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• Triton vLLM Backend Updates

• Triton Inference Server Updates

• Open Source Improvements and Deliverables

• GenAI Perf

• Triton 3 and Disaggregated Serving
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Triton vLLM Backend Updates



vLLM Backend Performance Improvement

Within < 2% to vLLM’s performance

for both throughput and latency 

Delegate response sending and cancellation 

checks to another thread and wait with GIL 

released, allowing vLLM Engine to have more 

CPU time.

Llama2-7B on single A100 40GB with 200 input - 1000 output tokens using vLLM 0.5.3 post



vLLM Metrics Access Through Triton 

Supported vLLM metrics in r24.08

• vllm:prompt_tokens_total : counter of prefill 
tokens processed.

• vllm:generation_tokens_total : counter of 
generation tokens processed.

• vllm:time_to_first_token_seconds : histogram 
of time to first token in seconds.

• vllm:time_per_output_token_seconds: 
histogram of time per output token in seconds.

More in upcoming r24.09

• vllm:e2e_request_latency_seconds : histogram 
of end to end request latency in seconds.

• vllm:request_prompt_tokens : histogram of 
prefill tokens processed.

• vllm:request_generation_tokens : histogram of 
generation tokens processed.

• vllm:request_params_best_of : histogram of the 
best_of request parameter.

• vllm:request_params_n : histogram of the n 
request parameter.

In addition to counter and gauge metrics, Triton now supports histogram metrics.

The following vLLM metrics will be supported through Triton with 24.08 and 24.09 releases



Triton Inference Server Updates



MegaPod

MegaPod

Triton + TRT-LLM (TP = 4 PP = 2)

Node 2 (Worker)

Kubernetes (K8s) Multi-Node

Problem

• Deploy Massive LLMs (100B - 1T+ parameters) 

that can’t fit on a single node, or make use of older 

GPUs
• Automatically Scale and Load Balance multi-

node replicas

Solution
• Flexible Kubernetes definitions that can scale 

any model supported by TRT-LLM on any GPU.

Key Challenges

• Multi-Node Communication (MPI)

• Deploying Groups of Nodes (Gang Scheduling)

• Scaling Groups of Nodes (LeaderWorkerSet)

• Leader-Aware Load Balancing

• Auto-Scaling Metrics

Node 1 (Leader)

GPU GPU GPUGPU

GPU GPU GPUGPU

MPI

MPI

Triton + TRT-LLM (TP = 4 PP = 2)

Node 4 (Worker)Node 3 (Leader)

GPU GPU GPUGPU

GPU GPU GPUGPU

MPI

MPI

Metrics

Load Balancer

NFS

store 

converted 

model

K8s cluster

Inference Path

Control Path

HPA



Llama 3 70B on 2 nodes of 4x A10Gs

Kubernetes Multi-Node Demo

http://drive.google.com/file/d/1QxS_B1kYCl9EnpfJ8TUGFJkOQpJ7IOEu/view


Triton In-Process Python API

• Python bindings to C APIs for 
inference, scheduling, and model 
management

• Native Python support for built-in types 
like dicts, lists, etc.

• Non-blocking inference calls to allow 
running business logic concurrently

• Flexible Tensor interoperability for 
zero-copy conversions between NumPy, 
CuPy, PyTorch, DLPack

import tritonserver

# Configure

options = tritonserver.Options(

model_repository="/path/to/models",

log_info=True,

log_warn=True,

log_error=True,

)

# Serve

server = tritonserver.Server(options)

server.start(wait_until_ready=True)

# Inference: Non-blocking

inputs = {"text_input": ["Machine learning is"],

"stream": [True]}

model = server.model("llama-3.1-8b-instruct")

responses = model.infer(inputs=inputs)

# Responses are populated as they are received, so other

# work can be done in parallel while awaiting responses.

for response in responses:

print(response.outputs["text_output"].to_string_array())



from openai import OpenAI

client = OpenAI(

base_url="http://localhost:8000/v1",  # Self-hosted

api_key="empty",

)

completion = client.chat.completions.create(

model="meta-llama/Meta-Llama-3.1-8B-Instruct",

messages=[

{"role": "system", "content": "You are a Triton 

Inference Server expert."},

{"role": "user", "content": "Hello vLLM meetup!"}

],

max_tokens=256

)

print(completion.choices[0].message.content)

OpenAI Compatible API (Beta)

• Customizable FastAPI app with 
support for OpenAI schemas

• Drop-in replacement for the 
supported APIs with OpenAI clients, 
genai-perf, curl, etc.

• Triton In-Process Python API used 
for managing state and handling 
inference requests

• Optimized Triton backends for vLLM 
and TensorRT-LLM used for the 
inference runtime

FastAPI

In-process

Python API

vLLM 

backend

TRT-LLM

backend

OpenAI

Client

/v1/models

/v1/completions

/v1/chat/completions



Constrained Decoding and 
Function Calling

LLM is a component of an agentic workflow

Constrained decoding ensures LLMs to enforce a 

specific formatting, e.g. JSON

• Constrained Decoding tutorial provides 

examples for structured generation via 

prompt engineering and external libraries 

such as LM Format Enforcer

Function calling enables LLMs to perform complex 

tasks requiring specific computations or data 

retrieval

• Function Calling tutorial provides further 

insights into controlling model behavior

# Specify the custom logits post-processor to use

executor_config.logits_post_processor_map = {

"<name>": custom_logits_processor

}

self.executor = trtllm.Executor(

model_path=...,

model_type=...,

executor_config=executor_config)

…

# At inference time

request.logits_post_processor_name = "<name>"

python3 client.py --prompt "How's Nvidia doing?" -o 200 -

-verbose

{

"step": "1"

"description": "Get the current stock price for 

NVIDIA",

"tool": "get_current_stock_price",

"arguments": {

"symbol": "NVDA"

}

}

=====================================

Executing function: 

get_current_stock_price({'symbol':'NVDA'})

Function response: 106.38

=====================================

https://github.com/triton-inference-server/tutorials/blob/main/AI_Agents_Guide/Constrained_Decoding/README.md
https://github.com/triton-inference-server/tutorials/blob/main/AI_Agents_Guide/Function_Calling/README.md


Revamped documentation (24.09)

Triton – TensorRT-LLM Guide

• Run TRT-LLM models with Triton Server

• Advanced Configurations

• Deployment Strategies

• Tutorials for popular LLM models

Triton Scaling Guide

• Multi-Node

• Multi-Instance

AI Agents Guide

• Constrained Decoding

• Function Calling

More in upcoming months

• Versioning

• OpenAI API Guide

Before After



Open Source Improvements and 
Deliverables



Public CI

● Enable community members to confidently contribute.

● Verify your changes are not breaking
○ Every new vLLM release to be validated against the 

latest Triton release
○ Every Pull Request on vllm_backend to be validated 

against the latest vLLM release
○ Provide coverage across state-of-the-art hardware

● Improve transparency of our build process



Container size reduction

• Targeting 15GB 
• 40% container size reduction from 34GB to 

21GB, over the course of last three releases
• Removed unnecessary installations 
• Optimized our docker build

Container Size Reduction and Manylinux Support

Manylinux

● vLLM is coming soon!

● 24.11 GA: Targeting complete feature parity with 

our NGC containers 

● Early Access release available upon request

○ Supported backends

■ PyTorch

■ TensorFlow2

■ ONNX Runtime

○ Supported HW

■ X86 CPU 

■ ARM64 CPU

■ GPU 

○ Triton server core



GenAI Perf



Input
Input 2

Prefill 1 2 3 4 5 6

Enables apples to apples comparison for GenAI perf evaluation 

GenAI Perf

Input 1

Output

Time to first token Inter token latency

Request Latency

Output token 
throughput 

Request 
throughput 

Input
sequence 
length

Output
sequence 
length

Key features

● HW/SW agnostic performance 

benchmarking via KServe and OpenAI API

● Supports LLM, Visual Language Model, 

embedding, re-ranking, and multi-LoRA

● In-process benchmarking for TRT-LLM

Planned features

● Customizable front-end to allow custom 
benchmarking logic to easily extend 
GenAI-Perf.

● Access to raw metric data for easy post 
processing and scripts for generating 
plots.



GenAI-Perf Usage and Output

Three Input Formats
• Synthetic
• Bring Your Own Data (File)
• External Dataset

Server-agnostic and model-agnostic

Available via Docker and local build

Example command

genai-perf profile \

-m gpt2 \

--service-kind openai \

--endpoint-type completions \

--synthetic-input-tokens-mean 200 \

--synthetic-input-tokens-stddev 50 \

--streaming \

--output-tokens-mean 100 \

--output-tokens-stddev 25

Example output



GenAI-Perf Benchmarks Multi-LoRA Models

Insight 1 : Stable latency Insight 2: Stable token throughput Insight 3 : Lower throughput at >16 

adapters

Benchmarking Setup
Server: Mistral-7B-v0.1 loaded on a single TGI server running on an NVIDIA RTX 5880
GenAI-Perf: concurrency of 128, random model selection, 500 synthetic prompts
Key arguments to GenAI-Perf:

• “-m <adapter_name> <adapter_2_name> … <adapter_n_name>”
• “--model-selection-strategy random”

How many adapters can we deploy without 
compromising performance?

We can serve up to 64 adapters on one server. 
For more adapters, we can use GenAI-Perf for 
further benchmarking.



GenAI-Perf Benchmarks OpenAI API Embeddings Models

Embedding throughput is 
maximized at a batch size 
of 12. Latency increases 
continually.

Benchmarking Setup
Server: intfloat/e5-mistral-7b-instruct model loaded on a single vLLM OpenAI server running on an NVIDIA RTX 5880
GenAI-Perf: concurrency of 256

At what batch size do we 

maximize our embedding 

throughput?



GenAI-Perf Benchmarks Hugging Face Re-Ranker API Models

What is the impact of 
increasing the number 
of passages per re-
ranking request? 

Benchmarking Setup
Server: BAAI/bge-reranker-large model loaded on a single Hugging Face TEI server running on an NVIDIA RTX 5880
GenAI-Perf: concurrency of 512

The number of 
passages per request 
significantly impacts 
latency and throughput.



Vision Language Model

Rising popularity of Vision Language Models 
(VLM) over the past year

● OpenAI multi-modal chat API for VLM 
inference

○ contains text and image (base64)

● Supports 2 input data sources:
○ Synthetic data generation

■ Image resolution (height / 
width)

■ Image format
■ Prompt length (or, input 

sequence length)

○ Bring your own data (BYOD)

[1] OpenAI Vision: https://platform.openai.com/docs/guides/vision

OpenAI multi-modal Chat API

payload = {

“model”: “llava-hf/llava-v1.6-mistral-7b-hf”,

“messages”: [

{

“role”: “user”,

“content”: [

{

“type”: “text”,

“text”: “What’s in this image?”,

},

{

“type”: “image_url”,

“image_url”: {

“url”: 

f”data:image/jpeg;base64,{base64_image}”

}

}

]

}

],

“max_tokens”: 100

}

https://platform.openai.com/docs/guides/vision


Throughput = 10                             Goodput = 2

TTFT                        ITL
chatbot

Fast first response                   Human reading speed 

summarization

Longer time tolerated             

Data output generation

Benchmarking GenAI performance from user’s perspective

Goodput

Slides courtesy of "DistServe: Distributed Serving for Large Language Models" Hao AI Lab Blog, hao-ai-lab.github.io/blogs/distserve

Benchmark Env:

Server: Triton + vLLM on an NVIDIA RTX 5880

Model: Llama-3.1-8B

Goodput Constraints: TTFT ≤ 250ms and ITL ≤ 25ms

ISL/OSL: 300/100

Concurrency: [1, 2, 4, 8, 16, 32, 64]

Goodput is defined as the number of completed requests per second that meet certain user-defined service 

level objectives (SLO) such as time to first token (TTFT) and inter token latency (ITL) 

TTFT

ITL

TTFT

ITL

https://hao-ai-lab.github.io/blogs/distserve/
https://hao-ai-lab.github.io/blogs/distserve/


Triton 3.0 
Disaggregated Serving



Data center scale

GPU GPU GPUGPU

GPU GPU GPUGPU

Simple visual language model (loosely Llava 1.5 HD) example
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img
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L
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Vision VL
Connector

Img 1

Img 2
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S3
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Bottlenecks & severe under utilization in pipeline (Adobe Firefly, Linkedin)

GPU GPU GPUGPU

GPU GPU GPUGPU

GPU GPU GPUGPU

GPU GPU GPUGPU

LLM 

Vision
VL

Pre

Hetero multistage pipeline

● Multi-node & out of 

process 

● Independent scaling 

● Pull (capacity) based 

load balancing 

No longer can 

duplicate pipeline or 

statically define (push 

based) load balance

S1

S2

S4

S5
Pipeline 2img3

img1

img4

img2
Pipeline 1

GenAI Models and Workloads Require Data Center Scaling



Triton Inference Server 
Optimized for Data Center Scale Distributed Workflows
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Triton 2.0 Triton 3.0

● Optimized for Single Node Performance

● Optimized for Web Service Dev Cycle: 

Develop, Optimize, Deploy

● Optimized for Gen AI
● Optimized for Data Center Scalability
● Optimized for Distributed Workflows
● Optimized for Quick Iteration



Triton 3.0 Component Architecture

Split Triton Into Reusable Components 
W

e
b

 S
e

rv
e

r Triton core

Framewor

k backend

GPU
M

o
d

e
l 
re

p
o

API server

W
e

b
 S

e
rv

e
r

I/O 

Adapter

Worker

I/O 

Adapter

Framework 

backend

GPU

Worker

Router

Triton 2.0 Triton 3.0
Inter component protocol (ICP)

Create/destroy on demand

Scale up for throughput

Single model or ensemble.

Interchangeable 

API Server (NIM, 

RayServe, etc) 

Coordinate 

data to workers 

w.r.t capacity 

- Just enabled K8 multi-node 

autoscaling

- But needs new foundation to improve 

flexible scalability

Dynamic Work Queue



Triton 3.0 Components 

Workers Pull Work Based on Capacity

Stage 3Stage 2Stage 1

Worker

Router

Worker

Worker

Worker

Worker

Worker
Worker

Router

GPU

GPU

GPU

GPU

GPU

Worker

GPU

Multiple stage pipeline 
- Stages can be scaled on 

demand individually

- Capacity based load 

balancing across 

workers & stages.

Manifold
- Redirects downstream 

requests with upstream 

payloads

Worker 
- Microservice assigned 

separate compute 

resources.

Dynamic 

Work 

Queue

Dynamic 

Work 

Queue



Triton 3.0 Inter Component Protocol

Separate Data and Control Planes

Worker

Worker

API

Server

API

Server

API

Server

Worker

Router

Worker

Router

GPU

GPU

Worker

Worker

GPU

GPU

Worker

GPU

Data Plane

(UCP)

Control Plane (Nats.io)
- Interface for communication. 

- Minimal data transfer and optimized for inference 

- Pull based routing 

Data Plane (UCP)
- Interface for data transfer. 

- Based on GPUDirect RDMA technology. 

- Support for InfiniBand, RoCE, & shared-memory IPC. 

Remote

Client

Remote

Client

Remote

Client

Remote

Client

Network

Proxy

Control plane

(Nats.io)



Triton 3.0 Component Reuse

Components can be adopted in modular fashion and will have first class Python support. 

Triton 3 Inference Serving Platform
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Inter Component Protocol (ICP)

Domain Specific APIs: 
In addition to inference 

APIs, include LlamaStack, 

SGLang, LangGraph, etc

KV cache Transfer & Model 

Management
- Disaggregated serving

- Domain specific KV cache routing 

Perf Benchmarking & Tuning
- GenAI Perf & Model 

navigator

- Worker to worker traffic



Use Case: Disaggregated Serving 

Colocating prefill & decoding causes interference

4 requests processed in single GPU with continuous batching

Request 4Request 2

Request 1

Request 2

Request 3

Request 4

Request 3

Lost 

Generation

Colocating prefill & decoding 

couples resource allocation 

and parallelism 

● Different optimal strategies 

for prefill & decode

● Prefill: tensor parallelism for 

low latency

● Decode: data or pipeline 

parallelism for high 

throughput

Disaggregate prefill and decode 

Leverage high BW NVLink to 

minimize the KV cache transfer 

overhead

Prefill

Compute bound

Decode

Memory bound



Use Case: Disaggregated Serving

Dynamic Disaggregated Serving

Dynamically change prefill and decode based 

on ISL/OSL or TTFT/ITL requirements

Worker 1

Prefill

Worker 2

Prefill
NVLink/NVSwitch => High BW KV cache 

transfer across workers & nodes

- Enables easier programmability for placing 

disaggregation. 

Better utilization of one gigantic GPU system 

(Blackwell)

Disaggregated Mixture of Experts (1.8B) 

- Can make bigger models more performant

Worker 3

Decode

Worker 4

Decode

Worker 1

Prefill

Worker 2

Prefill

Worker 3

Decode

Worker 4

Prefill

Disaggregated Serving on Mixed SKUs 

- Simulated results on H100 (prefill) and 

H20 (decode) show cost benefits



Disaggregated Serving Prototype

Workflow:

Pre 

Process

Prefill

Decode

Post 

Process

CPU

Prefill worker

Prefill worker

Decode worker

Decode worker

TRT-LLM
● Llama 3 8b 

Instruct

● TP 1

● 4x A100 GPUs

● Pull Based 

Routing

Control plane

Data plane (UCP)

KV cache transfer

Worker

Router

GPU GPU

GPUGPU

Client

Client

Client

Client

vLLM 
● Llama 3.1 70B 

Instruct

● TP 2

● 8x H200 GPUs

● Pull Based 

Routing



Disaggregated Serving Prototype - Triton 3 with TRT-LLM backend 
Llama3 8B, ISL/OSL: 4096/512, TRT-LLM 0.12, Concurrency:10

Preliminary results. Baseline is default (non-optimized settings). Results for Disaggregated Workflow based on non-streaming

TTFT (ms) 4A100 (TP1):1x, 4A100 (3 Prefill + 1 Decode) = 2.5x

1.2x

Output Token Throughput 
(Higher is Better)

4xA100 (TP1) 4xA100 (3 Prefill + 1 Decode)

Inter Token Latency
(Lower is Better)

4xA100 (TP1) 4xA100 (3 Prefill + 1 Decode)

90%



Disaggregated Serving Prototype - Triton 3 with vLLM Backend 
Llama3.1-70B, vLLM 0.5.3, 8x H200, ISL/OSL: 2K/128, Concurrency:10

Preliminary results. Baseline is default (non-optimized settings). Results for Disaggregated Workflow based on non-streaming

TTFT: 8xH200 (TP2):1x, 8xH200 (3 Prefill + 1 Decode) = 1.4x

Output Token Throughput

Output Token Throughput 
(Higher is Better)

8xH200 (TP2) 8xH200 (TP2, 3 Prefill + 1 Decode)

Inter Token Latency
(Lower is Better)

8xH200 (TP2) 8xH200 (TP2, 3 Prefill + 1 Decode)

1.2x

30%



Thank You



Getting started with NVIDIA AI Inference
Bring inference to production with performance, ease, and cost savings

NVDIA Triton Product Page

NVIDIA Launch Pad

Download Triton on NGC

Explore More Resources for Development

For more information on NVIDIA Triton Inference Server

Open-source GitHub repository:

Latest release information

Quick start guide: 

NVIDIA Deep Learning Institute. Self-paced online course. 4 hours.

Deploying a Model for Inference at Production Scale

https://www.nvidia.com/en-us/ai-data-science/products/triton-inference-server/
https://catalog.ngc.nvidia.com/orgs/nvidia/containers/tritonserver
https://developer.nvidia.com/triton-inference-server
https://developer.nvidia.com/nvidia-triton-inference-server
https://github.com/NVIDIA/triton-inference-server
https://github.com/triton-inference-server/server/releases
https://github.com/triton-inference-server/server/blob/main/docs/getting_started/quickstart.md
https://courses.nvidia.com/courses/course-v1:DLI+S-FX-03+V1/
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