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Real-time analytics at Uber
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Real-time Analytics Use Cases at Uber
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Dynamic 
Pricing

Rider eyeballs

Open car information



Real-time Analytics Use Cases Categorization
Dashboards Decision Systems Ad hoc Queries

Dataset Subset Subset All data

Ingestion Latency Seconds to Minutes Seconds to Minutes Minutes

Query Pattern Well known Well known Arbitrary 

Query QPS Medium High Low

Query Latency Sub seconds Sub seconds Minutes

Target Users City OPS, Executives Engineers (application 
developers)

Data Scientists, 
Analytics, City OPS
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Build a fast, reliable and scalable analytics platform 
solution to power 

Uber’s Real-Time business intelligence

❏ sub-sec level 
query latency 

❏ second to min level 
ingestion latency

❏ High availability (4 9s)
❏ High data accuracy (3 9s) ❏ Uber scale and 

beyond

Mission of AresDB
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Leveraging GPU for Real-Time Analytics



AresDB: A GPU-Powered Real-time Analytics Engine
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●

● High-efficiency storage
● Low-latency ingestion
● Sub-second query response time
● Feature set for real-time analytics 



How is AresDB  used at Uber
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Ingestion (with upserts)
< 1min

Databases

Uber 
Services

Message 
Queue

Streaming 
Processors

Query
< 1 sec



The Problem: Time-series Analytics
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Computing measures by dimensions on time series data

request_at city_id fare

2017-04-13 10:25 1 15.3

2017-04-13 11:10 1 7.5

2017-04-14 10:35 1 20.1

2017-04-14 11:40 5 12.1

2017-04-14 15:45 5 5.6

day(request_at) city_id sum(fare)

2017-04-13 1 22.8

2017-04-14 1 20.1

2017-04-14 5 17.7

computes



11

Why are GPUs well-suited ?



GPU vs CPU
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12 Threads

59GB/s

500 GFlOPS

Intel® Xeon® Processor 
E5-2620 v3

Tesla P100

3584 CUDA 
cores

549G/s

9.3 TFlOPS



GPU vs CPU
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ALU

ALU

ALU

ALU
Control

DRAM (12G)

Cache

DRAM (256G) PCIe

16GB/s
549G/s

59GB/s

CPU GPU

Hardware Storage Choices
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Hardware Storage Choices

Capacity Bandwidth to GPUs Ingestion Method Comment

HDD 8TB 100MB/s File writing similar 
to traditional 
databases

Unable to feed data fast 
enough to fully utilize 
GPUsSSD 4TB 600MB/s

NVMe 2TB 3GB/s And also expensive

Host 
Memory

256GB 15GB/s per side;
30GB/s two sides

Memory writing Limited by PCIe 
bandwidth

GPU 
Memory

12GBx8 500GB/s on the 
same GPU;
15GB/s across GPUs

Sharding across 
multiple GPUs;
Complex memory 
writing

Tight coupling of storage 
and computation; 
ingestion is challenging
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AresDB Architecture and Features



AresDB Architecture: Single Instance
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API

Memory Disk

GPU

MetaData

DiskStoreMemStore

MetaStore

Query

Ingestion

Schema



Fact/Dimension Table
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● Fact table
○ Facts about a business process
○ Each record associated with an event time (grows with time)
○ E.g. trips, orders, ...

● Dimension table
○ Descriptive attributes/dimensions
○ E.g. product catalogs, cities, ...



Star Schema
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Facts

EventTime

Primary Key

Foreign Keys ...

...

Dimension 2

Primary Key

...

Dimension 1

Primary Key

...

Dimension 3

Primary Key

...

Dimension 4

Primary Key

...



Feature Highlights
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● In-Memory Columnar Storage
● Real-time upserts
● GPU powered query engine
● Analytical Query Feature Set

○ Time zone, Time Filter, Time Bucketization
○ Geospatial analytics 
○ Fact/dimension table joins
○ Hyperloglog



Columnar Storage: uncompressed
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Columnar Storage: compressed
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Columnar Storage: fact table

Fact Table

Live Store
(uncompressed)

Archive Store
(compressed)

Archive Files
(compressed)

Redo 
Logs

Most Recent DataMature Data

MemStore

DiskStore

Recovery
Preloading /
On Demand Loading

Archive: sort, 
compress, 
merge

Ingestion

Backfill
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Columnar Storage: dimension table

Dimension Table

Live Store
(uncompressed)

Redo 
Logs

MemStore

DiskStore

RecoverySnapsh
ot

Ingestion

24

Snapshot
s

Load



Feature Highlights
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● In-Memory Columnar Storage
● Real-time upserts
● GPU powered query engine
● Analytical Query Feature Set

○ Time zone, Time Filter, Time Bucketization
○ Geospatial analytics 
○ Fact/dimension table joins
○ Hyperloglog



Real-time upserts: ingestion flow
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Backfill 
Queue

Batch -100

Batch -99

Upsert Batch

Columnar Vector

Empty Space

Live Store

Redo Logs

Append Replay

Late records

Updates

New records



Real-time upserts: deduplication
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Batch -100

Batch -99

Primary Key Hash Index

123-45-6789 -99:12

012-34-5678 -100:30

789-56-1234 -100:0

Primary Key Value Bach ID:Index

Live Store

Columnar Vector

Empty Space



Real-time upserts: archiving
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Batch 17500
2017-11-30

Version
[1512090000, 7]

Batch 17501
2017-12-01

Version
[1512120000, 0]

Sorted And Compressed 
Columnar Vector

Archive Store Version 
1512120000

Batch 17500
2017-11-30

Version
[1512090000, 7]

Batch 17501
2017-12-01

Version
[1512090000, 5]

Archive Store Version 
1512090000

Patch From Live Store

From: 1512090000
To: 1512120000

Archive Merge

Reuse Unaffected 
Batches



Real-time upserts: event timeline
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Now    cut-off Event TimePast

Ingestion

Write to live storeWrite to backfill queue



Real-time upserts: event timeline
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Now    cut-off Event TimePast

Query

Read from Live StoreRead from Archive Store



Real-time upserts: event timeline
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Now    cut-off Event TimePast

Archiving

   new  cut-off

Records Being 
Archived

Records 
Already 
Archived

Archiving interval Archiving Delay



Real-time upserts: event timeline
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Now Event TimePast

Archiving

cut-off

Records Already 
Archived



Feature Highlights
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● In-Memory Columnar Storage
● Real-time upserts with deduplication
● GPU powered query engine
● Analytical Query Feature Set

○ Time zone, Time Filter, Time Bucketization
○ Geospatial analytics 
○ Fact/dimension table joins
○ Hyperloglog



Query Engine
High level architecture

Query Compiler

Schema

Query Context

Live Store

Archive Store

Data 
Feeder

Query 
Engine

Post 
Processing

Results

Archive Files

Prefilt
er

(Load)

On GPU
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Data Feeding
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ALU

ALU

ALU

ALU
Control

DRAM (12G)

Cache

DRAM (256G) PCIe

16GB/s
549GB/s

59GB/s

CPU GPU



Data Feeding
Partitioned Data

2017-11-13 2017-11-12 2017-09-13

Archive Batches
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Live Batches



Data Feeding
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Data Feeding
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Stream 0

Stream 1

Batch 0 Batch 0

Batch 1 Batch 1

Batch 2 Batch 2 Batch 4 Batch 4

Batch 3 Batch 3 Batch 5

Copy data from host to device

Query execution

Pipelining



Query Execution

Execution Stages

Filters
Evaluation

Dimension 
Expressions 
Evaluation

Measure 
Expressions 
Evaluation

Sort Reduction
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Query Execution
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● One operator per kernel on 
non-leaf nodes

● Each leaf node is one of
○ column/constant

● Non-root, non-leaf node
○ kernel launch
○ output to intermediate 

buffer
● Root node 

○ Kernel launch
○ Write to output buffer

● E.g., request_at - request_at 
% 86400

request_at
Uint32

86400
Uint32

%
Uint32

request_at
Uint32

Minus
Uint32

Column

Column

constant 

Intermediate buffer

output  buffer

Kernel launch 1

Kernel launch 2

Expression Evaluation



Query Execution
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U
nsorted

Expression 
Evaluation 
Output

Result from 
previous 
batches

Dimension
Vector

Measure
Vector

Sort by 
dimensions

Reduce by
dimensions

Final results

Aggregation (Sort and Reduction)



Device Resource Management

Query 1

GPU1 GPU2 GPU3 GPU4

Query 2

Query 3

Query 4 Query 5

Query 6 Resource 
Estimation

Query 6
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Feature Highlights
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● In-Memory Columnar Storage
● Real-time upserts with deduplication
● GPU powered query engine
● Feature set for analytical queries

○ Time zone, Time Filter, Time Bucketization
○ Fact/dimension table joins
○ Geospatial analytics
○ Hyperloglog



{
    "table": "driver_info",
    "measures": [
        {
            "sqlExpression": "count(*)"
        }
    ],
    "dimensions": [
        {
            "alias": "ts",
            "sqlExpression": "first_active_at",
            "timeBucketizer": "day"
        },
        {
            "sqlExpression": "flow_type"
        }
    ],
    "timeFilter": {
        "column": "first_active_at",
        "from": "7 days ago"
    },
    "timezone": "America/Los_Angeles"
}
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Timezone, Time Filter, Time Bucketization
SELECT   Count(*), 
Unix_timestamp(Convert_tz(Concat(Date_format(Conver
t_tz(From_unixtime(((driver_info .first_active_at) -
(driver_info .first_active_at)  % 900000) / 
1000),'GMT', 'America/Los_Angeles' ),'%Y-%m-%d 
%H:'), 
Lpad(15*Floor(Minute(Convert_tz(From_unixtime(((dr
iver_info.first_active_at) -(driver_info .first_act
ive_at) 
%900000)/1000),'GMT','America/Los_Angeles' ))/15),
2,'0')),'America/Los_Angeles' ,'UTC')) AS 
time_dimension , driver_info .flow_type
FROM driver_info
WHERE driver_info .first_active_at  >= 
1534810500000 
AND    driver_info .first_active_at <  
1534813200000 
GROUP BY 2,3

V.S.



Analytical Query Features
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● Fact/Dimension Table Join
○ E.g. trips.city_id = cities.id

● Hyperloglog Cardinality Estimation
○ countDistinctHLL(driver_id)
○ Dedicated hll column

● Geospatial analytics
○ GeoPoint, GeoShape
○ GeoIntersect(point, shape)
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Learnings from GPU Programming



Learnings from GPU Programming

● Maximize parallelism
● Optimize memory access
● Maximize arithmetic intensity
● Reduce data transfer between GPU/CPU
● Profile, profile, profile
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Maximize Parallelism
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● Partition your computation to keep the GPU 
multiprocessors equally busy 

○ Many threads, many thread blocks
○ E.g. Inclusion test for a point and polygons

■ One shape per thread vs one edge per 
thread

● Keep resource usage low enough to maximize 
occupancy 

○ Register, shared memory
○ Careful design of data structure 

■ Use less wide data type
● Int64 -> uint32

■ Reuse memory space
● Union

■ Passing offsets instead of pointers



Optimize Memory Access
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● Coalesced vs. non-coalesced = 
order of magnitude 
Global/Local device memory

● Shared memory
● Constant memory

http://developer.download.nvidia.com/CUDA/training/NVIDIA_GPU
_Computing_Webinars_CUDA_Optimization_April-2009.pdf 
retrived date: 01/10/2019

http://developer.download.nvidia.com/CUDA/training/NVIDIA_GPU_Computing_Webinars_CUDA_Optimization_April-2009.pdf
http://developer.download.nvidia.com/CUDA/training/NVIDIA_GPU_Computing_Webinars_CUDA_Optimization_April-2009.pdf


Maximize Arithmetic Intensity
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● GPU spends its transistors on ALUs, not memory
● Sometimes it’s better to recompute than to cache
● Do more computation on GPU instead of transferring back to CPU



Minimize CPU/GPU Transfers
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● Group transfers 
● Overlapping data transfers and computation 

○ Async and stream api
○ Stream = sequence of operations that execute in order on GPU
○ Pipeline execution

● Pinned memory vs. pageable memory



Profiling GPU Program NVVP

52

● Nvidia visual profiler
● Unified CPU/GPU timeline
● Automated performance analysis
● Guided application analysis



NVVP cont’d
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Future Directions

● Beyond single instance
○ Sharding
○ Replication

● Ease of adoption
○ SQL interface
○ Native Kafka support

● More query features (eg. fact to fact table joins)
● Query engine optimizations (eg. GPU memory caching)
● Grow AresDB together with the community

54



Questions ?

Tech blog: https://eng.uber.com/aresdb/

Git repo: https://github.com/uber/aresdb
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Questions: email uberopen@uber.com
Follow our Facebook page: 
www.facebook.com/uberopensource

https://eng.uber.com/aresdb/
https://github.com/uber/aresdb


Thank you

Proprietary © 2018 Uber Technologies, Inc. All rights reserved. No part of this 
document may be reproduced or utilized in any form or by any means, 
electronic or mechanical, including photocopying, recording, or by any 
information storage or retrieval systems, without permission in writing from 
Uber. This document is intended only for the use of the individual or entity to 
whom it is addressed. All recipients of this document are notified that the 
information contained herein includes proprietary information of Uber, and 
recipient may not make use of, disseminate, or in any way disclose this 
document or any of the enclosed information to any person other than 
employees of addressee to the extent necessary for consultations with 
authorized personnel of Uber.

Questions: email uberopen@uber.com

Follow our Facebook page: 
www.facebook.com/uberopensource


