Panel – The Impact of AI Workloads on Datacenter Compute and Memory

Virtuous cycle of big data vs compute growth chasm

ML/DL Systems – Market Demand and Key Application Domains

[1] "Deep Learning Inference in Data Centers: Characterization, Performance Optimizations and Hardware Implications", ArXiv, 2018 https://code.fb.com/ai-research/scaling-neural-machine-translation-to-bigger-data-sets-with-faster-training-and-inference https://code.fb.com/ml-applications/expanding-automatic-machine-translation-to-more-languages

Resource Requirements

Categor y	Model Types	Model Size (W)	Max. Activations	Op. Intensity (W)	Op. Intensity (X and W)		
RecSys	FCs	1-10M	> 10K	20-200	20-200		
	Embeddings	>10 Billion	> 10K	1-2	1-2		
CV	ResNeXt101-32x4-48	43-829M	2-29M	Avg. 380/Min. 100	Avg. 188/Min. 28		
	Faster-RCNN- ShuffleNet	6M	13M	Avg.3.5K/Min. 2.5K	Avg. 145/Min. 4		
	ResNeXt3D-101	21M	58M	Avg. 22K/Min. 2K	Avg. 172/ Min. 6		
NLP	seq2seq	100M-1B	>100K	2-20	2-20		

AI Application Performance

For the foreseeable future, off-chip memory bandwidth will often be the constraining resource in system performance.

Research + Development

Time to train and accuracy

Multiple runs for exploration, sometimes overnight

Production

Roofline

Optimal work/\$

Optimal work/watt

Time to train

N. Jouppi, et.al., "In-Datacenter Performance Analysis of a Tensor Processing Unit"

Memory Access for:

Network / program config and control flow Training data mini-batch compute flow Compute consumes: Mini-batch data Communication for: All reduce Embedding table insertion

Hardware Trends

- High memory bandwidth and capacity for embeddings
- Support for powerful matrix and vector engines
- Large on-chip memory for inference with small batches
- Support for half-precision floating-point computation

Common activation and weight matrix shapes $(X_{MxK}W_{KxN})$ [1]

Sample Workload Characterization

Embedding table hit rates and access histograms [2]

[2] "Bandana: Using Non-Volatile Memory for Storing Deep Learning Models", SysML, 2019

MLPerf

Closed Division Speedups														
					Benchmark results (speedup relative to reference implementation)									
						lmage classifi- cation	Object detection, light- weight	Object detection, heavy-wt.	Translation , recurrent	Translation , non-recur.	Recom- mendation	Reinforce- ment Learning		
			Chi	p nt		ImageNet	сосо	сосо	WMT E-G	WMT E-G	MovieLens- 20M	Pro games		Power (unofficial
#	Submitter	Hardware	and	5	Software	ResNet-50	SSD w/ ResNet-34	Mask- R-CNN	NMT	Transformer	NCE	Mini Go	Cloud	submitter-
Avai	able in cloud	Thataware	υp			1.0	TRESINCE 04			Transformer	1101		ocule	provided)
1	Reference	Pascal P100	1	а	Unoptimized reference	10	10	1.0	1.0	10	10	10	10	n/a
2	Google	TPUv2 8	4	a	TF 1 12	29.3	8.5		28.1				2.6	n/a
- 3		TPUv2.512 + TPUv2.8	260	a	TF 1.12	781.5							171.6	n/a
4		TPUv3.8		a	TF 1.12	48.2	11.1		43.1				4.2	n/a
5		8x Volta V100	8	а	TF 1.12, cuDNN 7.4	64.1							11.4	n/a
Avai	lable on premi													
6	Intel	1x 2S SKX8180	2	с	Intel Caffe 1.1.2a	0.85							n/a	none
7		8x 2S SKX8180	16	с	Intel Caffe 1.1.2a	6.7							n/a	none
8		4x 4S SKX8180	16	с	Intel Caffe 1.1.2a	6.6							n/a	none
9		1x 2S SKX8180	2	с	BigDL 0.7.0						1.6		n/a	none
10		1x 2S SKX8180	2	с	TensorFlow 1.10.1							6.3	n/a	none
11		1x 4S SKX8180	4	с	TensorFlow 1.10.1							9.9	n/a	none
12	NVIDIA	DGX-1	8	а	ngc18.11_MXNet, cuDNN 7.4	65.6							n/a	none
13		DGX-1	8	а	ngc18.11_pyTorch, cuDNN 7.4		30.8	15.5	62.0	57.2	93.4		n/a	none
14		8x DGX-1	64	а	ngc18.11_pyTorch, cuDNN 7.4		127.3	61.7					n/a	none
15		24x DGX-1	192	а	ngc18.11_pyTorch, cuDNN 7.4					301.6			n/a	none
16		32x DGX-1	256	а	ngc18.11_pyTorch, cuDNN 7.4				405.2				n/a	none
17		80x DGX-1	640	а	ngc18.11_MXNet, cuDNN 7.4	1,424.4							n/a	none
18		DGX-2	16	а	ngc18.11_MXNet, cuDNN 7.4	119.5							n/a	none
19		DGX-2	16	а	ngc18.11_pyTorch, cuDNN 7.4		52.1	28.4	108.0	88.2	116.8		n/a	none
20		DGX-2h	16	а	ngc18.11_MXNet, cuDNN 7.4	126.2							n/a	none
21		DGX-2h	16	а	ngc18.11_pyTorch, cuDNN 7.4		58.7	30.0	115.8	97.4	116.8		n/a	none
22		4x DGX-2h	64	а	ngc18.11_pyTorch, cuDNN 7.4			69.3					n/a	none
23		8x DGX-2h w/ 8 V100s	64	а	ngc18.11_pyTorch, cuDNN 7.4		147.8						n/a	none
24		16x DGX-2h	256	а	ngc18.11_pyTorch, cuDNN 7.4				420.2				n/a	none
25		32x DGX-2h	512	а	ngc18.11_MXNet, cuDNN 7.4	1,193.4							n/a	none
Research														
26	Google	TPUv3.32 + TPUv2.8	20	а	TF 1.12	147.4	46.5		117.0				n/a	none
27		TPUv3.512 + TPUv2.8	260	а	TF 1.12	1,243.8							n/a	none
28	Intel	1x 2S SKX8180	2	С	custom TensorFlow 1.10.1							6.9	n/a	none
29		1x 4S SKX8180	4	С	custom TensorFlow 1.10.1							12.9	n/a	none

The Move to The Edge

By 2022, 7 out of every 10 bytes of data created will never see a data center.

Considerations

- Compute closer to Data
- Smarter Data Movement
- Faster Time to Insight

Let Data Speak for Itself!

.

Panel – The Impact of AI Workloads on Datacenter Compute and Memory

Samsung @ The Heart of Your Data

Visit us at Booth #726