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Virtuous cycle of big data vs compute growth chasm
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4PB / day Data is being created faster than our ability to make sense of it.
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ML/DL Systems — Market Demand and Key Application Domains
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[1] “Deep Learning Inference in Data Centers: Characterization, Performance Optimizations and Hardware Implications”, ArXiv, 2018
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Resource Requirements
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Al Application
Performance
For the foreseeable future, off-chip memory

bandwidth will often be the constraining
resource in system performance.
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Hardware Trends
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Time spent in caffe2 operators in data centers [1]

e High memory bandwidth and capacity for embeddings
e Support for powerful matrix and vector engines

e Large on-chip memory for inference with small
batches

e Support for half-precision floating-point computation
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Common activation and weight matrix shapes (X, W) [1]

[1] “Deep Learning Inference in Data Centers: Characterization, Performance Optimizations and Hardware Implications”, ArXiv, 2018



Sample Workload Characterization
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Embedding table hit rates and access histograms [2]
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The Move to The Edge
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By 2022, 7 out of every 10 bytes of data created will never see a data center.
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