% 3 59%
Subtold "'-"-‘;3'0‘3""“” pr r'R from Minimum 12.25% 0% 13.76% 8.22%
and hilus Normal appearancs
mediastinal structures ISPONSe Category BL SD SO SD
Trend FollowUp Target New Resolved Non-Target ' Eror

sy
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Conclusion

= There are opportunities and needs to develop Al
algorithms for medical problems other than
classification problems, especially prediction

= Tackling clinical prediction enabled by integrating
multiple data

» Images, texts, and other data
» Longitudinal time points

= Preliminary work applying Al to clinical predication
problems is promising

= Evaluation of Al algorithms developed in actual clinical
practice is crucial

Stanford University



Thank you.

Contact Info:
dlirubin@stanford.edu
Imonb@stanford.edu
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