IBM's Open-Source Based AI Developer Tools

Sumit Gupta VP, AI, Machine Learning & HPC IBM Cognitive Systems @SumitGup guptasum@us.ibm.com

March 2019

AI Software Portfolio Strategy

Deliver a comprehensive platform that enables data science at all skill levels

Scale to Enterprise-wide Deployment

- Multiple data scientists
- Shared Cluster / Hardware Infrastructure

Hybrid Cloud: Common experience on-premise and in public cloud

IBM Open Source Based AI Stack

Our Focus: Ease of Use & Faster Model Training Times

	Distributed Deep Learning (DDL)	Auto Hyper-Parameter Optimization (HPO)		
Watson ML Accelerator	Elastic Distributed Training (EDT) & Elastic Distributed Inference (EDI)			
	IBM Spectrum Conductor Apache Spark, Cluster Virtualization, Job Orchestration			
Watson ML	Model Management & Execution	Model Life Cycle Management		
Watson MI	WML CE: Open Source ML Frameworks			
Community Edition	TensorFlow PYTÖRCH	Chainer Snap ML		
WML CE	Large Model Support (LMS)	DDL-16		
Infrastructure Designed for AI	Power9 or x86 Server with GPU Accelerator	rs Storage rs (ESS)		

Snap ML

Distributed High Performance Machine Learning Library

Most Popular Data Science Methods

Source: Kaggle Data Science Survey 2017

Why do we need High-Performance ML

- Performance Matters for
 - Online Re-training of Models
 - Model Selection & Hyper-Parameter Tuning
 - Fast Adaptability to Changes
- Scalability to Large Datasets useful for
 - Recommendation engines, Advertising, Credit Fraud
 - Space Exploration, Weather

Logistic Regression: 46x Faster Snap ML (GPU) vs TensorFlow (CPU)

Advertising Click-through rate prediction Criteo dataset: 4 billion examples, 1 million features

Ridge Regression: 3x Faster Power-NVLink-GPUs vs x86-PCIe-GPUs

Predict volatility of stock price, 10-K textual financial reports, 482,610 examples x 4.27M features

Snap ML is 2-4x Faster than scikit-learn - CPU-only

Decision Trees

3.8x faster Snap ML on Power vs sklearn on x86

Random Forests

4.2x faster Snap ML on Power vs sklearn on x86

Summary of Performance Results for Snap ML

GPU vs CPU	Snap ML vs scikit-learn: Linear Models	20-40x
Power vs x86 with GPUs	Snap ML: Linear Models	3x
CPU Only: Power vs x86	Snap ML vs scikit-learn: Tree Models	2-4x

Large Model Support (LMS) Enables Higher Accuracy via Larger Models

500 Iterations of Enlarged GoogleNet model on Enlarged ImageNet Dataset (2240x2240), mini-batch size = 15 Both servers with 4 NVIDIA V100 GPUs Store Large Models & Dataset in System Memory Transfer One Layer at a Time to GPU

IBM AC922 Power9 Server CPU-GPU NVLink 5x Faster than Intel x86 PCI-Gen3

Distributed Deep Learning (DDL)

Deep learning training takes days to weeks

DDL in WML CE extends TensorFlow & enables scaling to 100s of servers

Automatically distribute and train on large datasets to 100s of GPUs

Near Ideal (95%) Scaling to 256 GPUs

Auto Hyper-Parameter Optimization (HPO) in WML Accelerator

Lots of Hyperparameters:

Learning rate, Decay rate, Batch size, Optimizers (Gradient Descent, Momentum, ..)

WML Accelerator Auto-Hyperparameter Optimizer (Auto-HPO)

Auto-HPO has 3 search approaches

Random, Tree-based Parzen Estimator (TPE), Bayesian

Elastic Distributed Training (EDT)

Dynamically Reallocates GPUs within milliseconds

Increases Job Throughput and Server / GPU Utilization

Works with Spark & AI Jobs

Works with Hybrid x86 & Power Cluster

2 Servers with 4 GPUs each: total 8 GPUs Available Policies: Fair share, Preemption, Priority **TO**: Job 1 Starts, uses all available GPUs

PowerAI Vision: "Point-and-Click" AI for Images & Video

Label Image or Video Data

Auto-Train AI Model

Package & Deploy AI Model

Core use cases

Image Classification

100 36

100 49

Results

Heatmap opacity

Heatmap opacity

▲ Download heatmap

	Confidence threshold 🕕				
No.	0.1	1	0.1		
1 an	CATEGORY	CONFIDENCE			
	Properly Aligned Insulators	0.92038			

Object Detection

Image Segmentation

Confidence threshold	0		
0.1		1	0.3
CATEGORY	CONFIDE	NCE	
Larus	1.00000		

Automatic Labeling using PowerAI Vision

Manually Label Some Image / Video Frames

Train DL Model

Auto-Label Full Dataset with Trained DL Model

Manually Correct Labels on Some Data

Repeat Till Labels Achieve Desired Accuracy

Retail Analytics

Track how customers navigate store, identify fraudulent actions, detect low inventory

Worker Safety Compliance

Zone monitoring, heat maps, detection of loitering, ensure worker safety compliance Remote Inspection & Asset Management

Identify faulty or wornout equipment in remote & hard to reach locations

Quality Inspection Use Cases

Semiconductor Manufacturing

Electronics Manufacturing

Travel & Transportation

Utilities Inspection

Robotic Manufacturing

Steel Manufacturing

Aerospace & Defense

AI Developer Box & AI Starter Kit

Power AI DevBox

Free 30-Day Licenses for PowerAI Vision & WML Accelerator (free to Academia)

Power9 + GPU Desktop PC: \$3,449 Order from: <u>https://raptorcs.com/POWERAI/</u>

AI Starter Kit

WML Accelerator Pre-installed (formerly called PowerAI Enterprise)

2 AC922 Accelerated Servers + 1 P9 Linux Storage Server

500+ Clients using AI on Power Systems

JPMORGAN CHASE & CO. Morgan Stanley

Power AI Clients at THINK 2019

IBM AI Meetups Community Grew 10x in 9 Months

https://www.meetup.com/topics/powerai/

Summary

Watson ML: Machine / Deep Learning Toolkit

Snap ML: Fast Machine Learning Framework

Power AI DevBox & AI Starter Kit

Get Started Today with Machine & Deep Learning

IBM Power**AI**

Build a Data Science Team Your Developers Can Learn <u>http://cognitiveclass.ai</u>

Identify a Low Hanging Use Case

Figure Out Data Strategy

Consider Pre-Built AI APIs

Hire Consulting Services

Get Started Today at www.ibm.biz/poweraideveloper

Additional Details

Why are Linear & Tree Models Useful?

Fast Training GLMs can scale to datasets with billions of examples and/or features & still train in minutes to hours

Need Less Data

Machine learning models can train to "good-enough" accuracy with much less data than deep learning requires

Interpretability

Linear models explicitly assign an importance to each input feature Tree models explicitly illustrate the path to a decision.

Less Tuning

Linear models involve much fewer parameters than more complex models (GBMs, Neural Nets)