<A NVIDIA.

Triton Inference Server Meetup S vy
09/09/2024 -




Agenda

e Triton vLLM Backend Updates

= Triton Inference Server Updates

»  Open Source Improvements and Deliverables

+  GenAl Perf

» Triton 3 and Disaggregated Serving

<ANVIDIA, I



Triton vLLM Backend Updates



Time to First Token

Qutput Token

1000

750

500

250

vLLM Backend Performance Improvement
Llama2-7B on single AT00 40GB with 200 input - 1000 output tokens using vLLM 0.5.3 post

Time to First Token

Lower the Better

1000

750

500

250

Concurrency

® vLLM @ vLLM + Triton r24.08

Output Token Throughput
Higher the Better

Concurrency
® vLLM @ vLLM + Triton r24.08

Average Inter Token

Average Inter Token Latency
Lower the Better

50
40
30

20

Concurrency

® vLLM @ vLLM + Triton r24.08

Within < 2% to vLLM’s performance
for both throughput and latency

Delegate response sending and cancellation
checks to another thread and wait with GIL
released, allowing vLLM Engine to have more
CPU time.

“ANVIDIA, I



VLLM Metrics Access Through Triton

In addition to counter and gauge metrics, Triton now supports histogram metrics.

The following vLLM metrics will be supported through Triton with 24.08 and 24.09 releases

vlim:prompt_tokens_total : counter of prefill
tokens processed.

vliim:generation_tokens_total : counter of
generation tokens processed.

vlim:time_to_first_token_seconds : histogram
of time to first token in seconds.

vliim:time_per_output_token_seconds:

histogram of time per output token in seconds.

vlim:e2e_request_latency_seconds : histogram
of end to end request latency in seconds.

vliim:request_prompt_tokens : histogram of
prefill tokens processed.

vlim:request_generation_tokens : histogram of
generation tokens processed.

vlim:request_params_best_of : histogram of the
best_of request parameter.

vliim:request_params_n : histogram of the n
request parameter.

NVIDIA



Triton Inference Server Updates



K8s cluster

Kubernetes (K8s) Multi-Node __» Inference Path

Control Path

HE -
. Deploy Massive LLMs (100B - 1T+ parameters)
that can't fit on a single node, or make use of older NFS
B e
- Automatically Scale and Load Balance multi- comerted

Load Balancer

A 4

A

A

node replicas Node 1 (Leader) Node 2 (Worker) model
Solution Triton + TRT-LLM (TP = 4 PP = 2)
. Flexible Kubernetes definitions that can scale
any model supported by TRT-LLM on any GPU. MegaPod

Key Challenges
. Multi-Node Communication (MPI)

- Deploying Groups of Nodes (Gang Scheduling) - - MPI - -
. Scaling Groups of Nodes (LeaderWorkerSet)

- Leader-Aware Load Balancing VI

- Auto-Scaling Metrics - - - -

Node 3 (Leader) Node 4 (Worker)

A

A

A

A

Triton + TRT-LLM (TP = 4 PP = 2)

MegaPod

“ANVIDIA. ||




Kubernetes Multi-Node Demo
Llama 3 70B on 2 nodes of 4x A10Gs

0 O @ Prometheus Time Series Colect X+
aws_terminal:~$ kubectl get pods -w « C @ PR
NAME READY STATUS RESTARTS AGE
leaderworkerset-sample-0 1/1 Running 0 95m 9 Prometheus Alerts Graph Status =
leaderworkerset-sample-0-1 1/1 Running 0 95m

@ Use local time @ Enable query history 8 Enable
Q | triton:queue_compute:ratio

Graph

B wenhantONV-HD20283: -

local_terminal:~$

default/wenhant test”.

model - e namespace - “default” pod - leadewor

@ trtonqueve. steatio (container=triton”, endpoint = 7208002", job="default/wenhant-test
model - “postprocessing”. namespace - “delault’. pod - leaderworkerset sampie 0, versios

O trtonqueve_computaratio icontainer = "triton”, endpoint = "metrics”. instance 192 168 127 208002 detault/wenhant test”
model = “preprocesung”. namespace ="delaull”. pod = “leaderworkerset-sample-0, version="17)

O trtonqueve_computeratio[container endpoint = "metrics”, instance " 192 168 127.20:8002", job«"default/wenhant -test”,
model = tensor lim”. namespace="dafaut’, pod-=leaderworkerset-cample-0. version="1)

W % 2 Q@ « W § Qe w oo suw B



http://drive.google.com/file/d/1QxS_B1kYCl9EnpfJ8TUGFJkOQpJ7IOEu/view

Triton In-Process Python API

import tritonserver

options = tritonserver.Options (
for model repository="/path/to/models",
. . log info= ;
inference, scheduling, and model 9

log warn= 7
log error=

)

management

support for built-in types
like dicts, lists, etc.
server = tritonserver.Server (options)
inference calls to allow server.start(wait until ready= )
running business logic concurrently

for inputs = {"text input": ["Machine learning is"],

zero-copy conversions between NumpPy, ‘stream”: [True]} _
(HJPy PyTorch DLPack model = server.model ("llama-3.1-8b-instruct")

responses = model.infer (inputs=inputs)

for response in responses:
print (response.outputs["text output"].to_string array())




OpenAl Compatible API (Beta)

OpenAl

/vl/models In-process

Ivl/completions Python API

Ivl/chat/completions

FastAPl app with
support for OpenAl schemas

for the

supported APIs with OpenAl clients,

genai-perf, curl, etc.

used
for managing state and handling
inference requests

Triton backends for vLLM

and TensorRT-LLM used for the
inference runtime

VvLLM
backend

TRT-LLM

backend

from openai import OpenAI

client = OpenAI (
base url="http://localhost:8000/v1l",
api_key="empty",

)

completion = client.chat.completions.create(
model="meta-llama/Meta-Llama-3.1-8B-Instruct",
messages=|[
{"role": "system", "content": "You are a Triton
Inference Server expert."},
{"role": "user", "content": "Hello vLLM meetup!"}
] 4
max_tokens=256

)

print (completion.choices[0] .message.content)




Constrained Decoding and
Function Ca"ing executor config.logits_post processor map = {

"<name>": custom logits_processor

}

self.executor = trtllm.Executor (

. model path=...,
LLM is a component of an model type=...,

executor config=executor config)

ensures LLMs to enforce a
specific formatting, e.g. JSON

request.logits post processor name = "<name>"

prOij?S python3 client.py prompt "How's Nvidia doing?" -o 200
examples for structured generation via verbose
prompt engineering and external libraries

such as LM Format Enforcer
llstepll : Hlll

enables LLMs to perform complex "description": "Get the current stock price for

tasks requiring specific computations or data NVIDIAT, _
retrieval "tool": "get current stock price",

"arguments": {
"symbol": "NVDA"
provides further
insights into controlling model behavior
Executing function:

get current stock price({'symbol':'NVDA'})
Function response: 106.38



https://github.com/triton-inference-server/tutorials/blob/main/AI_Agents_Guide/Constrained_Decoding/README.md
https://github.com/triton-inference-server/tutorials/blob/main/AI_Agents_Guide/Function_Calling/README.md

Before After
Revamped documentation (24.09) Getting Started Table of Contents

Triton - TensorRT-LLM Guide

- Run TRT-LLM models with Triton Server
- Advanced Configurations

- Deployment Strategies

- Tutorials for popular LLM models

Triton Scaling Guide

- Multi-Node

- Multi-Instance

Al Agents Guide

- Constrained Decoding

- Function Calling

More in upcoming months

- Versioning

- OpenAl API Guide

Quickstart

User Guide

Deploying your trained model
using Triton

Triton Architecture
Model Repository
Repository Agent
Model Configuration
Request Cancellation
Optimization
Ragged Batching

Rate Limiter

Model Analyzer

Model Management

Custom Operations

Decoupled Backends and Models
Triton Response Cache

Metrics

Triton Server Trace

Triton Inference Server Support
for Jetson and JetPack

Version 1 to Version 2 Migration

Secure Deployment
Considerations

Home
Release Motes (3

Compatibility matrix

Getting Started

Quick Deployment Guide (by
backend)

Overview
TRT-LLM
vLLM
Python (HuggingFace)
PyTorch
ONNX
TensorFlow
Openvino
Multimodal model

Stable diffusion

Scaling guide

Multi-Node

Multi-Instance

API Reference
OpenAl API (BETA)
KServe API

In-Process Triton Server API




Open Source Improvements and
Deliverables



Public CI

» Enable community members to confidently contribute. vlim_backend / README.md ({
e Verify your changes are not breaking
o Every new VLLM release to be validated against the
latest Triton release 6 checks passed
o Every Pull Request on vlim_backend to be validated ~ (@) mirror_repo

License [BSD3 || Triton 24.08 § vLLM 0.5.5 [ CI Passing 'V100,A100,H100

Details
agalnSt the latest vLLM release v build (ubuntu-22.04, 3.10) Details
o Provide coverage across state-of-the-art hardware
v pre-commit Details
e Improve transparency of our build process v (@ trigger-ci Details
v ci/gitlab/gitlab-master.nvidia.com Pipeline passed on GitLab Details
Pipeline Needs Jobs 27 Tests 0
.pre build test-v100 test-A100 test-H100 .post
® pending @ build-source (5] © test-V100-accuracy._test (57 @ test-A100-accuracy_test <z @ test-H100-accuracy_test @ failed
© test-V100-enabled_stream © test-A100-enabled_stream @ test-H100-enabled_stream @ report-status
@ test-V100-request_cancellation @ test-A100-request_cancellation @ test-H100-request_cancellation @ success
@ test-V100-vilm_backend @ test-A100-vilm_backend @ test-H100-vilm_backend



Container Size Reduction and Manylinux Support

Container size reduction

Triton container sizes (GB)

Triton - TRT-LLM Container size ® vLLM container size
40

30

20

10

24.04 24.05 24.06 24.07

Release

Targeting 15GB

40% container size reduction from 34GB to

21GB, over the course of last three releases
Removed unnecessary installations
Optimized our docker build

Manylinux

VLLM is coming soon!
24.11 GA: Targeting complete feature parity with
our NGC containers
Early Access release available upon request
Supported backends
PyTorch
TensorFlow?2
ONNX Runtime
Supported HW
X86 CPU
ARM64 CPU
GPU
Triton server core

NVIDIA



GenAl Perf




GenAl Perf

Input Output
sequence sequence
length length
Efqueif . Lok 2 Output Output token

Time to first token

Inter token latency

Request Latency

Key features

e HW/SW agnostic performance
benchmarking via KServe and OpenAl API

e Supports LLM, Visual Language Model,
embedding, re-ranking, and multi-LoRA

e In-process benchmarking for TRT-LLM

Planned features

Customizable front-end to allow custom
benchmarking logic to easily extend
GenAl-Perf.

Access to raw metric data for easy post
processing and scripts for generating
plots.

NVIDIA



GenAl-Perf Usage and Output

Example command
Three Input Formats genai-perf profile \
-m gpt2 \
--service-kind openai \
--endpoint-type completions \
--synthetic-input-tokens-mean 200 \
Server-agnostic and model-agnostic --synthetic-input-tokens-stddev 50 \
--streaming \
--output-tokens-mean 100 \
--output-tokens-stddev 25

Available via Docker and local build

Example output

NVIDIA GenAI-Perf | LLM Metrics

Statistic avg min max

Time to first token (ms) .82 STAS .07

Inter token latency (ms) .29 2.98 /5

Request latency (ms) 547+ 73 3916

Output sequence length .78 .00 184.00

Input sequence length <16 .00 .00

Output token throughput (per sec) .97
Request throughput (per sec) .54




GenAl-Perf Benchmarks Multi-LoRA Models

Insight 1 : Stable latency Insight 2: Stable token throughput Insight 3 : Lower throughput at >16
adapters
15 700 . 710
@ o a
s E 675 g 69
8 = 3 68
% é 650 E 6.7
% [—f 625 § 6.6
i) 3 g
&4 14 S 600 ¥ 65
0 20 40 60 80 o 0 20 40 60 80 0 20 40 60 80
Number of adapters Number of adapters Number of adapters
How manv adabters can we deplov without We can serve up to 64 adapters on one server.
com romBi/sin performance’? ploy For more adapters, we can use GenAl-Perf for
P gp ' further benchmarking.

Benchmarking Setup
Server: Mistral-7B-v0.1 loaded on a single TGl server running on an NVIDIA RTX 5880
GenAl-Perf: concurrency of 128, random model selection, 500 synthetic prompts
Key arguments to GenAl-Perf:
-m <adapter_name> <adapter_2_name> ... <adapter_n_name>"
--model-selection-strategy random”

<HANVIDIA. I



GenAl-Perf Benchmarks OpenAl APl Embeddings Models

Avg Embedding Throughput

300 20
—
15
200
10
100
5
0 0
5 10 15 20 25 30
Batch Size

At what batch size do we
maximize our embedding
throughput?

Embedding throughput is
maximized at a batch size
of 12. Latency increases
continually.

Benchmarking Setup

Server: intfloat/e5-mistral-7b-instruct model loaded on a single vLLM OpenAl server running on an NVIDIA RTX 5880

GenAl-Perf: concurrency of 256

< NVIDIA. I



GenAl-Perf Benchmarks Hugging Face Re-Ranker APl Models

What is the impact of
increasing the number
of passages per re-
ranking request?

2500
5
o 2000
=
[®)]
=
o 1500
c
|_
e
O
5 1000
T
[(b)
'
(@) 500
>
<
—
0
10 15 20 25 30
Batch Size

The number of
passages per request
significantly impacts

latency and throughput.

Benchmarking Setup

Server: BAAl/bge-reranker-large model loaded on a single Hugging Face TEI server running on an NVIDIA RTX 5880

GenAl-Perf: concurrency of 512

“ANVIDIA, I



Vision Language Model

Rising popularity of Vision Language Models
(VLM) over the past year

for VLM

inference
contains text and image (base64)

Supports 2 input data sources:

Image resolution (height /
width)

Image format

Prompt length (or, input
sequence length)

payload = {

“model”: “llava-hf/llava-vl.6-mistral-7b-hf”,

“messages”: [
{
“role”: “user”,
“content”: [
{
“type”: “text”,
“text”: “What’s in this image?”,
} 4
{
“type”: “image url”,
“image url”: ({
“url”:
f”data:image/jpeg;base64, {base64_ image}”
}
}

}
1,

“max tokens”: 100

}



https://platform.openai.com/docs/guides/vision

Goodput

Benchmarking GenAl performance from user’s perspective

Goodput is defined as the number of completed requests per second that meet certain user-defined service
level objectives (SLO) such as time to first token (TTFT) and inter token latency (ITL)

TTFT ITL Throughput and Goodput
t‘ chatbot - - © Throughput @® Goodput
Fast first response Human reading speed 15

. summarization (NN §

Longer time tolerated
Data output generation

Throughput = 10 Goodput =2

A TTFT TTFT 10 20 30 40 50 60

O
—U Goodput Constraints: TTFT < 250ms and ITL < 25ms
v ISL/OSL: 300/100

ITL ITL Concurrency: [1, 2, 4, 8, 16, 32, 64]

Concurrency

Benchmark Env:
Server: Triton + vLLM on an NVIDIA RTX 5880
Model: Llama-3.1-8B

Slides courtesy of "DistServe: Distributed Serving for Large Language Models" Hao Al Lab Blog, hao-ai-lab.github.io/blogs/distserve

<HANVIDIA. I


https://hao-ai-lab.github.io/blogs/distserve/
https://hao-ai-lab.github.io/blogs/distserve/

Triton 3.0
Disaggregated Serving



GenAl Models and Workloads Require Data Center Scaling

Data center scale
Simple visual language model (loosely Llava 1.5 HD) example

Input
img Img 1 Vision CVLt

LLM L

Img 2
Slice Resize L
Tokenize M

s1
Vioon v text Tokenize S3

Pre

Bottlenecks & severe under utilization in pipeline (Adobe Firefly, Linkedin)

Hetero multistage pipeline
ge pip (O

Multi-node & out of
process

Pipeline 1 No longer can
duplicate pipeline or
statically define (push

Pipeline 2 based) load balance

Independent scaling
Pull (capacity) based
load balancing

NVIDIA



Triton Inference Server
Optimized for Data Center Scale Distributed Workflows

Triton 2.0

Triton core

Framewor
k backend

] er

~
-
()
>
C
()
wn
0
=

Triton 3.0

y

O )

API server

Optimized for Single Node Performance
Optimized for Web Service Dev Cycle:
Develop, Optimize, Deploy

[[ web Server |

Framework backend

Framework backend

Worker
Router

A A

Framework backend

\ 4

Framework backend

Optimized for Gen Al

Optimized for Data Center Scalability
Optimized for Distributed Workflows
Optimized for Quick Iteration

<HANVIDIA. I



Triton 3.0 Component Architecture

Split Triton Into Reusable Components

autoscaling
- But needs new foundation to improve

Triton 2.0 . Triton 3.0
?Q i Inter component protocol (ICP)
1 :
1 |
g f\ : _ 3 : API server Dynamic Work Queue
5 Il Triton core o N
> ! e : o
% : Framewor = | % Worker Framework
o : n Adapte Adapte backend
® | || | kbackend 3 e apter Router pter
= : = : §
I .
A o P
- |
- Just enabled K8 multi-node Interchangeable Coordinate

flexible scalability

API Server (NIM,
RayServe, etc)

data to workers
w.r.t capacity

“ANVIDIA, I



Triton 3.0 Components

Workers Pull Work Based on Capacity

Worker
Router

Worker
Router

<
@

Dynamic Dynamic
Work Work
Queue U Queue
Stage 1 Stage 2 Stage 3

Manifold
- Redirects downstream
requests with upstream
payloads

Multlple stage pipeline
Stages can be scaled on
demand individually

-  Capacity based load
balancing across
workers & stages.

<HANVIDIA. I



Triton 3.0 Inter Component Protocol

N
Remote
Client
— @
0
Remote
Client
— @

0
Remote

Client
— @

0
Remote

Client

~—

Network
Proxy

Control Plane (Nats.io)
- Interface for communication.

- Minimal data transfer and optimized for inference

- Pull based routing

Separate Data and Control Planes

)
API

Server

Server

N/

Data Plane
(uce)

Control plane

(Nats.io)

Worker
Router

Worker
Router

Data Plane (UCP)
- Interface for data transfer.

- Based on GPUDirect RDMA technology.
- Support for InfiniBand, RoCE, & shared-memory IPC.

<HANVIDIA. I



Triton 3.0 Component Reuse

Components can be adopted in modular fashion and will have first class Python support.

Inter Component Protocol (ICP)

1/O Framework
Adapter backend

APl server

I/O
Adapter

Worker
Router

Domain Specific APIs: KV cache Transfer & Model

In addition to inference Management
APls, include LlamaStack, - Disaggregated serving
SGLang, LangGraph, etc - Domain specific KV cache routing

<HANVIDIA. I



Use Case: Disaggregated Serving

[ ] D D D D D D Colocating prefill & decoding
Prefill Decode couples resource allocation
Compute bound Memory bound and parallelism

e Different optimal strategies
for prefill & decode
e Prefill: tensor parallelism for

Colocating prefill & decoding causes interference :]Lost
Generation

4 requests processed in single GPU with continuous batching

low latency
Request 1 D D ] ° Decodg: data or.plpellne
) ) @ @ & parallelism for high
f ) Y ) ) throughput
Request 2 ] ] gnp
= ot 0
Request 3
) ’ R —— Disaggregate prefill and decode
Request 4

I
Request 3 :Request 4 minimize the KV cache transfer

overhead

Request 2

I ) ) )

' __B

I

| S |::> Leverage high BW NVLink to
I

|

<HANVIDIA. I



Use Case: Disaggregated Serving

Dynamic Disaggregated Serving Disaggregated Serving on Mixed SKUs
- Simulated results on H100 (prefill) and
Dynamically change prefill and decode based H20 (decode) show cost benefits

on ISL/OSL or TTFT/ITL requirements

Disaggregated Mixture of Experts (1.8B)

Worker 1 Worker 1 - Can make bigger models more performant
Prefill Prefill

Worker 2 Worker 2 NVLink/NVSwitch => High BW KV cache

Sierl Prefill transfer across workers & nodes

Worker 3 Worker 3 - E_nables easier programmability for placing
Decode Decode disaggregation.

Worker 4 Worker 4 Better utilization of one gigantic GPU system
Decode Prefill

(Blackwell)

NVIDIA



<—» Control plane
Data plane (UCP)
——— KV cache transfer

Disaggregated Serving Prototype

|

Prefill worker

~

A\ 4

|

Decode worker

~

GPU

)

Workflow:

Pre
Process

Prefill

&
<

\ 4

|

Prefill worker
GPU

. GPU
Client =« yY
Client - Worker
> Router
Client =«
Client =« A

|

Decode worker

~N

GPU

Decode

Post
Process

CPU

TRT-LLM
e Llama38b
Instruct
e TPI1
e 4x A100 GPUs
e Pull Based
Routing
vLLM
e Llama 3.1 70B
Instruct
e TPZ2

8x H200 GPUs
e Pull Based
Routing

<HANVIDIA. I



Disaggregated Serving Prototype - Triton 3 with TRT-LLM backend
Llama3 8B, ISL/OSL: 4096/512, TRT-LLM 0.12, Concurrency:10

Output Token Throughput
(Higher is Better)

-

[EN
TN
x

4xA100 (TP1)  m4xA100 (3 Prefill + 1 Decode)

Preliminary results. Baseline is default (non-optimized settings). Results for Disaggregated Workflow based on non-streaming
TTFT (ms) 4A100 (TP1):1x, 4A100 (3 Prefill + 1 Decode) = 2.5x

Inter Token Latency
(Lower is Better)

-

90%

4xA100 (TP1)  m4xA100 (3 Prefill + 1 Decode)

<HANVIDIA. I



Disaggregated Serving Prototype - Triton 3 with vLLM Backend
Llama3.1-70B, vLLM 0.5.3, 8x H200, ISL/OSL: 2K/128, Concurrency:10

Output Token Throughput
(Higher is Better)

1.2x

8xH200 (TP2) m8xH200 (TP2, 3 Prefill + 1 Decode)

Preliminary results. Baseline is default (non-optimized settings). Results for Disaggregated Workflow based on non-streaming
TTFT: 8xH200 (TP2):1x, 8xH200 (3 Prefil + 1 Decode) = 1.4x

Inter Token Latency
(Lower is Better)

30%

8xH200 (TP2)  m8xH200 (TP2, 3 Prefill + 1 Decode)

<HANVIDIA. I



Thank You




Getting started with NVIDIA Al Inference

Bring inference to production with performance, ease, and cost savings

NVDIA Triton Product Page

NVIDIA Launch Pad

Download Triton on NGC

Explore More Resources for Development

For more information on NVIDIA Triton Inference Server

Open-source GitHub repository:

Latest release information

Quick start quide:

NVIDIA Deep Learning Institute. Self-paced online course. 4 hours.
Deploying a Model for Inference at Production Scale

<HANVIDIA. I


https://www.nvidia.com/en-us/ai-data-science/products/triton-inference-server/
https://catalog.ngc.nvidia.com/orgs/nvidia/containers/tritonserver
https://developer.nvidia.com/triton-inference-server
https://developer.nvidia.com/nvidia-triton-inference-server
https://github.com/NVIDIA/triton-inference-server
https://github.com/triton-inference-server/server/releases
https://github.com/triton-inference-server/server/blob/main/docs/getting_started/quickstart.md
https://courses.nvidia.com/courses/course-v1:DLI+S-FX-03+V1/

	Slide 1: Triton Inference Server Meetup 09/09/2024
	Slide 2
	Slide 3: Triton vLLM Backend Updates
	Slide 4: vLLM Backend Performance Improvement
	Slide 5: vLLM Metrics Access Through Triton 
	Slide 6: Triton Inference Server Updates
	Slide 7: Kubernetes (K8s) Multi-Node
	Slide 8: Kubernetes Multi-Node Demo
	Slide 9: Triton In-Process Python API
	Slide 10: OpenAI Compatible API (Beta)
	Slide 11: Constrained Decoding and  Function Calling
	Slide 12: Revamped documentation (24.09)
	Slide 13: Open Source Improvements and Deliverables
	Slide 14: Public CI
	Slide 15: Container Size Reduction and Manylinux Support
	Slide 16: GenAI Perf
	Slide 17: GenAI Perf
	Slide 18: GenAI-Perf Usage and Output
	Slide 19: GenAI-Perf Benchmarks Multi-LoRA Models
	Slide 20: GenAI-Perf Benchmarks OpenAI API Embeddings Models
	Slide 21: GenAI-Perf Benchmarks Hugging Face Re-Ranker API Models
	Slide 22: Vision Language Model
	Slide 23: Goodput
	Slide 24: Triton 3.0  Disaggregated Serving
	Slide 25: GenAI Models and Workloads Require Data Center Scaling
	Slide 26: Triton Inference Server  Optimized for Data Center Scale Distributed Workflows
	Slide 27: Triton 3.0 Component Architecture
	Slide 28: Triton 3.0 Components 
	Slide 29: Triton 3.0 Inter Component Protocol
	Slide 30: Triton 3.0 Component Reuse
	Slide 31: Use Case: Disaggregated Serving 
	Slide 32: Use Case: Disaggregated Serving
	Slide 33: Disaggregated Serving Prototype
	Slide 34: Disaggregated Serving Prototype - Triton 3 with TRT-LLM backend 
	Slide 35: Disaggregated Serving Prototype - Triton 3 with vLLM Backend 
	Slide 36: Thank You
	Slide 37: Getting started with NVIDIA AI Inference

