
Triton Inference Server Meetup
09/09/2024

• Triton vLLM Backend Updates

• Triton Inference Server Updates

• Open Source Improvements and Deliverables

• GenAI Perf

• Triton 3 and Disaggregated Serving

Agenda

Triton vLLM Backend Updates

vLLM Backend Performance Improvement

Within < 2% to vLLM’s performance

for both throughput and latency

Delegate response sending and cancellation

checks to another thread and wait with GIL

released, allowing vLLM Engine to have more

CPU time.

Llama2-7B on single A100 40GB with 200 input - 1000 output tokens using vLLM 0.5.3 post

vLLM Metrics Access Through Triton

Supported vLLM metrics in r24.08

• vllm:prompt_tokens_total : counter of prefill
tokens processed.

• vllm:generation_tokens_total : counter of
generation tokens processed.

• vllm:time_to_first_token_seconds : histogram
of time to first token in seconds.

• vllm:time_per_output_token_seconds:
histogram of time per output token in seconds.

More in upcoming r24.09

• vllm:e2e_request_latency_seconds : histogram
of end to end request latency in seconds.

• vllm:request_prompt_tokens : histogram of
prefill tokens processed.

• vllm:request_generation_tokens : histogram of
generation tokens processed.

• vllm:request_params_best_of : histogram of the
best_of request parameter.

• vllm:request_params_n : histogram of the n
request parameter.

In addition to counter and gauge metrics, Triton now supports histogram metrics.

The following vLLM metrics will be supported through Triton with 24.08 and 24.09 releases

Triton Inference Server Updates

MegaPod

MegaPod

Triton + TRT-LLM (TP = 4 PP = 2)

Node 2 (Worker)

Kubernetes (K8s) Multi-Node

Problem

• Deploy Massive LLMs (100B - 1T+ parameters)

that can’t fit on a single node, or make use of older

GPUs
• Automatically Scale and Load Balance multi-

node replicas

Solution
• Flexible Kubernetes definitions that can scale

any model supported by TRT-LLM on any GPU.

Key Challenges

• Multi-Node Communication (MPI)

• Deploying Groups of Nodes (Gang Scheduling)

• Scaling Groups of Nodes (LeaderWorkerSet)

• Leader-Aware Load Balancing

• Auto-Scaling Metrics

Node 1 (Leader)

GPU GPU GPUGPU

GPU GPU GPUGPU

MPI

MPI

Triton + TRT-LLM (TP = 4 PP = 2)

Node 4 (Worker)Node 3 (Leader)

GPU GPU GPUGPU

GPU GPU GPUGPU

MPI

MPI

Metrics

Load Balancer

NFS

store

converted

model

K8s cluster

Inference Path

Control Path

HPA

Llama 3 70B on 2 nodes of 4x A10Gs

Kubernetes Multi-Node Demo

http://drive.google.com/file/d/1QxS_B1kYCl9EnpfJ8TUGFJkOQpJ7IOEu/view

Triton In-Process Python API

• Python bindings to C APIs for
inference, scheduling, and model
management

• Native Python support for built-in types
like dicts, lists, etc.

• Non-blocking inference calls to allow
running business logic concurrently

• Flexible Tensor interoperability for
zero-copy conversions between NumPy,
CuPy, PyTorch, DLPack

import tritonserver

Configure

options = tritonserver.Options(

model_repository="/path/to/models",

log_info=True,

log_warn=True,

log_error=True,

)

Serve

server = tritonserver.Server(options)

server.start(wait_until_ready=True)

Inference: Non-blocking

inputs = {"text_input": ["Machine learning is"],

"stream": [True]}

model = server.model("llama-3.1-8b-instruct")

responses = model.infer(inputs=inputs)

Responses are populated as they are received, so other

work can be done in parallel while awaiting responses.

for response in responses:

print(response.outputs["text_output"].to_string_array())

from openai import OpenAI

client = OpenAI(

base_url="http://localhost:8000/v1", # Self-hosted

api_key="empty",

)

completion = client.chat.completions.create(

model="meta-llama/Meta-Llama-3.1-8B-Instruct",

messages=[

{"role": "system", "content": "You are a Triton

Inference Server expert."},

{"role": "user", "content": "Hello vLLM meetup!"}

],

max_tokens=256

)

print(completion.choices[0].message.content)

OpenAI Compatible API (Beta)

• Customizable FastAPI app with
support for OpenAI schemas

• Drop-in replacement for the
supported APIs with OpenAI clients,
genai-perf, curl, etc.

• Triton In-Process Python API used
for managing state and handling
inference requests

• Optimized Triton backends for vLLM
and TensorRT-LLM used for the
inference runtime

FastAPI

In-process

Python API

vLLM

backend

TRT-LLM

backend

OpenAI

Client

/v1/models

/v1/completions

/v1/chat/completions

Constrained Decoding and
Function Calling

LLM is a component of an agentic workflow

Constrained decoding ensures LLMs to enforce a

specific formatting, e.g. JSON

• Constrained Decoding tutorial provides

examples for structured generation via

prompt engineering and external libraries

such as LM Format Enforcer

Function calling enables LLMs to perform complex

tasks requiring specific computations or data

retrieval

• Function Calling tutorial provides further

insights into controlling model behavior

Specify the custom logits post-processor to use

executor_config.logits_post_processor_map = {

"<name>": custom_logits_processor

}

self.executor = trtllm.Executor(

model_path=...,

model_type=...,

executor_config=executor_config)

…

At inference time

request.logits_post_processor_name = "<name>"

python3 client.py --prompt "How's Nvidia doing?" -o 200 -

-verbose

{

"step": "1"

"description": "Get the current stock price for

NVIDIA",

"tool": "get_current_stock_price",

"arguments": {

"symbol": "NVDA"

}

}

=====================================

Executing function:

get_current_stock_price({'symbol':'NVDA'})

Function response: 106.38

=====================================

https://github.com/triton-inference-server/tutorials/blob/main/AI_Agents_Guide/Constrained_Decoding/README.md
https://github.com/triton-inference-server/tutorials/blob/main/AI_Agents_Guide/Function_Calling/README.md

Revamped documentation (24.09)

Triton – TensorRT-LLM Guide

• Run TRT-LLM models with Triton Server

• Advanced Configurations

• Deployment Strategies

• Tutorials for popular LLM models

Triton Scaling Guide

• Multi-Node

• Multi-Instance

AI Agents Guide

• Constrained Decoding

• Function Calling

More in upcoming months

• Versioning

• OpenAI API Guide

Before After

Open Source Improvements and
Deliverables

Public CI

● Enable community members to confidently contribute.

● Verify your changes are not breaking
○ Every new vLLM release to be validated against the

latest Triton release
○ Every Pull Request on vllm_backend to be validated

against the latest vLLM release
○ Provide coverage across state-of-the-art hardware

● Improve transparency of our build process

Container size reduction

• Targeting 15GB
• 40% container size reduction from 34GB to

21GB, over the course of last three releases
• Removed unnecessary installations
• Optimized our docker build

Container Size Reduction and Manylinux Support

Manylinux

● vLLM is coming soon!

● 24.11 GA: Targeting complete feature parity with

our NGC containers

● Early Access release available upon request

○ Supported backends

■ PyTorch

■ TensorFlow2

■ ONNX Runtime

○ Supported HW

■ X86 CPU

■ ARM64 CPU

■ GPU

○ Triton server core

GenAI Perf

Input
Input 2

Prefill 1 2 3 4 5 6

Enables apples to apples comparison for GenAI perf evaluation

GenAI Perf

Input 1

Output

Time to first token Inter token latency

Request Latency

Output token
throughput

Request
throughput

Input
sequence
length

Output
sequence
length

Key features

● HW/SW agnostic performance

benchmarking via KServe and OpenAI API

● Supports LLM, Visual Language Model,

embedding, re-ranking, and multi-LoRA

● In-process benchmarking for TRT-LLM

Planned features

● Customizable front-end to allow custom
benchmarking logic to easily extend
GenAI-Perf.

● Access to raw metric data for easy post
processing and scripts for generating
plots.

GenAI-Perf Usage and Output

Three Input Formats
• Synthetic
• Bring Your Own Data (File)
• External Dataset

Server-agnostic and model-agnostic

Available via Docker and local build

Example command

genai-perf profile \

-m gpt2 \

--service-kind openai \

--endpoint-type completions \

--synthetic-input-tokens-mean 200 \

--synthetic-input-tokens-stddev 50 \

--streaming \

--output-tokens-mean 100 \

--output-tokens-stddev 25

Example output

GenAI-Perf Benchmarks Multi-LoRA Models

Insight 1 : Stable latency Insight 2: Stable token throughput Insight 3 : Lower throughput at >16

adapters

Benchmarking Setup
Server: Mistral-7B-v0.1 loaded on a single TGI server running on an NVIDIA RTX 5880
GenAI-Perf: concurrency of 128, random model selection, 500 synthetic prompts
Key arguments to GenAI-Perf:

• “-m <adapter_name> <adapter_2_name> … <adapter_n_name>”
• “--model-selection-strategy random”

How many adapters can we deploy without
compromising performance?

We can serve up to 64 adapters on one server.
For more adapters, we can use GenAI-Perf for
further benchmarking.

GenAI-Perf Benchmarks OpenAI API Embeddings Models

Embedding throughput is
maximized at a batch size
of 12. Latency increases
continually.

Benchmarking Setup
Server: intfloat/e5-mistral-7b-instruct model loaded on a single vLLM OpenAI server running on an NVIDIA RTX 5880
GenAI-Perf: concurrency of 256

At what batch size do we

maximize our embedding

throughput?

GenAI-Perf Benchmarks Hugging Face Re-Ranker API Models

What is the impact of
increasing the number
of passages per re-
ranking request?

Benchmarking Setup
Server: BAAI/bge-reranker-large model loaded on a single Hugging Face TEI server running on an NVIDIA RTX 5880
GenAI-Perf: concurrency of 512

The number of
passages per request
significantly impacts
latency and throughput.

Vision Language Model

Rising popularity of Vision Language Models
(VLM) over the past year

● OpenAI multi-modal chat API for VLM
inference

○ contains text and image (base64)

● Supports 2 input data sources:
○ Synthetic data generation

■ Image resolution (height /
width)

■ Image format
■ Prompt length (or, input

sequence length)

○ Bring your own data (BYOD)

[1] OpenAI Vision: https://platform.openai.com/docs/guides/vision

OpenAI multi-modal Chat API

payload = {

“model”: “llava-hf/llava-v1.6-mistral-7b-hf”,

“messages”: [

{

“role”: “user”,

“content”: [

{

“type”: “text”,

“text”: “What’s in this image?”,

},

{

“type”: “image_url”,

“image_url”: {

“url”:

f”data:image/jpeg;base64,{base64_image}”

}

}

]

}

],

“max_tokens”: 100

}

https://platform.openai.com/docs/guides/vision

Throughput = 10 Goodput = 2

TTFT ITL
chatbot

Fast first response Human reading speed

summarization

Longer time tolerated

Data output generation

Benchmarking GenAI performance from user’s perspective

Goodput

Slides courtesy of "DistServe: Distributed Serving for Large Language Models" Hao AI Lab Blog, hao-ai-lab.github.io/blogs/distserve

Benchmark Env:

Server: Triton + vLLM on an NVIDIA RTX 5880

Model: Llama-3.1-8B

Goodput Constraints: TTFT ≤ 250ms and ITL ≤ 25ms

ISL/OSL: 300/100

Concurrency: [1, 2, 4, 8, 16, 32, 64]

Goodput is defined as the number of completed requests per second that meet certain user-defined service

level objectives (SLO) such as time to first token (TTFT) and inter token latency (ITL)

TTFT

ITL

TTFT

ITL

https://hao-ai-lab.github.io/blogs/distserve/
https://hao-ai-lab.github.io/blogs/distserve/

Triton 3.0
Disaggregated Serving

Data center scale

GPU GPU GPUGPU

GPU GPU GPUGPU

Simple visual language model (loosely Llava 1.5 HD) example

Input Preprocessing Batching

Slice Resize

Tokenize

Tokenize

img

text

L

L

M

Vision VL
Connector

Img 1

Img 2

S1

S3

S4

Bottlenecks & severe under utilization in pipeline (Adobe Firefly, Linkedin)

GPU GPU GPUGPU

GPU GPU GPUGPU

GPU GPU GPUGPU

GPU GPU GPUGPU

LLM

Vision
VL

Pre

Hetero multistage pipeline

● Multi-node & out of

process

● Independent scaling

● Pull (capacity) based

load balancing

No longer can

duplicate pipeline or

statically define (push

based) load balance

S1

S2

S4

S5
Pipeline 2img3

img1

img4

img2
Pipeline 1

GenAI Models and Workloads Require Data Center Scaling

Triton Inference Server
Optimized for Data Center Scale Distributed Workflows

W
e

b
 S

e
rv

e
r Triton core

Framewor

k backend

GPU
M

o
d

e
l
re

p
o

API server

W
e

b
 S

e
rv

e
r

Worker

Framework backend GPU

Worker

Framework backend GPU

Worker

Framework backend GPU

Worker

Framework backend GPU

Worker

Router

Triton 2.0 Triton 3.0

● Optimized for Single Node Performance

● Optimized for Web Service Dev Cycle:

Develop, Optimize, Deploy

● Optimized for Gen AI
● Optimized for Data Center Scalability
● Optimized for Distributed Workflows
● Optimized for Quick Iteration

Triton 3.0 Component Architecture

Split Triton Into Reusable Components
W

e
b

 S
e

rv
e

r Triton core

Framewor

k backend

GPU
M

o
d

e
l
re

p
o

API server

W
e

b
 S

e
rv

e
r

I/O

Adapter

Worker

I/O

Adapter

Framework

backend

GPU

Worker

Router

Triton 2.0 Triton 3.0
Inter component protocol (ICP)

Create/destroy on demand

Scale up for throughput

Single model or ensemble.

Interchangeable

API Server (NIM,

RayServe, etc)

Coordinate

data to workers

w.r.t capacity

- Just enabled K8 multi-node

autoscaling

- But needs new foundation to improve

flexible scalability

Dynamic Work Queue

Triton 3.0 Components

Workers Pull Work Based on Capacity

Stage 3Stage 2Stage 1

Worker

Router

Worker

Worker

Worker

Worker

Worker
Worker

Router

GPU

GPU

GPU

GPU

GPU

Worker

GPU

Multiple stage pipeline
- Stages can be scaled on

demand individually

- Capacity based load

balancing across

workers & stages.

Manifold
- Redirects downstream

requests with upstream

payloads

Worker
- Microservice assigned

separate compute

resources.

Dynamic

Work

Queue

Dynamic

Work

Queue

Triton 3.0 Inter Component Protocol

Separate Data and Control Planes

Worker

Worker

API

Server

API

Server

API

Server

Worker

Router

Worker

Router

GPU

GPU

Worker

Worker

GPU

GPU

Worker

GPU

Data Plane

(UCP)

Control Plane (Nats.io)
- Interface for communication.

- Minimal data transfer and optimized for inference

- Pull based routing

Data Plane (UCP)
- Interface for data transfer.

- Based on GPUDirect RDMA technology.

- Support for InfiniBand, RoCE, & shared-memory IPC.

Remote

Client

Remote

Client

Remote

Client

Remote

Client

Network

Proxy

Control plane

(Nats.io)

Triton 3.0 Component Reuse

Components can be adopted in modular fashion and will have first class Python support.

Triton 3 Inference Serving Platform

API server
W

e
b

S
e

rv
e

r

I/O

Adapter

Worker

I/O

Adapter
Framework

backend

GPU

Worker

Router

Inter Component Protocol (ICP)

Domain Specific APIs:
In addition to inference

APIs, include LlamaStack,

SGLang, LangGraph, etc

KV cache Transfer & Model

Management
- Disaggregated serving

- Domain specific KV cache routing

Perf Benchmarking & Tuning
- GenAI Perf & Model

navigator

- Worker to worker traffic

Use Case: Disaggregated Serving

Colocating prefill & decoding causes interference

4 requests processed in single GPU with continuous batching

Request 4Request 2

Request 1

Request 2

Request 3

Request 4

Request 3

Lost

Generation

Colocating prefill & decoding

couples resource allocation

and parallelism

● Different optimal strategies

for prefill & decode

● Prefill: tensor parallelism for

low latency

● Decode: data or pipeline

parallelism for high

throughput

Disaggregate prefill and decode

Leverage high BW NVLink to

minimize the KV cache transfer

overhead

Prefill

Compute bound

Decode

Memory bound

Use Case: Disaggregated Serving

Dynamic Disaggregated Serving

Dynamically change prefill and decode based

on ISL/OSL or TTFT/ITL requirements

Worker 1

Prefill

Worker 2

Prefill
NVLink/NVSwitch => High BW KV cache

transfer across workers & nodes

- Enables easier programmability for placing

disaggregation.

Better utilization of one gigantic GPU system

(Blackwell)

Disaggregated Mixture of Experts (1.8B)

- Can make bigger models more performant

Worker 3

Decode

Worker 4

Decode

Worker 1

Prefill

Worker 2

Prefill

Worker 3

Decode

Worker 4

Prefill

Disaggregated Serving on Mixed SKUs

- Simulated results on H100 (prefill) and

H20 (decode) show cost benefits

Disaggregated Serving Prototype

Workflow:

Pre

Process

Prefill

Decode

Post

Process

CPU

Prefill worker

Prefill worker

Decode worker

Decode worker

TRT-LLM
● Llama 3 8b

Instruct

● TP 1

● 4x A100 GPUs

● Pull Based

Routing

Control plane

Data plane (UCP)

KV cache transfer

Worker

Router

GPU GPU

GPUGPU

Client

Client

Client

Client

vLLM
● Llama 3.1 70B

Instruct

● TP 2

● 8x H200 GPUs

● Pull Based

Routing

Disaggregated Serving Prototype - Triton 3 with TRT-LLM backend
Llama3 8B, ISL/OSL: 4096/512, TRT-LLM 0.12, Concurrency:10

Preliminary results. Baseline is default (non-optimized settings). Results for Disaggregated Workflow based on non-streaming

TTFT (ms) 4A100 (TP1):1x, 4A100 (3 Prefill + 1 Decode) = 2.5x

1.2x

Output Token Throughput
(Higher is Better)

4xA100 (TP1) 4xA100 (3 Prefill + 1 Decode)

Inter Token Latency
(Lower is Better)

4xA100 (TP1) 4xA100 (3 Prefill + 1 Decode)

90%

Disaggregated Serving Prototype - Triton 3 with vLLM Backend
Llama3.1-70B, vLLM 0.5.3, 8x H200, ISL/OSL: 2K/128, Concurrency:10

Preliminary results. Baseline is default (non-optimized settings). Results for Disaggregated Workflow based on non-streaming

TTFT: 8xH200 (TP2):1x, 8xH200 (3 Prefill + 1 Decode) = 1.4x

Output Token Throughput

Output Token Throughput
(Higher is Better)

8xH200 (TP2) 8xH200 (TP2, 3 Prefill + 1 Decode)

Inter Token Latency
(Lower is Better)

8xH200 (TP2) 8xH200 (TP2, 3 Prefill + 1 Decode)

1.2x

30%

Thank You

Getting started with NVIDIA AI Inference
Bring inference to production with performance, ease, and cost savings

NVDIA Triton Product Page

NVIDIA Launch Pad

Download Triton on NGC

Explore More Resources for Development

For more information on NVIDIA Triton Inference Server

Open-source GitHub repository:

Latest release information

Quick start guide:

NVIDIA Deep Learning Institute. Self-paced online course. 4 hours.

Deploying a Model for Inference at Production Scale

https://www.nvidia.com/en-us/ai-data-science/products/triton-inference-server/
https://catalog.ngc.nvidia.com/orgs/nvidia/containers/tritonserver
https://developer.nvidia.com/triton-inference-server
https://developer.nvidia.com/nvidia-triton-inference-server
https://github.com/NVIDIA/triton-inference-server
https://github.com/triton-inference-server/server/releases
https://github.com/triton-inference-server/server/blob/main/docs/getting_started/quickstart.md
https://courses.nvidia.com/courses/course-v1:DLI+S-FX-03+V1/

	Slide 1: Triton Inference Server Meetup 09/09/2024
	Slide 2
	Slide 3: Triton vLLM Backend Updates
	Slide 4: vLLM Backend Performance Improvement
	Slide 5: vLLM Metrics Access Through Triton
	Slide 6: Triton Inference Server Updates
	Slide 7: Kubernetes (K8s) Multi-Node
	Slide 8: Kubernetes Multi-Node Demo
	Slide 9: Triton In-Process Python API
	Slide 10: OpenAI Compatible API (Beta)
	Slide 11: Constrained Decoding and Function Calling
	Slide 12: Revamped documentation (24.09)
	Slide 13: Open Source Improvements and Deliverables
	Slide 14: Public CI
	Slide 15: Container Size Reduction and Manylinux Support
	Slide 16: GenAI Perf
	Slide 17: GenAI Perf
	Slide 18: GenAI-Perf Usage and Output
	Slide 19: GenAI-Perf Benchmarks Multi-LoRA Models
	Slide 20: GenAI-Perf Benchmarks OpenAI API Embeddings Models
	Slide 21: GenAI-Perf Benchmarks Hugging Face Re-Ranker API Models
	Slide 22: Vision Language Model
	Slide 23: Goodput
	Slide 24: Triton 3.0 Disaggregated Serving
	Slide 25: GenAI Models and Workloads Require Data Center Scaling
	Slide 26: Triton Inference Server Optimized for Data Center Scale Distributed Workflows
	Slide 27: Triton 3.0 Component Architecture
	Slide 28: Triton 3.0 Components
	Slide 29: Triton 3.0 Inter Component Protocol
	Slide 30: Triton 3.0 Component Reuse
	Slide 31: Use Case: Disaggregated Serving
	Slide 32: Use Case: Disaggregated Serving
	Slide 33: Disaggregated Serving Prototype
	Slide 34: Disaggregated Serving Prototype - Triton 3 with TRT-LLM backend
	Slide 35: Disaggregated Serving Prototype - Triton 3 with vLLM Backend
	Slide 36: Thank You
	Slide 37: Getting started with NVIDIA AI Inference

