TEXT-TO-SPEECH SYNTHESIS USING TACOTRON 2 AND WAVEGLOW WITH TENSOR CORES

Rafael Valle, Ryan Prenger and Yang Zhang

OUTLINE

1.Text to Speech Synthesis

2.Tacotron 2

3.WaveGlow

4.TTS and TensorCores

TEXT TO SPEECH SYNTHESIS (TTS)

Human to ? Interaction

Global TTS Market Value ¹ 3.5 3 2.5 2 1.5 0.5 0 **USD Billions** 2016 2022

¹ https://www.marketsandmarkets.com/PressReleases/text-to-speech.asp

APPLICATIONS OF TTS

Health Care

Smart Home Devices

Self-Driving Cars

Audio Books

Video Games

TEXT TO SPEECH SYNTHESIS

SPEECH SYNTHESIS: THE VODER 1939

PARAMETRIC SPEECH SYNTHESIS

Pneumatic speech synthesizer developed by von Kempelen in 1791. Voder speech synthesizer developed by Homer Dudley in 1939.

CONCATENATIVE TTS SYNTHESIS

CONCATENATIVE TTS SYNTHESIS

- Requires collecting speech units
- Requires designing cost heuristics
- Requires acoustic processing

PARAMETRIC (DEEP LEARNING) TTS SYNTHESIS

<u>Text Input</u> Forty percent of a

DEEP LEARNING TTS SYNTHESIS

OUTLINE

1.Text to Speech Synthesis

2.Tacotron 2

3.WaveGlow

4.TTS and TensorCores

TEXT TO (MEL) SPECTROGRAM WITH TACOTRON

Tacotron CBHG: Convolution Bank (k=[1, 2, 4, 8...]) Convolution stack (ngram like) Highway bi-directional GRU

Tacotron 2

Location sensitive attention, i.e. attend to: Memory (encoder output) Query (decoder output) Location (attention weights) Cumulative attention weights (+=)

Tacotron 2 (without wavenet)

PyTorch implementation of Natural TTS Synthesis By Conditioning Wavenet On Mel Spectrogram Predictions.

This implementation includes distributed and fp16 support and uses the LJSpeech dataset.

Distributed and FP16 support relies on work by Christian Sarofeen and NVIDIA's Apex Library.

Visit our website for audio samples using our published Tacotron 2 and WaveGlow models.

Pre-requisites

1. NVIDIA GPU + CUDA cuDNN

Setup

- 1. Download and extract the LJ Speech dataset
- 2. Clone this repo: git clone https://github.com/NVIDIA/tacotron2.git
- 3. CD into this repo: cd tacotron2
- 4. Initialize submodule: git submodule init; git submodule update
- 5. Update .wav paths: sed -i -- 's,DUMMY,ljs_dataset_folder/wavs,g' filelists/*.txt
 - Alternatively, set load_mel_from_disk=True in hparams.py and update mel-spectrogram paths
- 6. Install PyTorch 1.0
- 7. Install python requirements or build docker image
 - Install python requirements: pip install -r requirements.txt

Training

- python train.py --output_directory=outdir --log_directory=logdir
- 2. (OPTIONAL) tensorboard --logdir=outdir/logdir

Training using a pre-trained model

Implementations https://github.com/NVIDIA/tacotron2/ https://github.com/NVIDIA/OpenSeq2Seq/

Deep Learning Framework and Libraries

- PyTorch
- TensorFlow
- NVIDIA's Automatic Mixed Precision

Training Setup

- NVIDIA's Tesla V100
- Good results in less than a day starting fresh
- Good results in a few hours warm-starting

TTS DATASET

LJS (Linda Johnson: single native speakers, ~24 hours)

- 7 non-fiction books
- "All of my recordings were done from the sofa in my family room!"
- "All of my recordings were done on a MacBook Pro."
- https://keithito.com/LJ-Speech-Dataset/
- https://librivox.org/reader/11049

MEL TO AUDIO WITH WAVENET

$$p(\mathbf{x} \mid \mathbf{h}) = \prod_{t=1}^{T} p(x_t \mid x_1, \dots, x_{t-1}, \mathbf{h})$$

Sampling Rates 44100 Hz 22050 Hz 16000 Hz

WAVENET IMPLEMENTATION DETAILS

Naïve PyTorch -> 20 samples per second

Inference PyTorch on Volta -> 200 samples per second

nv-wavenet -> 20000 samples per second

MEAN OPINION SCORES: TACOTRON AND WAVENET

System	MOS
Parametric	3.492 ± 0.096
Tacotron (Griffin-Lim)	4.001 ± 0.087
Concatenative	4.166 ± 0.091
WaveNet (Linguistic)	4.341 ± 0.051
Ground truth	4.582 ± 0.053
Tacotron 2 (this paper)	4.526 ± 0.066

OUTLINE

1.Text to Speech Synthesis

2.Tacotron 2

3.WaveGlow

4.TTS and TensorCores

WAVENET IS THE BOTTLENECK

Fig. 1. Block diagram of the Tacotron 2 system architecture.

Shen, J. Et al. Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions. https://arxiv.org/abs/1712.05884

WAVENET IS THE BOTTLENECK

Fig. 1. Block diagram of the Tacotron 2 system architecture.

Shen, J. Et al. Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions. https://arxiv.org/abs/1712.05884

AUTO-REGRESSION IS INHERENTLY SERIAL

$$P(x_0, x_1, x_2, \dots) = P(x_0)P(x_1|x_0)P(x_2|x_1, x_0).$$

Output 🔴 🔴 🔴 🔴 🔴 🔴 🔴 🔴 🔴 🔴 🔴 🔴

Layer

van den Oord, A. *WaveNet: A Generative Model for Raw Audio*. https://arxiv.org/pdf/1609.03499.pdf

AUTO-REGRESSION IS INHERENTLY SERIAL

$$P(x_0, x_1, x_2, \dots) = P(x_0)P(x_1|x_0)P(x_2|x_1, x_0)\dots$$

Output • • • • • • • • • • • • • • • • • •

Layer

Layer OOOOOOOOOOOOOOOOOOOO

van den Oord, A. *WaveNet: A Generative Model for Raw Audio*. https://arxiv.org/pdf/1609.03499.pdf

NV-WaveNet

Maximum Sample Rate nv-wavenet initial release, V100-SXM2, CUDA 9.0

https://github.com/NVIDIA/nv-wavenet

TRANSFORMING WHITENOISE TO AUDIO IS PARALLEL

Gaussian Noise

anaa a mutal mining manangan dikana manangan dikana mining manangan mining an manangan manangan panangan di mu Muna a mutal mining mining mining dikana manangan dikana mining an manangan mutamangan panangan panangan dikana

Mel-Spectrogram

AUTO-ENCODER (APPROXIMATING LIKELIHOOD)

audio samples

audio samples

Waveglow

Fig. 1: WaveGlow network

$$\begin{split} \log p_{\theta}(\boldsymbol{x}) &= - \frac{\boldsymbol{z}(\boldsymbol{x})^{T} \boldsymbol{z}(\boldsymbol{x})}{2\sigma^{2}} \\ &+ \sum_{j=0}^{\#coupling} \log \boldsymbol{s}_{j}(\boldsymbol{x}, mel\text{-}spectrogram) \\ &+ \sum_{k=0}^{\#conv} \log \det |\boldsymbol{W}_{k}| \end{split}$$

https://github.com/NVIDIA/waveglow

DECREASING TEMPERATURE CAN HELP

Gaussian Noise

Mel-Spectrogram

) σ ~ 0.8

PARALLEL SOLUTION WORKS

Model	Mean Opinion Score (MOS)
Griffin-Lim	3.823 ± 0.1349
WaveNet	3.885 ± 0.1238
WaveGlow	3.961 ± 0.1343
Ground Truth	4.274 ± 0.1340

NV-WaveNet: 24-48khz (1.2x - 2.4x realtime) WaveGlow (published): 520 khz (24.5x realtime)

PARALLEL SOLUTION WORKS

Model	Mean Opinion Score (MOS)
Griffin-Lim	3.823 ± 0.1349
WaveNet	3.885 ± 0.1238
WaveGlow	3.961 ± 0.1343
Ground Truth	4.274 ± 0.1340

NV-WaveNet: 24-48khz (1.2x - 2.4x realtime)

WaveGlow (published): 520 khz (24.5x realtime) WaveGlow (internal smaller): 1,500 khz (70x realtime)

RELATED WORK

Parallel WaveNet/ClariNet

Very similar network/inference Very different training procedure WaveRNN

> More like optimized auto-regressive Can get some parallelism with subscale trick

OUTLINE

1.Text to Speech Synthesis

2.Tacotron 2

3.WaveGlow

4.TTS and Tensor Cores

INFERENCE SPEED UP

with Tensor Cores - Automatic Mixed Precision

39 📀 📀 NVIDIA.

INFERENCE SPEED UP

with Tensor Cores - Automatic Mixed Precision

TENSOR CORES SPEED UP MATRIX MULTIPLICATIONS

FP16 x FP16 + FP32

w/o Tensor Cores 📢 w/ Tensor Cores 📢

Inference time

29ms

15ms

2X FASTER INFERENCE WITH TENSOR CORES

TRAINING SPEED UP with Tensor Cores - Automatic Mixed Precision

On DGX-1 1 Tesla V100 GPU over 1000 Epochs

TRAINING WITH TENSOR CORES

Tensor Cores achieve similar training loss

USING TENSOR CORES WITH AMP

- Automatic Mixed Precision library that enables Tensor Cores transparently
 - manages type conversions and master weights
 - automatic loss scaling to prevents gradient underflow
- Different levels of optimization
 - white/black list allow user to enforce precision
- Easy code adjustment

INFERENCE WITH AMP IS EASY

Code Example

FP32

•••

from glow import WaveGlow
model = WaveGlow(**json.loads(config_data)['waveglow_config']).cuda()

input_data = torch.rand((batch_size, 80, n_frames)).cuda()
with torch.no_grad():
 result = model.infer(input_data)

• • •

INFERENCE WITH AMP IS EASY

Code Example

FP32

•••

from glow import WaveGlow
model = WaveGlow(**json.loads(config_data)['waveglow_config']).cuda()

input_data = torch.rand((batch_size, 80, n_frames)).cuda()
with torch.no_grad():
 result = model.infer(input_data)

• • •

1x

Tensor Cores with AMP

from glow import WaveGlow
model = WaveGlow(**json.loads(config_data)['waveglow_config']).cuda()
use AMP to adjust model and select optimization level
from apex import amp
model, = amp.initialize(model, [], opt level="01")
input_data = torch.rand((batch_size, 80, n_frames)).cuda()
with torch.no_grad():
 result = model.infer(input_data)

TRAINING WITH AMP IS EASY Code Example

FP32

TRAINING WITH AMP IS EASY Code Example

from torch.utils.data import DataLoader from glow import WaveGlow, WaveGlowLoss from mel2samp import Mel2Samp
from apex import amp
<pre>def train(num_gpus, rank, group_name, output_directory, epochs, learning_rate,</pre>
<pre>amp_handle = amp.init()</pre>
<pre> for epoch in range(epoch offset, epochs):</pre>
<pre>print("Epoch: {}".format(epoch)) for i, batch in enumerate(train_loader): model.zero_grad()</pre>
<pre>mel, audio = batch mel = torch.autograd.Variable(mel.cuda()) audio = torch.autograd.Variable(audio.cuda()) outputs = model((mel, audio))</pre>
<pre>loss = criterion(outputs) if num_gpus > 1: reduced_loss = reduce_tensor(loss.data, num_gpus).item() else: reduced loss = loss.item()</pre>
with amp_handle.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward()
optimizer.step()

Tensor Cores with AMP

1.9x speed up

CONCLUSION

- Tensor Cores achieve close to 2x faster inference and training on Waveglow
- AMP enables Tensor Cores transparently for training and inference
- Code available on NGC and github
 - https://ngc.nvidia.com/catalog/model-scripts/
 - https://github.com/NVIDIA/tacotron2
 - https://github.com/NVIDIA/waveglow
 - https://github.com/NVIDIA/apex/tree/master/apex/amp

