
www.nvidia.com/GDC

Louis Bavoil | Principal Engineer, Developer Technology

OPTIMIZING DX12/DXR GPU WORKLOADS
USING NSIGHT GRAPHICS: GPU TRACE AND
THE PEAK-PERFORMANCE-PERCENTAGE (P3) METHOD

2

RTAO DENOISER PIXEL SHADER

3

SM = Streaming Multiprocessor

L1TEX = Level 1 cache + Texture unit

L2 = Level 2 cache

VRAM = GDDR video-memory controller

CROP = Color ROP

Full-Screen Pixel Shader

SM L1TEX L2 VRAM

CROP

4

Unit Throughput% Metrics

“Throughput%” = % of max theoretical throughput

Also known as:
- Speed Of Light% (SOL%)
- Peak-Perf%

SM TEX L2 DRAM

CROP

5

Example:

SM L1TEX L2 VRAM

SM: 70%

L1TEX: 57%

L2: 5%

VRAM: 2%

CROP: 2%

Top Throughput% Units

SM-throughput limited

6

SM Sub-Throughput Metrics

SM FMA Pipe: 70%

SM SFU Pipe: 52%

SM ALU Pipe: 25%

SM FP16 Pipe: 0.0%

SM: 70%

L1TEX: 57%

L2: 5%

VRAM: 2%

CROP: 2%

FMA-Pipe-Throughput
Limited

SM pipes on Turing GPUs

FMA: fp32 {FADD,FMUL,FMAD, …} ops + int {IMUL, IMAD} ops

ALU: integer & logic ops

FP16: FP16 ops executed in pairs

SFU: transcendental ops (rsqrt, cos/sin, etc.)

7

Nsight Graphics: GPU Trace

Metric Graphs (for >= Turing GPUs)

8

Nsight Graphics: GPU Trace

Average Values for Current Range

9

FMA-THROUGHPUT LIMITED

For each sample, shaders reconstruct a 3D world-space position with:

float2 SampleScreenPosition = (SampleScreenUV.xy - View.ScreenPositionScaleBias.wz) /
View.ScreenPositionScaleBias.xy;

float4 SampleHomogeneousWorldPosition = mul(float4(SampleScreenPosition *
SampleDepth, SampleDepth, 1), View.ScreenToWorld);  4x4 matrix mul

float3 SampleWorldPosition = SampleHomogeneousWorldPosition.xyz /
SampleHomogeneousWorldPosition.w;

Why?

10

FMA-REMOVAL EXPERIMENT:

#if 0

float4 SampleHomogeneousWorldPosition =
mul(float4(SampleScreenPosition * SampleZ, SampleZ, 1), View.ScreenToWorld);

#else

float4 SampleHomogeneousWorldPosition =
float4(SampleScreenPosition * SampleZ, SampleZ, 1);

#endif

11

FMA-REMOVAL EXPERIMENT:
4X4 MATRIX MUL -> NOP

BEFORE AFTER RATIO

GPU Elapsed Time 5.99 ms 4.88 ms 1.23x Gain

Throughput: SM 71.0% 63.7% 0.90x

Throughput: L1TEX 56.6% 67.8% 1.20x

Throughput: L2 4.6% 5.5% 1.20x

On RTX 2080 with SetStablePowerState(TRUE)

12

THE P3 (PEAK-PERF%) METHOD

PSO Creation Stalls
on Critical Path

Video-Memory
Overcommitment

GPU Active%

START

Use

Nsight Systems

< 95%

13

Top Throughput Unit%GPU Active%

In [60%,80%]

Else

> 80%

Latency

Limited by Unit X

Throughput

Limited by Unit X

Top Throughput% < 60%

START

Remove Work

from Unit X

Use

Nsight Systems

< 95%

Reduce Latency &
Increase Parallelism

THE P3 (PEAK-PERF%) METHOD

Increase cache hit rates
Increase texture parallelism
Use async queues
…

If X==FMA: remove FMA-pipe ops

14

DEMO

Unit Throughputs:
SM_FMA: 70%
L1TEX: 57%
L2: 5%

15

SM Occupancy Occupancy% = ActiveWarpsPerCycle / NumWarpSlots * 100

16

Warp Launch Stalls,
ooo_warp_completion: 24%

Solution: Convert the PS to a CS

17

Top Throughput Unit%GPU Active%

In [60%,80%]

Else

> 80%

Latency

Limited by Unit X

Throughput

Limited by Unit X

Top Throughput% < 60%

START

Remove Work

from Unit X

Use

Nsight Systems

< 95%

Reduce Latency &
Increase Parallelism

THE P3 (PEAK-PERF%) METHOD

Increase cache hit rates
Increase texture parallelism
Use async queues
…

If X==FMA: remove FMA-pipe ops

18

Case Study #1:

RTAS Updates // Async Compute
in Metro Exodus

19

RTAS Updates

20

Top Unit Throughput:
VRAM: 3.0%

RTAS Updates

21

RTAS Updates

SM Occupancy Average Warp Occupancy For Workload: 3.4%

Top Unit Throughput % << 60% + SM Occupancy% << 100% ➔ Use Async Compute?

22

Independent Workload #1:
Screen-Space PreTracing

Unit Throughputs:
SM:62%
L1TEX:54%
L2:42%

23

Independent Workload #2:
SSR

Unit Throughputs:
L2: 79%
SM: 39%
L1TEX: 35%

24

ASYNC COMPUTE DIFF

Serialized

Overlapped

1.83 ms

1.30 ms

25

ASYNC-COMPUTE OVERLAP
(RTAS Updates) // (Async Compute)

BEFORE AFTER RATIO

GPU Elapsed Time 1.83 ms 1.30 ms 1.41x Gain

Throughput: L2 39.2% 54.8% 1.40x

Throughput: SM 30.1% 42.0% 1.40x

Throughput: L1TEX 26.9% 37.4% 1.39x

SM Occupancy 53.8% 78.2% 1.45x

On RTX 2080 with SetStablePowerState(TRUE)

26

Case Study #2:

Shadow Maps // Async Compute

27

Top Throughput Units:
VRAM: 31%
SM: 23%
L1TEX: 20%

HBAO + SSR + Light Culling

28

Independent Workload:
Shadow Maps

Top Throughput Units:
L1TEX: 38%
VRAM: 37%
ZROP: 29%

31

ASYNC-COMPUTE OVERLAP
(SHADOW MAPS) // (HBAO+SSR+LIGHT-CULL)

BEFORE AFTER RATIO

GPU Elapsed Time 2.45 ms 2.15 ms 1.14x Gain

Throughput: VRAM 34.2% 40.8% 1.19x

Throughput: L1TEX 31.0% 34.0% 1.10x

Throughput: SM 22.1% 24.3% 1.10x

SM Occupancy 59.5% 70.6% 1.19x

On RTX 2080 + SetStablePowerState(TRUE)

32

Case Study #3:

Bad Async-Compute Pairing

33

Blur Compute Shader

Unit Throughputs:
VRAM: 61%
L1TEX: 54%
L2: 32%

34

Independent Workload #1:
Water Simulation

Unit Throughputs:
VRAM: 23%
L1TEX: 22%
CROP: 19%

35

Independent Workload #2:
GBuffer Fill

Unit Throughputs:
VRAM: 35%
L1TEX: 33%
L2: 27%

38

BAD ASYNC-COMPUTE PAIRING
(BLUR CS) // (GBUFFER + WATER SIM)

BEFORE AFTER RATIO

GPU Elapsed Time 5.89 ms 6.12 ms 0.96x Loss

Throughput: VRAM 43.1% 47.1% 1.09x

Throughput: L1TEX 36.9% 35.4% 0.96x

Throughput: L2 27.0% 26.0% 0.96x

SM Occupancy 54.9% 57.5% 1.05x

L2 Read Hit Rate 52.3% 44.5% 0.85x

On RTX 2080 with SetStablePowerState(TRUE)

39

Blur Compute Shader

Unit Throughputs:
VRAM: 61%
L1TEX: 54%
L2: 32%

L2 Read Hit Rate: 29%

40

Independent Workload #1:
Water Simulation

Unit Throughputs:
VRAM: 23%
L1TEX: 22%
CROP: 19%

L2 Read Hit Rate: 44%

41

Independent Workload #2:
GBuffer Fill

Unit Throughputs:
VRAM: 30%
L1TEX: 33%
L2: 27%

L2 Read Hit Rate: 61%

42

Top Throughput Unit%GPU Active%

In [60%,80%]

Else

> 80%

Latency

Limited by Unit X

Throughput

Limited by Unit X

START

Use

Nsight Systems

< 95%

If X == VRAM

THE P3 (PEAK-PERF%) METHOD

Top Throughput% < 60%

Increase cache hit rates
Increase texture parallelism
Use async queues
…

If X != VRAM

Increase cache hit rates
Reduce texture formats

Remove Work

from Unit X

Reduce Latency &
Increase Parallelism

Reduce VRAM

Accesses

43

Case Study #4:

VRAM-Limited Denoiser CS

44

Battlefield V, DXR, 1440p

45

Unit Throughputs:
VRAM: 57%
SM: 33%
L2: 26%

46

47

Unit Throughputs:
VRAM Read: 54%
VRAM Write: 2%

48

L2 Read Hit Rate: 32%

49

Warp Issue Stalled on
Long Scoreboard: 77%

➔ TEX-Latency Limited

High L1TEX latency due to:
L2 Read Hit Rate: 32%
L1 Hit Rate: 55%

50

THREAD-GROUP LAUNCH ORDER

8

Thread Group

8

8

51

v

THREAD-GROUP LAUNCH ORDER

52

v

THREAD-GROUP LAUNCH ORDER

53

v

THREAD-GROUP LAUNCH ORDER

54

v

THREAD-GROUP LAUNCH ORDER

Thread groups launched sequentially have far-appart pixel coordinates
➔ Increases the size of the working set in L2
➔ Can cause poor L2 hit rate and long TEX miss latencies

55

THREAD-GROUP TILING

Divide the Dispatch grid into tiles of width=N

56

uint N = 16;
uint vThreadGroupIDFlattened = (Dispatch_Grid_Dim.x)*groupId.y + groupId.x;
uint Total_number_of_ThreadGroups_in_one_tile = N*(Dispatch_Grid_Dim.y);

uint Tile_ID_of_current_ThreadGroup = (vThreadGroupIDFlattened)/Total_number_of_ThreadGroups_in_one_tile;
uint Local_ThreadGroup_ID_flattened_within_current_tile =
(vThreadGroupIDFlattened)%Total_number_of_ThreadGroups_in_one_tile;
uint Local_ThreadGroup_ID_y_within_current_tile = (Local_ThreadGroup_ID_flattened_within_current_tile)/N;
uint Local_ThreadGroup_ID_x_within_current_tile = (Local_ThreadGroup_ID_flattened_within_current_tile)%N;

uint Tiled_vThreadGroupIDFlattened = Tile_ID_of_current_ThreadGroup*N +
Local_ThreadGroup_ID_y_within_current_tile*(Dispatch_Grid_Dim.x) + Local_ThreadGroup_ID_x_within_current_tile;

uint2 TiledvThreadGroupID;
TiledvThreadGroupID.y = Tiled_vThreadGroupIDFlattened/Dispatch_Grid_Dim.x;
TiledvThreadGroupID.x = Tiled_vThreadGroupIDFlattened%Dispatch_Grid_Dim.x;

uint2 TiledvThreadID;
TiledvThreadID.x = (ThreadGroup_Dim.x)*TiledvThreadGroupID.x + groupThreadIndex.x;
TiledvThreadID.y = (ThreadGroup_Dim.y)*TiledvThreadGroupID.y + groupThreadIndex.y;

57

THREAD-GROUP TILING

BEFORE AFTER RATIO

GPU Elapsed Time 2.36 ms 1.61 ms 1.47x Gain

Throughput: VRAM 56.3% 30.4% 0.54x

Throughput: SM 33.8% 51.3% 1.52x

L2 Read Hit Rate 62.5% 85.8% 1.37x

SM Warp Stalls on

long_scoreboard
77.8% 58.6% 0.75x

Tile Size: [16, Dispatch_Grid_Dim.y]

On RTX 2080 with SetStablePowerState(TRUE)

58

Top Throughput Unit%GPU Active%

In [60%,80%]

Else

> 80%

Latency

Limited by Unit X

Throughput

Limited by Unit X

START

Use

Nsight Systems

< 95%

If X == VRAM

THE P3 (PEAK-PERF%) METHOD

Top Throughput% < 60%

Increase cache hit rates
Increase texture parallelism
Use async queues
…

If X != VRAM

Increase cache hit rates
Reduce texture formats

Remove Work

from Unit X

Reduce Latency &
Increase Parallelism

Reduce VRAM

Accesses

59

Case Study #5:

Lighting CS using Shared Memory

60

Unit Throughputs:
SM_FMA: 48%
L1TEX: 24%
VRAM: 21%

Active SM Unused
Warp Slots: 51%

61

Warp launch stalls on
shmem_allocation: 93%

Warp issue stalls on
long_scoreboard: 42%

62

SHARED-MEM-SIZE REDUCTION

Before: store light data into shared mem

static groupshared LightData SharedMem[MaxLightCount];

...

After: store light indices into shared mem

static groupshared uint SharedMem[MaxLightCount];

And load light data via non-divergent indexed constant-buffer loads

63

CUDA OCCUPANCY CALCULATOR

For Turing RTX GPUs (Compute Capability 7.5)

My Shared Memory, 6144

0

8

16

24

32

40

48

56

64

0 2
0
4
8

4
0
9
6

6
1
4
4

8
1
9
2

1
0
2
4
0

1
2
2
8
8

1
4
3
3
6

1
6
3
8
4

1
8
4
3
2

2
0
4
8
0

2
2
5
2
8

2
4
5
7
6

2
6
6
2
4

2
8
6
7
2

3
0
7
2
0

3
2
7
6
8

M
u

lt
ip

ro
c
e
s
s
o

r
W

a
rp

 O
c
c
u

p
a
n

c
y

(#
w

a
rp

s
)

Shared Memory Per Block

Impact of Varying Shared Memory Usage Per Block

0

0

0

32768

65536

64

SHARED-MEM-SIZE REDUCTION:
6,144 -> 256 bytes per thread group

BEFORE AFTER RATIO

GPU Elapsed Time 3.06 ms 2.21 ms 1.38x Gain

SM Throughput 47.5% 66.1% 1.39x

Warp launch stalls on

shmem_allocation
94% 0% +INF

Warp issue stalls on

long_scoreboard
41.7% 36.7% 1.14x

On RTX 2080 with SetStablePowerState(TRUE)

65

Top Throughput Unit%GPU Active%

In [60%,80%]

Else

> 80%

Latency

Limited by Unit X

Throughput

Limited by Unit X

START

Use

Nsight Systems

< 95%

If X != VRAMIf X == VRAM

THE P3 (PEAK-PERF%) METHOD

Top Throughput% < 60%

Increase cache hit rates
Increase texture parallelism
Use async queues
Reduce occupancy limiters
…

If FMA: remove FP32 +/*Increase cache hit rates
Reduce texture formats

Remove Work

from Unit X

Reduce Latency &
Increase Parallelism

Reduce VRAM

Accesses

66

Case Study #6:

Thread-Divergence-Limited
DispatchRays in Battlefield V

67

Battlefield V DXR Ultra

68

Unit Throughputs:
L2: 24%
VRAM: 12%
SM: 8%

69

Active Threads per Inst Executed%: 29% << 50%
Indicates packing issue and/or high divergence
➔ Reduce number of hit shaders

smsp__thread_inst_executed_pred_on_per_inst_executed.pct:
The percentage of active not predicated off threads per instruction executed

70

Warp Issue Stalled, No Instruction: 70% >> 10%
➔ Reduce instruction count in hit shaders

smsp__warp_issue_stalled_no_instruction_per_warp_active.pct:
The percentage of active warps that were stalled waiting to be selected to fetch an instruction or waiting on an icache miss

71

THE OPAQUE FLAGS

D3D12_RAYTRACING_GEOMETRY_FLAG_OPAQUE

D3D12_RAYTRACING_INSTANCE_FLAG_FORCE_OPAQUE

RAY_FLAG_FORCE_OPAQUE

Indicates whether triangles are fully opaque or not

Stop rays earlier

Helps reduce the number of evaluated materials

72

Battlefield V DXR
Original OPAQUE flags

DispatchRays: 1.13 ms

GeForce RTX 2080 +

SetStablePowerState

73

GeForce RTX 2080 +

SetStablePowerState

Battlefield V DXR
+OPAQUE flag for ALL geometries

DispatchRays: 0.58 ms (1.95x)

74

BEFORE AFTER RATIO

GPU Elapsed Time 1.13 ms 0.58 ms 1.95x Gain

Top Throughput: L2 23.8% 24.0% 1.01x

SM Active Threads Per

Instruction Executed
29.0% 40.5% 1.40x

SM Instructions

Executed Per Warp
725.1 425.2 0.59x

SM Warp Issue Stalls,

No Instruction
69.8% 68.2% 0.98x

FORCE_OPAQUE EXPERIMENT

On RTX 2080 with SetStablePowerState(TRUE)

75

Top Throughput Unit%GPU Active%

In [60%,80%]

Else

> 80%

Latency

Limited by Unit X

Throughput

Limited by Unit X

START

Use

Nsight Systems

< 95%

If X != VRAMIf X == VRAM

THE P3 (PEAK-PERF%) METHOD

Top Throughput% < 60%

If FMA: remove FP32 +/*Increase cache hit rates
Use async queues
Reduce warp issue stall reasons
Reduce warp launch stall reasons
Reduce instructions executed
…

Increase cache hit rates
Reduce texture formats

Remove Work

from Unit X

Reduce Latency &
Increase Parallelism

Reduce VRAM

Accesses

76

NVIDIA TOOLS FOR GPU PROFILING
Two Nsight: Graphics modules

GPU TRACE METRICS RANGE PROFILER

Graphs over time Y N

Async queue support Unbiased Serialized

APIs DX12 only so far DX12, DX11 and Vk

GPUs >= Turing >= Kepler

77

CONCLUSION

A method to triage the performance of any GPU workload:

Start from the « Top Throughput% » Metrics (aka SOL% or Peak-Perf%)

Do NOT start from SM Warp Occupancy

We have been keeping a blog post up-to-date as tools and GPUs evolve.

Async Compute rule of thumb:

Do not overlap 2 VRAM-latency-limited workloads

The P3 Method (Peak-Perf-Percentage)

https://devblogs.nvidia.com/the-peak-performance-analysis-method-for-optimizing-any-gpu-workload

www.nvidia.com/GDC

Louis Bavoil | lbavoil@nvidia.com

QUESTIONS?

mailto:lbavoil@nvidia.com

