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Virtuous cycle of big data vs compute growth chasm

Data

Compute

Data is being created faster than our ability to make sense of it.
2 Trillion searches / year

350M photos  

4PB / day

Flu Outbreak: Google knows before CDC 



ML/DL Systems – Market Demand and Key Application Domains

https://code.fb.com/ai-research/scaling-neural-machine-translation-to-bigger-data-sets-with-faster-training-and-inference
https://code.fb.com/ml-applications/expanding-automatic-machine-translation-to-more-languages
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[1] “Deep Learning Inference in Data Centers: Characterization, Performance Optimizations and Hardware Implications”, ArXiv, 2018

DL inference in data centers [1]



Resource Requirements

Categor
y

Model Types Model Size 
(W)

Max. 
Activations

Op. Intensity (W) Op. Intensity (X and 
W)

RecSys
FCs 1-10M > 10K 20-200 20-200

Embeddings >10 Billion > 10K 1-2 1-2

CV

ResNeXt101-32x4-48 43-829M 2-29M
Avg. 380/Min. 
100

Avg. 188/Min. 28

Faster-RCNN-
ShuffleNet

6M 13M
Avg.3.5K/Min. 
2.5K

Avg. 145/Min. 4

ResNeXt3D-101 21M 58M Avg. 22K/Min. 2K Avg. 172/ Min. 6

NLP seq2seq 100M-1B >100K 2-20 2-20



Roofline
AI Application 
Performance
For the foreseeable future, off-chip memory 

bandwidth will often be the constraining 

resource in system performance. 

System balance
Memory <-> Compute <-> Communication

Memory Access for:

Network / program config and control flow

Training data mini-batch compute flow

Compute consumes:
Mini-batch data

Communication for:
All reduce

Embedding table insertion

Research + Development

Time to train and accuracy

Multiple runs for exploration, sometimes overnight

Production
Optimal work/$

Optimal work/watt

Time to train



Hardware Trends

Figure 3: Runtime roofline analysis of different ML models

varying on-chip memory capacity of a hypothetical accelerator

with 100 int8 Top/s compute and 100 GB/s DRAM bandwidth.

The importance of on-chip 1 TB/s (solid) and 10 TB/s (dashed)

bandwidth is showcased under a variety of workloads.

800⇥600 input images and ResNeXt-3D for videos). The

FC layers in recommendation and NMT models use small

batch sizesso performance isbound by off-chip memory band-

width unless parameters can fit on-chip. The batch size can

be increased whilemaintaining latency with higher compute

throughput of accelerators [34], but only up to apoint due to

other application requirements. The number of operations per

weight in CV models are generally high, but the number of

operations per activation is not as high (some layers in the

ShuffleNet and ResNeXt-3D models are as low as 4 or 6).

This iswhy theperformance of ShuffleNet and ResNeXt-3D

varies considerably depending on on-chip memory bandwidth

as shown in Figure 3. Had weonly considered their minimum

2K operations per weight, we would expect that 1 TB/s of

on-chip memory is sufficient to saturate the peak 100 Top/s

compute throughput of the hypothetical accelerator. As the

application would becomputebound with 1 TB/s of on-chip

memory bandwidth, we would expect there to be no perfor-

mance difference between 1 TB/s and 10 TB/s.

Third, common primitive operations are not just canoni-

cal multiplications of squarematrices, but often involve tall-

and-skinny matrices or vectors. These problem shapes arise

from group/depth-wise convolutions that have recently be-

comepopular in CV, and from small batch sizes in Recommen-

dation/NMT models due to their latency constraints. There-

fore, it is desired to have a combination of 1) matrix-matrix

engines to execute the bulk of FLOPs from compute-intensive

models in an energy-efficient manner and 2) powerful enough

vector engines to handle the remaining of operations. More

details are described in the next section.

Figure 4: CPU time breakdown across data centers.

(a) Activation

(b) Weight

Figure 5: Common activation and weight matrix shapes. Here

4 : FCs. ⇥: group convolutions with few channels per group

(depth-wise convolution is an extreme case with 1 channel per

group). : all other operations.

2.3. Computation Kernels

Figure 4 shows the breakdown of operations across all data

centers. Wecount CPU operations because for inference we

often work with a small batch size in order to meet latency

constraints and therefore GPUs are not widely used (Table 1).

Notice that FCs are the most time consuming operation, fol-

lowed by tensor manipulations and embedding lookups.

Figure 5 showscommon matrix shapes encountered in our

DL inference workloads. For activation matrices in convo-

lution layers, we put dimensions of lowered (i.e. i m2col ’d)

matricesbut it doesn’ t necessarily mean lowering isused. That

is the reduction dimension is multiplied by the filter size (e.g.,

9 for 3⇥3 filters). In convolution layers, thenumber of rows

of activation matrices is batch_size⇥H_out⇥W_out, where

H_out⇥W_out is the size of each output channel. We call

this number of rows effective batch size or batch/spatial di-

5

Time spent in caffe2 operators in data centers [1]

Common activation and weight matrix shapes (XMxKWT
KxN) [1]
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• High memory bandwidth and capacity for embeddings

• Support for powerful matrix and vector engines 

• Large on-chip memory for inference with small 
batches 

• Support for half-precision floating-point computation

[1] “Deep Learning Inference in Data Centers: Characterization, Performance Optimizations and Hardware Implications”, ArXiv, 2018



Sample Workload Characterization

Embedding table hit rates and access histograms [2]

[2] “Bandana: Using Non-Volatile Memory for Storing Deep Learning Models”, SysML, 2019
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The Move to The Edge

By 2022, 7 out of every 10 bytes of data created will never see a data center.

CPU

Memory

Storage

Let Data Speak for 
Itself!

• Compute closer to Data
• Smarter Data Movement
• Faster Time to Insight

Considerations
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Cloud AI

HBM

6x faster training time

8x training cost effectiveness

Edge computing AI

2x faster data access

2x hot data feeding

GDDR6

On-device AI

LPDDR5

1.5x bandwidth
privacy & fast response 

Samsung @ The Heart of Your Data
Visit us at Booth #726


