

ARESDB

A GPU-Powered Real-time Analytics Engine

Agenda

- Real-time analytics at Uber
- Leveraging GPU for real-time analytics
- AresDB Architecture and Features
- Learnings From GPU Programming
- Future Directions

Real-time analytics at Uber

Real-time Analytics Use Cases at Uber

Open car information

4

Real-time Analytics Use Cases Categorization

	Dashboards	Decision Systems	Ad hoc Queries
Dataset	Subset	Subset	All data
Ingestion Latency	Seconds to Minutes	Seconds to Minutes	Minutes
Query Pattern	Well known	Well known	Arbitrary
Query QPS	Medium	High	Low
Query Latency	Sub seconds	Sub seconds	Minutes
Target Users	City OPS, Executives	Engineers (application developers)	Data Scientists, Analytics, City OPS

Mission of AresDB

sub-sec level query latency second to min level ingestion latency

High availability (4 9s) High data accuracy (3 9s)

Uber scale and beyond

Build a fast, reliable and scalable analytics platform solution to power **Uber's Real-Time business intelligence**

Leveraging GPU for Real-Time Analytics

AresDB: A GPU-Powered Real-time Analytics Engine

ARESDB

- High-efficiency storage
- Low-latency ingestion
- Sub-second query response time
- Feature set for real-time analytics

How is AresDB used at Uber

The Problem: Time-series Analytics

Computing measures by dimensions on time series data

request_at	city_id	fare		day(request_at)	city_id	sum(fare)
2017-04-13 10:25	1	15.3		2017-04-13	1	22.8
2017-04-13 11:10	1	7.5	computes	2017-04-14	1	20.1
2017-04-14 10:35	1	20.1		2017-04-14	5	17.7
2017-04-14 11:40	5	12.1		-		
2017-04-14 15:45	5	5.6				

Why are GPUs well-suited ?

GPU vs CPU

Hardware Storage Choices

Hardware Storage Choices

	Capacity	Bandwidth to GPUs	Ingestion Method	Comment	
HDD	8ТВ	100MB/s	File writing similar	Unable to feed data fast	
SSD	4TB	600MB/s	to traditional databases	enough to fully utilize GPUs	
NVMe	2ТВ	3GB/s		And also expensive	
Host Memory	256GB	15GB/s per side; 30GB/s two sides	Memory writing	Limited by PCIe bandwidth	
GPU Memory	12GBx8	500GB/s on the same GPU; 15GB/s across GPUs	Sharding across multiple GPUs; Complex memory writing	Tight coupling of storage and computation; ingestion is challenging	

AresDB Architecture and Features

AresDB Architecture: Single Instance

Fact/Dimension Table

- Fact table
 - Facts about a business process
 - Each record associated with an event time (grows with time)
 - E.g. trips, orders, ...
- Dimension table
 - Descriptive attributes/dimensions
 - E.g. product catalogs, cities, ...

Feature Highlights

- In-Memory Columnar Storage
- Real-time upserts
- GPU powered query engine
- Analytical Query Feature Set
 - Time zone, Time Filter, Time Bucketization
 - Geospatial analytics
 - Fact/dimension table joins
 - Hyperloglog

Columnar Storage: uncompressed

Columnar Storage: compressed

Columnar Storage: fact table

Columnar Storage: dimension table

Dimension Table

Feature Highlights

- In-Memory Columnar Storage
- Real-time upserts
- GPU powered query engine
- Analytical Query Feature Set
 - Time zone, Time Filter, Time Bucketization
 - Geospatial analytics
 - Fact/dimension table joins
 - Hyperloglog

Real-time upserts: ingestion flow

Real-time upserts: deduplication

Live Store

Real-time upserts: archiving

Ingestion

Query

Archiving

Archiving

Feature Highlights

- In-Memory Columnar Storage
- Real-time upserts with deduplication
- GPU powered query engine
- Analytical Query Feature Set
 - Time zone, Time Filter, Time Bucketization
 - Geospatial analytics
 - Fact/dimension table joins
 - Hyperloglog

Query Engine

High level architecture

Data Feeding

Partitioned Data

Data Feeding

Prefilter

Sort Columns

Query Execution

Execution Stages

Query Execution

Expression Evaluation

- One operator per kernel on non-leaf nodes
- Each leaf node is one of
 - column/constant
- Non-root, non-leaf node
 - kernel launch
 - output to intermediate
 buffer
- Root node
 - Kernel launch
 - Write to output buffer
- E.g., request_at request_at
 % 86400

Query Execution

Aggregation (Sort and Reduction)

Device Resource Management

Feature Highlights

- In-Memory Columnar Storage
- Real-time upserts with deduplication
- GPU powered query engine
- Feature set for analytical queries
 - Time zone, Time Filter, Time Bucketization
 - Fact/dimension table joins
 - Geospatial analytics
 - Hyperloglog

Timezone, Time Filter, Time Bucketization

V.S.

```
SELECT
       Count(*),
Unix timestamp (Convert tz (Concat (Date format (Conver
t tz(From unixtime(((driver info first active at)
(driver info first active at) % 900000) /
1000), 'GMT', 'America/Los Angeles'), '%Y-%m-%d
%H:')
Lpad(15*Floor(Minute(Convert tz(From unixtime(((dr
iver info first active at) - (driver info first act
ive at)
%900000)/1000),'GMT','America/Los Angeles'))/15),
2, '0')), 'America/Los Angeles', 'UTC')) AS
time dimension, driver info flow type
FROM driver info
WHERE driver info first active at >=
1534810500000
       driver info first active at <
AND
1534813200000
GROUP BY 2.3
```

```
"table": "driver info",
"measures": [
     "sqlExpression": "count(*)"
"dimensions": [
     "alias": "ts"
     "sqlExpression": "first active at",
     "timeBucketizer": "dav"
     "sqlExpression": "flow type"
"timeFilter": {
  "column": "first active at",
  "from": "7 days ago"
"timezone": "America/Los Angeles"
```

Analytical Query Features

- Fact/Dimension Table Join
 - E.g. trips.city_id = cities.id
- Hyperloglog Cardinality Estimation
 - countDistinctHLL(driver_id)
 - Dedicated hll column
- Geospatial analytics
 - GeoPoint, GeoShape
 - GeoIntersect(point, shape)

Learnings from GPU Programming

Learnings from GPU Programming

- Maximize parallelism
- Optimize memory access
- Maximize arithmetic intensity
- Reduce data transfer between GPU/CPU
- Profile, profile, profile

Maximize Parallelism

- Partition your computation to keep the GPU multiprocessors equally busy
 - Many threads, many thread blocks
 - E.g. Inclusion test for a point and polygons
 - One shape per thread vs one edge per thread
- Keep resource usage low enough to maximize occupancy
 - Register, shared memory
 - Careful design of data structure
 - Use less wide data type
 - Int64 -> uint32
 - Reuse memory space
 - Union
 - Passing offsets instead of pointers

Optimize Memory Access

- Coalesced vs. non-coalesced = order of magnitude
 Global/Local device memory
- Shared memory
- Constant memory

http://developer.download.nvidia.com/CUDA/training/NVIDIA_GPU Computing_Webinars_CUDA_Optimization_April-2009.pdf retrived date: 01/10/2019

Maximize Arithmetic Intensity

- GPU spends its transistors on ALUs, not memory
- Sometimes it's better to recompute than to cache
- Do more computation on GPU instead of transferring back to CPU

Minimize CPU/GPU Transfers

- Group transfers
- Overlapping data transfers and computation
 - Async and stream api
 - Stream = sequence of operations that execute in order on GPU
 - Pipeline execution
- Pinned memory vs. pageable memory

Profiling GPU Program NVVP

- Nvidia visual profiler
- Unified CPU/GPU timeline
- Automated performance analysis
- Guided application analysis

NVVP cont'd

NVIDIA Visual Profiler	a arrestati		and the second second	mercanic off the party of success		×
File View Run Help						
] 😁 🖬 🖳] 🖳 🖏 🗸 - -0, -0, -0, F TK 🔜 🚉 🛄						
SimpleMPI.0.nvprof 83			- 0	Properties 🕱		
	0.65 s 0.655 s 0.66 s [0] MPI Rank 0					
🖃 Process "simpleMPI" (4265)						
🖃 Thread MPI Rank 0				Session	676.854 ms (676,854,183 ns)	Q
- Runtime API		cudaMemcpy	cud	▼ Attributes		Ę
🗆 Driver API				Compute Capability	3.5	
Profiling Overhead				✓ Maximums	5.5	
Process "simpleMPI" (4267)				Threads per Block	1024	
🖃 Thread MPI Rank 1					48 KiB	4
- Runtime API	cuc	daMemcpy		Shared Memory per Block		
L Driver API				Registers per Block	65536	
Profiling Overhead				Grid Dimensions	[2147483647, 65535, 65535]	
E [0] MPI Rank 0	·			Block Dimensions	[1024, 1024, 64]	
Context 1-4265 (CUDA)				Warps per Multiprocessor	64	
MemCpy (HtoD)		Memcpy HtoD [Blocks per Multiprocessor	16	
L T MemCpy (DtoH)			Men	✓ Multiprocessor		
Compute				Multiprocessors	15	
└ \ 100.0% simpleMPI	-			Clock Rate	875.5 MHz	
 Default 		Memcpy HtoD [sync] Men	Concurrent Kernel	true	
E Derault	-	метсру ноо ј	syncj Men	Max IPC	7	
Context 1-4267 (CUDA)				Threads per Warp	32	
	nc]			✓ Memory		
MemCpy (DtoH)		DtoH[sync]		Global Memory Bandwidth	288.384 GB/s	
Compute				Global Memory Size	11.25 GiB	
- ▼ 100.0% simpleMPI				Constant Memory Size	64 KiB	
Streams				L2 Cache Size	1.5 MiB	
	nc] Memcpy D	DtoH [sync]				
				Memcpy Engines	2	
	<			Environment		
L						2

Future Directions

- Beyond single instance
 - Sharding
 - Replication
- Ease of adoption
 - SQL interface
 - Native Kafka support
- More query features (eg. fact to fact table joins)
- Query engine optimizations (eg. GPU memory caching)
- Grow AresDB together with the community

Questions?

Tech blog: https://eng.uber.com/aresdb/

Git repo: https://github.com/uber/aresdb

Questions: email uberopen@uber.com Follow our Facebook page: www.facebook.com/uberopensource

Thank you Questions: email uberopen@uber.com Follow our Facebook page: www.facebook.com/uberopensource

Proprietary © 2018 Uber Technologies, Inc. All rights reserved. No part of this document may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage or retrieval systems, without permission in writing from Uber. This document is intended only for the use of the individual or entity to whom it is addressed. All recipients of this document are notified that the information contained herein includes proprietary information of Uber, and recipient may not make use of, disseminate, or in any way disclose this document or any of the enclosed information to any person other than employees of addressee to the extent necessary for consultations with authorized personnel of Uber.