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Deep learning: Image classification
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Modified after slide by Jeff Dean, Google

Low level
representation

Edges, shapes, 
object parts

Recognizable 
objects

High level representation

Unsupervised 
learned quantitative 

features

• High-level abstractions of image features hierarchical, non-linear 

transformations

• Higher-level features (layers) are defined from lower-level ones, and 

represent higher levels of abstraction

• Most suitable for classification problems
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Benign

BenignCancer

Cancer

Image classification in medical imaging

“Benign or cancer lesion?”
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There are other important medical 

needs beyond image classification…



Key medical applications beyond 
classification

1. Disease detection

2. Lesion segmentation

3. Treatment selection

4. Response assessment

5. Clinical prediction (of response or future 

disease)



People (and their diseases) differ…
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“Precision Medicine”

• Patient care often lacks specificity 

(“One size fits all” does not usually 

apply in medicine)

• There are “subtypes” of disease 

(e.g., many types of “breast cancer” needing 

specific therapy for each type)

• Precise diagnoses based on “electronic 

phenotyping” and molecular profiling enables 

treatments that are tailored to unique 

characteristics of each patient

• Requires accurate methods of prediction based 

on disease phenotypes

› Key opportunity for Big Data and AI methods
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• Disease in patients evolves over time (longitudinally)

• Patient data  (images and text reports/notes) are acquired longitudinally

• We need prediction models need to account for longitudinal data 

inputs

Prediction
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Progression of age related macular 
degeneration eye disease

• AMD changes over time

• Some patients progress to wet AMD

• The time to AMD progression is unpredictable

Patient age

Im
ag

e 
fe

at
u

re

AMD 
Progression
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Prediction model (RNN)
• Many-to-many RNN using two-layer one-directional stacked stateful Long 

short-term memory (LSTM) 

• Long-term memory during training encodes information about entire 

temporal visit sequence

• Short-term memory passes immediate state between successive nodes

Copyright © Stanford University 2019
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“Precision Health”

• A paradigm shift, focusing on prediction and 

prevention, rather than relying exclusively on 

diagnosis and treatment of existing disease

• Prevents or forestalls the development of disease

• Reduces costs and morbidity and improves patient 

care

• Requires accurate methods of prediction based on 

monitoring people’s health status

› Key opportunity for Big Data and AI methods
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Deep learning for predicting future cancer risk

Acad Radiol 25(8):977-984, 2018

Image texture feature maps preserve discriminative spatially-dependent features 
and augment data in multi-channel CNN
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Performance (ROC) of different approaches

(AUC = 0.90)

(AUC = 0.79)

(AUC = 0.63)

Acad Radiol 25(8):977-984, 2018
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Explosion in electronically-accessible medical records 

data provides opportunity to learn models to help with 

these prediction problems



Growth in electronic patient data

Source: https://www.healthit.gov/sites/default/files/data-brief/2014HospitalAdoptionDataBrief.pdf
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Computerized model:

Integration and phenotype 
extraction

Integrating various types of data (e.g., images + 
clinical notes) is needed

Disease detection

Diagnosis

Treatment response 
evaluation

Clinical prediction

Molecular 
Characterization

Laboratory and Clinical 
Testing

Radiology Imaging and 
Reports

Pathology Imaging/Reports

Clinical Decision 
Support

Radiomicsand Deep 
Learning
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Dealing with narrative text – feature 
generation

1. Rule-based and dictionary-based information 

extraction

2. Bag of word based methods

3. Statistical methods

4. Word embeddings - Word2Vec, GolVe
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Identifying core terms from unstructured 
narrative text

Unsupervised deep learning algorithms can discover annotation from 
texts without the need of supplying specific domain knowledge

Word embedding using deep learning (4,442 words) 

projected in two dimensions

Imon Banerjee, AMIA 2017Copyright © Stanford University 2019



Word embedding + classification model

• Stores each word in as a point in space, where it is represented by a 

vector of fixed number of dimensions. 

• Unsupervised, built just by reading huge corpus

• Can be used as features to train a supervised model with a small 

subset of annotation.

Word embedding

Corpus
Document 

embedding
Classifier

Positive

Negative

Document classification
Mikolov, Distributed representations of words and phrases and 
their compositionality
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Objective

▪ Create a dynamic model that takes as input 

longitudinal visit data ordered according to the date of 

visits.

▪ Computes as output a probability of future clinical 

events for each visit considering the current and all the 

historic time points. 

25

Visit note t1 Visit note 
t2

Visit note 
t3

Visit note 
tn

Score t1 Score t2 Score t3 Score tn

Input: Visit data
Ordered based on time stamp 

Output: Prediction

Model: Analyse current and historic
visit data 
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The number of natural language processing (NLP)-related articles compared to the number of electronic 

health record (EHR) articles from 2002 through 2015

Yanshan Wang et. al., Clinical information extraction applications: A literature review , JBI 2018

Under-utilization of NLP in EHR-based research

26
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Challenges

HISTORY:  This  69-year-old male returns today immediately upon completion of his  renal/bladder  ultrasound scan in MMC X-Ray 
Department. The patient had  presented  to this office one week ago (XX) with acute onset of lower  urinary  tract symptoms i ncluding 
nocturia x 5, weakness of his urinary flow  and  a sensation of incomplete bladder emptying. However, during the course  of  the next few 
days, his symptoms gradually resolved. The patient is now  relatively  asymptomatic from the urologic standpoint having retur ned to his  
baseline.       Preliminary report concerning his renal/bladder ultrasound scan indicates  continued  presence of a hypoechog enic focus 
within the upper pole of the  right  kidney unchanged from his previous exam in February of this year.  Initial  bladder volu me then was 
626 cc with postvoid residual of  104  cc. Today initial bladder volume is 572 cc with postvoid residual of  197  cc. Prostate volume was 
estimated at 24 cc (February 20XX), increased  to  33 cc (today).      The patient has been taking Proscar 5 mg daily since July XX. 
Laboratory results include urinalysis with 1-5 RBCs/HPF, 0-rare  WBCs/HPF,  hemostix "trace" positive, and leukocyte esterase "negative."  
Urine  culture showed "no growth" on that date.      GU EXAM:  Trim,  generally healthy appearing male with normal, circumcised penis,  
adequate  meatus. Testes are somewhat atrophic and descended bilaterally.  Digital  rectal exam reveals a prostate gland whic h is not 
particularly  enlarged  (1-2+ enlarged at most), rubbery consistency compressible  throughout  with smooth surface, intact superior and 
lateral margins and  shallow  median groove present. There is no gross nodularity or asymmetry  present.       IMPRESSION:  A cute  onset 
of lower urinary tract symptoms one week ago which proved to be   transitory  and resolved spontaneously. Urinalysis and urin e culture 
failed  to  indicate any evidence of urinary infection as the underlying cause of  this  problem. However, the patient is noted to have 
rather significant  postvoid  residual urine (104 cc in February this year and 197 cc today).  The  prostate gland is modestly enlarged (24 cc 
in February, 33 cc today)  despite  ongoing Proscar therapy. However, it is likely the prostate gland  would  be considerably more 
enlarged and the patient more consistently  symptomatic  (urinary outflow obstructive symptoms (had he not been on  Proscar  during 
the past five years.      PLAN:  As  the patient's lower urinary tract symptoms have resolved for the most  part,  it was elected to merely 
follow him along conservatively for the time  being.  If the patient develops recurrence of lower urinary tract symptoms,  pa rticularly  
urinary outflow obstructive symptoms, then further urologic  intervention  may be considered including TUR prostate if indica ted. The  
patient  will keep us posted concerning his urologic status. 

1. How to extract the relevant sentences?
2. How to determine sentiment of the sentence towards a targeted task?
3. How to label the full notes when multiple sentences reflect different 

sentiments?  
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Report 
condenser

Semantic dictionary 
mapping

Neural word 
embedding

Context-aware visit 
vector creation 

Ontocrawler

NCBO
CleVer Dictionary Domain-specific Dictionary

Input: Corpus of radiology reports Output: Vector representation of reports

Semantic dictionary generation

Unsupervised embedding of reports

Intelligent Word Embedding (IWE)

Copyright © Stanford University 2019

NEGEX Risk

adequate to rule  
against
declined
declines
demonstrate no
………

and possible
and probable
cannot exclude
cannot r/o
chance
could lead
……



Ontocrawler: generation of domain dictionary

▪ Created an ontology crawler using SPARQL that grabs the sub-classes and 

synonyms of the domain-specific terms from NCBO bio-portal.

▪ Generate a focused dictionary for each domain of radiology.

• {‘apoplexy’, ‘contusion’, ‘hematoma’, ...}      ‘hemorrhage’

Copyright © Stanford University 2019



Context-depended document vector creation 

For Document vector creation also used:

I. Averaging 
II. Max pooling
III. Min pooling

Copyright © Stanford University 2019

right subdural hemorrhage layering tentorium

1. Removal of right frontal subdural drain. Stable right subdural hematoma layering along the tentorium and 
posterior falx, and stable minimal leftward midline shift. 2. Paranasal sinus disease. 

Radiology impression: 

Term and context: 



Application of IWE

CT reports –
• Banerjee I, Madhavan S, Goldman RE, Rubin DL. Intelligent Word Embeddings of 

Free-Text Radiology Reports. AMIA Annual Symposium 2017

• Banerjee I, Chen MC, Lungren MP, Rubin DL. Radiology Report Annotation using 
Intelligent Word  Embeddings. Journal of Biomedical Informatics November 2017

• Banerjee I. et. al., Comparative Effectiveness of Convolutional Neural Network 
(CNN) and Recurrent Neural Network (RNN) Architectures for Radiology Text Report 
Classification, Journal of Artificial Intelligence in Medicine, 2018.

Mammograms –
• Imon Banerjee, Selen Bozkurt, Emel Alkim, Daniel L. Rubin, Automatic Inference of 

BIRADS Final Assessment Categories from Narrative Mammography Report 
Findings, Journal of Biomedical Informatics, (in press).

Ultrasound
• Imon Banerjee, Hailey H. Choi, Terry Desser, and Daniel L. Rubin. "A Scalable 

Machine Learning Approach for Inferring Probabilistic US-LI-RADS Categorization." , 
AMIA Annual Symposium (2018).

• 2 papers in RSNA 2018

Multiple clinical narratives
• Imon Banerjee, Kevin Li, …, James D. Brooks, Daniel L. Rubin, Tina Hernandez-

Boussard, Weakly supervised natural language processing for assessing treatment-
related side effects following prostate cancer treatment, JAMIA Open, 2019.

• Manuscript submitted to Journal of Clinical oncology

31
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Study 1: Prognostic Estimates of Survival 
in Metastatic Cancer Patients (only notes)

▪ Only in United States around 500,000 patients develop metastatic cancer 
every year.

▪ Several studies have shown overutilization of aggressive medical 
interventions and protracted radiation treatment in patients close to the end 
of life. 

▪ Inability to accurately estimate patient life expectancy likely explains why 
physicians tend to choose overly-aggressive treatments for some patients.

▪ Leads to increased morbidity and healthcare costs, while other patients 
may be under-treated and denied access to effective treatments that could 
reduce symptoms or even extend survival.

32

A robust ML model that predicts patient survival would have major impact on the quality of 
care and quality of life in metastatic cancer patients.

Banerjee I, Gensheimer MF, Wood DJ, Henry S, Chang D, Rubin DL. Probabilistic Prognostic Estimates of Survival in 

Metastatic Cancer Patients (PPES-Met) Utilizing Free-Text Clinical Narratives. Nature Scientific Reports

Copyright © Stanford University 2019



PPES-Met model

33

Unsupervised 
embedding
Of free-text notes

Many-2-many RNN 
model
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Dataset used in the study

34

Characteristic Metastatic cancer database

(MetDB)

Palliative radiation dataset

(PrDB)
No. of patients 13,523 899

Age 61.5 (IQR 51.2 – 70.5) 65.0 (IQR 55.8 – 72.2)

Sex M: 6621 (49%);

F: 6902 (51%)

M: 460 (51.1%);

F: 439 (48.9%)

Primary site Breast: 1493 (11.0%) 

Endocrine: 211 (1.6%) 

Gastrointestinal: 3575 
(26.4%) Genitourinary: 1504 

(11.1%) Gynecologic: 849 

(6.3%) 
Head and neck: 506 (3.7%) 

Skin: 453 (3.3%) 
Thorax: 2178 (16.1%) 

Other/Multiple/Unknown: 

2754 (20.4%)

Breast: 141 (15.7%) 

Endocrine: 0 (0%) 

Gastrointestinal: 145 (16.1%) 
Genitourinary: 112 (12.5%) 

Gynecologic: 50 (5.6%) 

Head and neck: 57 (6.3%) 
Skin: 122 (13.6%) 

Thorax: 252 (28.0%) 
Other/Multiple/Unknown: 20 

(2.2%)

Note types

Oncology notes, progress notes, radiology reports, discharge 

summary, nursing notes, critical care notes
Distribution of visits
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Survival data - challenges

Patient 1: Dense follow up
(multiple visits on same day)

Patient 3: Sparse follow up
(long and variable gaps between visits)

Patient 2: Minimal information
(only 3 days)

Patient 4: No death info – long follow up

Copyright © Stanford University 2019



Training and Evaluation

36

Category 1: “Survival - positive” stands for survival

up to 3months starting from the current visit date;

Category 2: “Survival - negative” flagged the non-

survival;

Category 3: “Zero padding” padded each input

sequences when is shorter than 1000 and truncated
the historic visits when sequence is longer than

1000

Model training and validation on MetDB

Training: 10,293 
patients;

Validation: 
1,938 patients;

Model evaluation: dual strategy

1. Quantitative: measure the overall prognosis estimation accuracy

using the standard statistical metrics

2. Qualitative: evaluate the patient-level performance and perform error

analysis with intelligible longitudinal graph summary for
understanding the basis of prediction.

Test: 1818 
patients;

899 from PrDB + 
919 Randomly 
selected from 

MetDB
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Results: Quantitative Evaluation on PrDB

37

Overall ROCAUC for predicting 3 mo. survival -
0.89; Confidence interval [0.884 - 0.897] 

Tested on 1818 patients with multiple visits

Copyright © Stanford University 2019

ROC based multiple primary site



Results: Quantitative Evaluation on PrDB

38

Comparing with systematic therapy:
Shows model’s prediction outperformed oncologist’s
expectation of survival and can contribute in treatment planning

Tested on 1818 patients with different primary sites

Copyright © Stanford University 2019



Results: Qualitative Evaluation on PrDB
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Patient 1 Patient 2

Patient-level performance analysis

Copyright © Stanford University 2019



Hover & discover

40

Intelligible longitudinal survival curve of a patient
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Study 2. Prognosis of AMD Disease using 
SD-OCT Imaging Biomarkers 
(Image + demograhics)

• Age-related macular degeneration (AMD) is the leading cause of 

visual loss

• Prediction of AMD progression may allow potential earlier 

treatment and better clinical outcomes. 

• Most recent machine learning studies utilized genetic information 

and predicted the risk of AMD with high accuracy

• However, studied mainly in populations of European ancestry and 

predicted long-term AMD progression (>5-years).

• Image-based prediction models also showed success, but limited 

by mostly not considering dependencies of longitudinal visit data.

https://arxiv.org/abs/1902.10700
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Objective

• Develop a sequential deep learning technique that can consider 

longitudinal visit data – SD-OCT images features and 

demographics

• Predict AMD progression using varying number of visit data with 

irregular time interval

• Short-term prediction: 3-months, 6-months, 9-months

• Long-term prediction: 12-months, 15-months, 18-months, 21-

months

Copyright © Stanford University 2019



Conceptual model

Copyright © Stanford University 2019



Dataset

HARBOR trial (ClinicalTrials.gov identifier: NCT00891735)

Patients had monthly evaluations with SD-OCT

Demographic 

Feature

Description All fellow 

eyes 

(N=671)

Progressors 

(N=149)

Non-

progressors 

(N=522)

Age Age of the patient in months at 

baseline mean (std)

78.2 (8.3) 79.5 (7.7) 77.8 (8.4)

Gender Patient gender: Male/Female % 40.4 / 59.6% 30.2 / 

69.8%

43.3 / 56.7%

Race Patient Ethnicity: American or 

Alaska native / Asian / Black or 

African American / White / Native 

Hawaiian or Pacific Islander / 

Multiracial

0.3 / 1.6 / 0.4 

/ 96.9 / 0.3 / 

0 % 

0 / 0.7 / 0 / 

98.7 / 0.7 / 

0 %

0.4 / 1.9 / 0.6 / 

96.4 / 0.2 / 0 %

Smoking 

status

Smoking status: Non-smoker / 

Previous smoker / Current smoker

41.0 / 48.4 / 

10.6 %

38.9 / 47.0 / 

14.1 %

41.6 / 48.8 / 

9.6 %

Visual Acuity Visual acuity at baseline of 

observation measured in LogMAR

scale

76.07 

(13.07)

76.91 (9.31) 75.83 (13.96)

Counts of observations
Demographic considered in our 

analysis
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Extraction of imaging biomarkers 

• Each OCT volume was processed using proprietary Cirrus 

Review Software and a previously published pipeline1

• 21 imaging features describing presence, number, extent, density 

and relative reflectivity of drusen were extracted

1de Sisternes, Luis, et al. "Quantitative SD-OCT imaging biomarkers as indicators of age-related macular degeneration progression." Investigative ophthalmology & visual science 

55.11 (2014): 7093-7103.

OCT image processing pipeline - overview
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Deep sequential model - RNN

• Designed a many-to-many RNN model using two-layer one-directional stacked 

stateful Long short-term memory (LSTM) 

• Long-term memory allows slow weight updates during training and encodes 

general information about the whole temporal visit sequence

• Short-term memory has ephemeral activation and passes immediate state 

between successive nodes for resetting itself if a fatal condition is 

encountered.

Deep sequential model: architecture

Copyright © Stanford University 2019



Short-term prediction – Comparison

AUC-ROC 10-fold Cross-validation

Random Forest Deep Sequence

6-months 0.63+/-0.05 0.83+/-0.04

9-months 0.62+/-0.06 0.79+/-0.01

Random Forest: 0.64+/-0.06 AUC Deep Sequence: 0.96+/-0.02 

10-fold cross validation ROC curves: 3-months prediction

Evaluated on a 10-fold cross validation setting where the original sample 
(13,954 time points of total 671 patients)
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Long-term prediction – Comparison

AUC-ROC 10-fold Cross-validation

Random Forest Deep Sequence

12-months 0.64+/-0.06 0.77+/-0.06

15-months 0.69+/-0.06 0.84+/-0.08

18-months 0.74+/-0.06 0.89+/-0.05

Random Forest: 0.83+/-0.06 AUC Deep Sequence: 0.96+/-0.02 

10-fold cross validation ROC curves: 21-months prediction

Copyright © Stanford University 2019



Prediction with varying number of visits in 
sequence
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Study 3. Risk score assessment for PE 
(Structured EMR)

• 27-fold increase in the total number of CT angiography  

examinations performed for PE evaluation 

• Rate of positive studies declined from 27% to less than 10%

• It has been reported that up to one-third of all PE-CTA imaging 

studies are avoidable

• Many problems exist with current guideline and contributes to 

clinician noncompliance. 

• Other known clinical risk factors NOT included in ANY risk 

scores:

Currently in preparation

Copyright © Stanford University 2019



PE 30% PE 16% PE 

PE clinical scorings 
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Prediction model – Structured EHR only

………
……Visit@tn Visit@t1

[365  – 1] day before the CT exam Day of CT exam

Visit@CT

EMR

Demographics

ICD

Inpatient meds

Outpatient 
meds

Vitals

EMR

ICD

Inpatient meds

Outpatient 
meds

Vitals

EMR

ICD

Inpatient meds

Outpatient 
meds

Vitals

EMR

ICD

Inpatient meds

Outpatient 
meds

Vitals

Machine learning model

Feature 
engineering

PE positive 80% probability
Prediction

Probabilit
y > n

Yes: Conduct CT exam
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Temporal feature engineering
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Prediction with autoencoder with attention

Hold-out testset: Stanford 340 cases, Duke 244 

cases
10-fold cross-validation
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Case 1
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Case 2

Copyright © Stanford University 2019



Comparison with clinical scoring

100 Stanford ED patients - manual chart review 100 Duke ED patients - manual chart review
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Importance of evaluating AI systems

Everything an AI system “knows” is based on the data upon 

which it is trained

AI algorithms may not generalize to new data (wasn’t seen 

before)

▪ Data used to create algorithms can contain bias

▪ Differences in patient populations (e.g., foreign vs. 

domestic

▪ Differences in equipment/parameters for imaging

▪ Rare disorders/abnormalities may be under-represented
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Example: Pneumonia detection

158,323 chest radiographs from three institutions

▪ NIH (30,805 patients)

▪ Mount Sinai Hospital (MSH; 12,904 patients)

▪ Indiana (IU; 3,807 radiographs from 3,683 patients)

Task: Detecting radiographic findings consistent with 

pneumonia

Result: AI trained on data from individual or multiple 

hospital systems did not consistently generalize to 

external sites

Zech JR et al., Confounding variables can degrade generalization performance of radiological deep 
learning models, arXiv:1807.00431
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Pneumonia detection (cont’d)

Zech JR et al., Confounding variables can degrade generalization performance of radiological deep 
learning models, arXiv:1807.00431
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Conclusion: 

Need to test (and monitor) 
performance of AI on 

real-world data as part of 
adoption  in  clinical practice



Steps for undertaking evaluation

1. Understand the key outputs of the AI algorithm (what is it 

predicting?) and decide if that is clinically relevant to 

your needs

2. Choose appropriate evaluation metric (e.g., sensitivity, 

specificity, PPV)

3. Define performance threshold for the metric (e.g., 99% 

sensitivity in detecting cancer; this sets a threshold on 

false positives)

4. Collect representative patient samples (test cases)

5. Establish ground truth for each test case

6. Evaluate the test cases against the metric

7. (Implement monitoring strategy)

Copyright © Stanford University 2019



Collecting AI performance metrics in the 
clinical workflow

Radiology
Information

System

Radiologist

Dictation
System

MRI

Image
Acquisition

System

PACS

AI
System

AI Metrics Registry AI Vendors

Local 
Reports

Rubin, ACR Innovation 

Grant, 2019
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Toolkit for collecting AI performance metrics in 
the clinical workflow

Rubin, ACR Innovation Grant, 2019
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Conclusion

▪ There are opportunities and needs to develop AI 

algorithms for medical problems other than 

classification problems, especially prediction

▪ Tackling clinical prediction enabled by integrating 

multiple data

› Images, texts, and other data

› Longitudinal time points

▪ Preliminary work applying AI to clinical predication 

problems is promising

▪ Evaluation of AI algorithms developed in actual clinical 

practice is crucial
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Thank you.

Contact info:
dlrubin@stanford.edu
imonb@stanford.edu


