
A GPU-Powered Real-time Analytics Engine

Agenda

● Real-time analytics at Uber
● Leveraging GPU for real-time analytics
● AresDB Architecture and Features
● Learnings From GPU Programming
● Future Directions

2

Real-time analytics at Uber

3

Real-time Analytics Use Cases at Uber

4

Dynamic
Pricing

Rider eyeballs

Open car information

Real-time Analytics Use Cases Categorization
Dashboards Decision Systems Ad hoc Queries

Dataset Subset Subset All data

Ingestion Latency Seconds to Minutes Seconds to Minutes Minutes

Query Pattern Well known Well known Arbitrary

Query QPS Medium High Low

Query Latency Sub seconds Sub seconds Minutes

Target Users City OPS, Executives Engineers (application
developers)

Data Scientists,
Analytics, City OPS

5

Build a fast, reliable and scalable analytics platform
solution to power

Uber’s Real-Time business intelligence

❏ sub-sec level
query latency

❏ second to min level
ingestion latency

❏ High availability (4 9s)
❏ High data accuracy (3 9s) ❏ Uber scale and

beyond

Mission of AresDB

7

Leveraging GPU for Real-Time Analytics

AresDB: A GPU-Powered Real-time Analytics Engine

8

●

● High-efficiency storage
● Low-latency ingestion
● Sub-second query response time
● Feature set for real-time analytics

How is AresDB used at Uber

9

Ingestion (with upserts)
< 1min

Databases

Uber
Services

Message
Queue

Streaming
Processors

Query
< 1 sec

The Problem: Time-series Analytics

10

Computing measures by dimensions on time series data

request_at city_id fare

2017-04-13 10:25 1 15.3

2017-04-13 11:10 1 7.5

2017-04-14 10:35 1 20.1

2017-04-14 11:40 5 12.1

2017-04-14 15:45 5 5.6

day(request_at) city_id sum(fare)

2017-04-13 1 22.8

2017-04-14 1 20.1

2017-04-14 5 17.7

computes

11

Why are GPUs well-suited ?

GPU vs CPU

12

12 Threads

59GB/s

500 GFlOPS

Intel® Xeon® Processor
E5-2620 v3

Tesla P100

3584 CUDA
cores

549G/s

9.3 TFlOPS

GPU vs CPU

13

14

ALU

ALU

ALU

ALU
Control

DRAM (12G)

Cache

DRAM (256G) PCIe

16GB/s
549G/s

59GB/s

CPU GPU

Hardware Storage Choices

15

Hardware Storage Choices

Capacity Bandwidth to GPUs Ingestion Method Comment

HDD 8TB 100MB/s File writing similar
to traditional
databases

Unable to feed data fast
enough to fully utilize
GPUsSSD 4TB 600MB/s

NVMe 2TB 3GB/s And also expensive

Host
Memory

256GB 15GB/s per side;
30GB/s two sides

Memory writing Limited by PCIe
bandwidth

GPU
Memory

12GBx8 500GB/s on the
same GPU;
15GB/s across GPUs

Sharding across
multiple GPUs;
Complex memory
writing

Tight coupling of storage
and computation;
ingestion is challenging

16

AresDB Architecture and Features

AresDB Architecture: Single Instance

17

API

Memory Disk

GPU

MetaData

DiskStoreMemStore

MetaStore

Query

Ingestion

Schema

Fact/Dimension Table

18

● Fact table
○ Facts about a business process
○ Each record associated with an event time (grows with time)
○ E.g. trips, orders, ...

● Dimension table
○ Descriptive attributes/dimensions
○ E.g. product catalogs, cities, ...

Star Schema

19

Facts

EventTime

Primary Key

Foreign Keys ...

...

Dimension 2

Primary Key

...

Dimension 1

Primary Key

...

Dimension 3

Primary Key

...

Dimension 4

Primary Key

...

Feature Highlights

20

● In-Memory Columnar Storage
● Real-time upserts
● GPU powered query engine
● Analytical Query Feature Set

○ Time zone, Time Filter, Time Bucketization
○ Geospatial analytics
○ Fact/dimension table joins
○ Hyperloglog

Columnar Storage: uncompressed

21

12

5

0

12

1

1

1

0

1

1

Value Vector NULL Vector

2 Bytes

1 Byte

Los Angeles

New York City

NULL

Los Angeles

San Francisco

Paddings

city_id

Columnar Storage: compressed

22

0

1

5

12

0

1

1

1

Value Vector Null Vector

city_id

0

1

4

6

8

Count Vector

0

0

1

0

0

1

1

1

Value Vector Null Vector

status

0

1

3

4

6

Count Vector

0 1

8

NULL x1

SF x3

NYC x2

LA x2

NULL x1

completed x2

canceled x1

completed x2

completed x2

One to Many

Columnar Storage: fact table

Fact Table

Live Store
(uncompressed)

Archive Store
(compressed)

Archive Files
(compressed)

Redo
Logs

Most Recent DataMature Data

MemStore

DiskStore

Recovery
Preloading /
On Demand Loading

Archive: sort,
compress,
merge

Ingestion

Backfill
23

Columnar Storage: dimension table

Dimension Table

Live Store
(uncompressed)

Redo
Logs

MemStore

DiskStore

RecoverySnapsh
ot

Ingestion

24

Snapshot
s

Load

Feature Highlights

25

● In-Memory Columnar Storage
● Real-time upserts
● GPU powered query engine
● Analytical Query Feature Set

○ Time zone, Time Filter, Time Bucketization
○ Geospatial analytics
○ Fact/dimension table joins
○ Hyperloglog

Real-time upserts: ingestion flow

26

Backfill
Queue

Batch -100

Batch -99

Upsert Batch

Columnar Vector

Empty Space

Live Store

Redo Logs

Append Replay

Late records

Updates

New records

Real-time upserts: deduplication

27

Batch -100

Batch -99

Primary Key Hash Index

123-45-6789 -99:12

012-34-5678 -100:30

789-56-1234 -100:0

Primary Key Value Bach ID:Index

Live Store

Columnar Vector

Empty Space

Real-time upserts: archiving

28

Batch 17500
2017-11-30

Version
[1512090000, 7]

Batch 17501
2017-12-01

Version
[1512120000, 0]

Sorted And Compressed
Columnar Vector

Archive Store Version
1512120000

Batch 17500
2017-11-30

Version
[1512090000, 7]

Batch 17501
2017-12-01

Version
[1512090000, 5]

Archive Store Version
1512090000

Patch From Live Store

From: 1512090000
To: 1512120000

Archive Merge

Reuse Unaffected
Batches

Real-time upserts: event timeline

29

Now cut-off Event TimePast

Ingestion

Write to live storeWrite to backfill queue

Real-time upserts: event timeline

30

Now cut-off Event TimePast

Query

Read from Live StoreRead from Archive Store

Real-time upserts: event timeline

31

Now cut-off Event TimePast

Archiving

 new cut-off

Records Being
Archived

Records
Already
Archived

Archiving interval Archiving Delay

Real-time upserts: event timeline

32

Now Event TimePast

Archiving

cut-off

Records Already
Archived

Feature Highlights

33

● In-Memory Columnar Storage
● Real-time upserts with deduplication
● GPU powered query engine
● Analytical Query Feature Set

○ Time zone, Time Filter, Time Bucketization
○ Geospatial analytics
○ Fact/dimension table joins
○ Hyperloglog

Query Engine
High level architecture

Query Compiler

Schema

Query Context

Live Store

Archive Store

Data
Feeder

Query
Engine

Post
Processing

Results

Archive Files

Prefilt
er

(Load)

On GPU

34

Data Feeding

35

ALU

ALU

ALU

ALU
Control

DRAM (12G)

Cache

DRAM (256G) PCIe

16GB/s
549GB/s

59GB/s

CPU GPU

Data Feeding
Partitioned Data

2017-11-13 2017-11-12 2017-09-13

Archive Batches

36

Live Batches

Data Feeding

37

0

1

5

12

city_id

0

0

1

0

status

0

One to Many

0

10

20

30

20

10

40

30

vvid

One to Many

0

1

1

1

1

1

1

1

fare

One to Many

Sort Columns

city_id = 1 status = 0 vvid >= 20

Matched Prefilters

Prefilter

Data Feeding

38

Stream 0

Stream 1

Batch 0 Batch 0

Batch 1 Batch 1

Batch 2 Batch 2 Batch 4 Batch 4

Batch 3 Batch 3 Batch 5

Copy data from host to device

Query execution

Pipelining

Query Execution

Execution Stages

Filters
Evaluation

Dimension
Expressions
Evaluation

Measure
Expressions
Evaluation

Sort Reduction

39

Query Execution

40

● One operator per kernel on
non-leaf nodes

● Each leaf node is one of
○ column/constant

● Non-root, non-leaf node
○ kernel launch
○ output to intermediate

buffer
● Root node

○ Kernel launch
○ Write to output buffer

● E.g., request_at - request_at
% 86400

request_at
Uint32

86400
Uint32

%
Uint32

request_at
Uint32

Minus
Uint32

Column

Column

constant

Intermediate buffer

output buffer

Kernel launch 1

Kernel launch 2

Expression Evaluation

Query Execution

41

U
nsorted

Expression
Evaluation
Output

Result from
previous
batches

Dimension
Vector

Measure
Vector

Sort by
dimensions

Reduce by
dimensions

Final results

Aggregation (Sort and Reduction)

Device Resource Management

Query 1

GPU1 GPU2 GPU3 GPU4

Query 2

Query 3

Query 4 Query 5

Query 6 Resource
Estimation

Query 6

42

Feature Highlights

43

● In-Memory Columnar Storage
● Real-time upserts with deduplication
● GPU powered query engine
● Feature set for analytical queries

○ Time zone, Time Filter, Time Bucketization
○ Fact/dimension table joins
○ Geospatial analytics
○ Hyperloglog

{
 "table": "driver_info",
 "measures": [
 {
 "sqlExpression": "count(*)"
 }
],
 "dimensions": [
 {
 "alias": "ts",
 "sqlExpression": "first_active_at",
 "timeBucketizer": "day"
 },
 {
 "sqlExpression": "flow_type"
 }
],
 "timeFilter": {
 "column": "first_active_at",
 "from": "7 days ago"
 },
 "timezone": "America/Los_Angeles"
}

44

Timezone, Time Filter, Time Bucketization
SELECT Count(*),
Unix_timestamp(Convert_tz(Concat(Date_format(Conver
t_tz(From_unixtime(((driver_info .first_active_at) -
(driver_info .first_active_at) % 900000) /
1000),'GMT', 'America/Los_Angeles'),'%Y-%m-%d
%H:'),
Lpad(15*Floor(Minute(Convert_tz(From_unixtime(((dr
iver_info.first_active_at) -(driver_info .first_act
ive_at)
%900000)/1000),'GMT','America/Los_Angeles'))/15),
2,'0')),'America/Los_Angeles' ,'UTC')) AS
time_dimension , driver_info .flow_type
FROM driver_info
WHERE driver_info .first_active_at >=
1534810500000
AND driver_info .first_active_at <
1534813200000
GROUP BY 2,3

V.S.

Analytical Query Features

45

● Fact/Dimension Table Join
○ E.g. trips.city_id = cities.id

● Hyperloglog Cardinality Estimation
○ countDistinctHLL(driver_id)
○ Dedicated hll column

● Geospatial analytics
○ GeoPoint, GeoShape
○ GeoIntersect(point, shape)

46

Learnings from GPU Programming

Learnings from GPU Programming

● Maximize parallelism
● Optimize memory access
● Maximize arithmetic intensity
● Reduce data transfer between GPU/CPU
● Profile, profile, profile

47

Maximize Parallelism

48

● Partition your computation to keep the GPU
multiprocessors equally busy

○ Many threads, many thread blocks
○ E.g. Inclusion test for a point and polygons

■ One shape per thread vs one edge per
thread

● Keep resource usage low enough to maximize
occupancy

○ Register, shared memory
○ Careful design of data structure

■ Use less wide data type
● Int64 -> uint32

■ Reuse memory space
● Union

■ Passing offsets instead of pointers

Optimize Memory Access

49

● Coalesced vs. non-coalesced =
order of magnitude
Global/Local device memory

● Shared memory
● Constant memory

http://developer.download.nvidia.com/CUDA/training/NVIDIA_GPU
_Computing_Webinars_CUDA_Optimization_April-2009.pdf
retrived date: 01/10/2019

http://developer.download.nvidia.com/CUDA/training/NVIDIA_GPU_Computing_Webinars_CUDA_Optimization_April-2009.pdf
http://developer.download.nvidia.com/CUDA/training/NVIDIA_GPU_Computing_Webinars_CUDA_Optimization_April-2009.pdf

Maximize Arithmetic Intensity

50

● GPU spends its transistors on ALUs, not memory
● Sometimes it’s better to recompute than to cache
● Do more computation on GPU instead of transferring back to CPU

Minimize CPU/GPU Transfers

51

● Group transfers
● Overlapping data transfers and computation

○ Async and stream api
○ Stream = sequence of operations that execute in order on GPU
○ Pipeline execution

● Pinned memory vs. pageable memory

Profiling GPU Program NVVP

52

● Nvidia visual profiler
● Unified CPU/GPU timeline
● Automated performance analysis
● Guided application analysis

NVVP cont’d

53[1]

Future Directions

● Beyond single instance
○ Sharding
○ Replication

● Ease of adoption
○ SQL interface
○ Native Kafka support

● More query features (eg. fact to fact table joins)
● Query engine optimizations (eg. GPU memory caching)
● Grow AresDB together with the community

54

Questions ?

Tech blog: https://eng.uber.com/aresdb/

Git repo: https://github.com/uber/aresdb

55

Questions: email uberopen@uber.com
Follow our Facebook page:
www.facebook.com/uberopensource

https://eng.uber.com/aresdb/
https://github.com/uber/aresdb

Thank you

Proprietary © 2018 Uber Technologies, Inc. All rights reserved. No part of this
document may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any
information storage or retrieval systems, without permission in writing from
Uber. This document is intended only for the use of the individual or entity to
whom it is addressed. All recipients of this document are notified that the
information contained herein includes proprietary information of Uber, and
recipient may not make use of, disseminate, or in any way disclose this
document or any of the enclosed information to any person other than
employees of addressee to the extent necessary for consultations with
authorized personnel of Uber.

Questions: email uberopen@uber.com

Follow our Facebook page:
www.facebook.com/uberopensource

