
1

TEXT-TO-SPEECH SYNTHESIS USING 
TACOTRON 2 AND WAVEGLOW WITH TENSOR CORES

Rafael Valle, Ryan Prenger and Yang Zhang



2

OUTLINE

1.Text to Speech Synthesis

2.Tacotron 2

3.WaveGlow

4.TTS and TensorCores



3

TEXT TO SPEECH SYNTHESIS (TTS)
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1 https://www.marketsandmarkets.com/PressReleases/text-to-speech.asp
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APPLICATIONS OF TTS

Smart Home Devices Audio Books

Video GamesSelf-Driving CarsVocaloids

Health Care
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TEXT TO SPEECH SYNTHESIS
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SPEECH SYNTHESIS: THE VODER 1939
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PARAMETRIC SPEECH SYNTHESIS

Pneumatic speech synthesizer developed 

by von Kempelen in 1791.

Voder speech synthesizer developed

by Homer Dudley in 1939.
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CONCATENATIVE TTS SYNTHESIS

First practical application in 1936: 
British Phone company’s Talking Clock

for - ty per - c - of aent

Database
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CONCATENATIVE TTS SYNTHESIS

https://wezs.com/~danguy/monguy/TTS.html

• Requires collecting speech units

• Requires designing cost heuristics
• Requires acoustic processing
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PARAMETRIC (DEEP LEARNING) 
TTS SYNTHESIS
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DEEP LEARNING TTS SYNTHESIS

Linguistic or Acoustic features
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TEXT TO (MEL) SPECTROGRAM 
WITH TACOTRON

Tacotron

CBHG:
Convolution Bank (k=[1, 2, 4, 8…])

Convolution stack (ngram like)
Highway

bi-directional GRU

Tacotron 2

Location sensitive attention, i.e. attend to:

Memory (encoder output)

Query (decoder output)
Location (attention weights)

Cumulative attention weights (+= )
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Implementations
https://github.com/NVIDIA/tacotron2/
https://github.com/NVIDIA/OpenSeq2Seq/

Deep Learning Framework and Libraries
– PyTorch
– TensorFlow
– NVIDIA’s Automatic Mixed Precision

Training Setup
– NVIDIA’s Tesla V100
– Good results in less than a day starting fresh
– Good results in a few hours warm-starting

https://github.com/NVIDIA/tacotron2/
https://github.com/NVIDIA/OpenSeq2Seq
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TTS DATASET

LJS (Linda Johnson: single native speakers, ~24 hours)

● 7 non-fiction books

● “All of my recordings were done from the sofa in my family room!” 

● “All of my recordings were done on a MacBook Pro.”

● https://keithito.com/LJ-Speech-Dataset/

● https://librivox.org/reader/11049

Sometimes raw text, other times ARPAbet
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MEL TO AUDIO WITH WAVENET

Sampling Rates
44100 Hz

22050 Hz
16000 Hz

https://deepmind.com/blog/wavenet-generative-model-raw-audio/
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WAVENET IMPLEMENTATION DETAILS

Naïve PyTorch ->  20 samples per second

Inference PyTorch on Volta -> 200 samples per second

nv-wavenet -> 20000 samples per second 
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MEAN OPINION SCORES: 
TACOTRON AND WAVENET

https://arxiv.org/abs/1712.05884
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WAVENET IS THE BOTTLENECK

Ping, W.  Deep Voice 3: Scaling Text-to-Speech with Convolutional 

Sequence Learning. https://arxiv.org/abs/1710.07654

Shen, J.  Et al.  Natural TTS Synthesis by Conditioning WaveNet on 
Mel Spectrogram Predictions. https://arxiv.org/abs/1712.05884

TacoTron2 DeepVoice 3
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WAVENET IS THE BOTTLENECK

Ping, W.  Deep Voice 3: Scaling Text-to-Speech with Convolutional 

Sequence Learning. https://arxiv.org/abs/1710.07654

Shen, J.  Et al.  Natural TTS Synthesis by Conditioning WaveNet on 
Mel Spectrogram Predictions. https://arxiv.org/abs/1712.05884

TacoTron2 DeepVoice 3
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AUTO-REGRESSION IS INHERENTLY SERIAL

van den Oord, A.  WaveNet: A Generative Model for Raw Audio.
https://arxiv.org/pdf/1609.03499.pdf

𝑃 𝑥0, 𝑥1, 𝑥2, … = 𝑃 𝑥0 𝑃 𝑥1 𝑥0)𝑃 𝑥2 𝑥1, 𝑥0 …
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AUTO-REGRESSION IS INHERENTLY SERIAL

NV-WaveNet

https://github.com/NVIDIA/nv-wavenet
van den Oord, A.  WaveNet: A Generative Model for Raw Audio.

https://arxiv.org/pdf/1609.03499.pdf

𝑃 𝑥0, 𝑥1, 𝑥2, … = 𝑃 𝑥0 𝑃 𝑥1 𝑥0)𝑃 𝑥2 𝑥1, 𝑥0 …
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TRANSFORMING WHITENOISE TO AUDIO IS 
PARALLEL

Mel-Spectrogram

Gaussian Noise
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AUTO-ENCODER
(APPROXIMATING LIKELIHOOD)

Loss 1

Loss 2

Gaussian Noise

Mel-Spectrogram
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INVERTIBLE NETWORK
(EXACT LIKELIHOOD)

Mel-Spectrogram

Gaussian Noise

Loss 1
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HOW TO MAKE A NETWORK INVERTIBLE

audio samples
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HOW TO MAKE A NETWORK INVERTIBLE

audio samples
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HOW TO MAKE A NETWORK INVERTIBLE



30

HOW TO MAKE A NETWORK INVERTIBLE

Coupling network

(s, b)

(s, b)

(s, b)

(s, b)
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HOW TO MAKE A NETWORK INVERTIBLE
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HOW TO MAKE A NETWORK INVERTIBLE

Coupling network

(s, b)

(s, b)

(s, b)

(s, b)

(s, b)

(s, b)

- b) / s(

- b) / s

- b) / s

- b) / s

- b) / s

- b) / s(

(

(

(

(



33

https://github.com/NVIDIA/waveglow
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DECREASING TEMPERATURE CAN HELP

Mel-Spectrogram

Gaussian Noise 𝜎 ~ 0.8



35

PARALLEL SOLUTION WORKS

L
o
ss

NV-WaveNet:  24-48khz (1.2x – 2.4x realtime)

WaveGlow (published):  520 khz (24.5x realtime)



36

PARALLEL SOLUTION WORKS

L
o
ss

NV-WaveNet:  24-48khz (1.2x – 2.4x realtime)

WaveGlow (published):  520 khz (24.5x realtime)

WaveGlow (internal smaller):  1,500 khz (70x realtime)
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RELATED WORK

Parallel WaveNet/ClariNet

Very similar network/inference

Very different training procedure

WaveRNN

More like optimized auto-regressive

Can get some parallelism with subscale trick
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INFERENCE SPEED UP

0

1

2

3

w/o Tensor Cores w/ Tensor Cores

sa
m

p
le

s/
s 

in
 M

H
z

On DGX-1 
1 Tesla V100 GPU

Batch size: 1

with Tensor Cores – Automatic Mixed Precision

1.8x



40

INFERENCE SPEED UP
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TENSOR CORES SPEED UP MATRIX 
MULTIPLICATIONS 

FP16      x      FP16       +       FP32

x
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w/o Tensor Cores w/ Tensor Cores

Inference time 29ms 15ms

2X FASTER INFERENCE WITH TENSOR CORES
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TRAINING SPEED UP
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TRAINING WITH TENSOR CORES
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USING TENSOR CORES WITH AMP

Automatic Mixed Precision library that enables Tensor Cores transparently

manages type conversions and master weights

automatic loss scaling to prevents gradient underflow

Different levels of optimization

white/black list allow user to enforce precision

Easy code adjustment
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INFERENCE WITH AMP IS EASY
Code Example

FP32
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INFERENCE WITH AMP IS EASY
Code Example

FP32 Tensor Cores with AMP

1.8x1x
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TRAINING WITH AMP IS EASY
Code Example

FP32
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TRAINING WITH AMP IS EASY
Code Example

Tensor Cores
with AMP

1.9x
speed up
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CONCLUSION

Tensor Cores achieve close to 2x faster inference and training on Waveglow

AMP enables Tensor Cores transparently for training and inference

Code available on NGC and github

https://ngc.nvidia.com/catalog/model-scripts/

https://github.com/NVIDIA/tacotron2

https://github.com/NVIDIA/waveglow

https://github.com/NVIDIA/apex/tree/master/apex/amp

https://ngc.nvidia.com/catalog/model-scripts/
https://github.com/NVIDIA/tacotron2
https://github.com/NVIDIA/waveglow
https://github.com/NVIDIA/apex/tree/master/apex/amp



