

UUsseerr GGuuiiddee

NNVVIIDDIIAA PPeerrffKKiitt
NNVVIIDDIIAA PPeerrffoorrmmaannccee TToooollkkiitt

Table of Contents

Introduction... ii
System Requirements .. iii
Release Notes ... iii

PerfKit Getting Started ..1
Installing PerfKit...1

PerfSDK..1
Using PerfSDK..1
Using PerfAPI...1

Simplified Experiments (SimExp) ..1

Using PerfSDK with PDH ...3
Graphing the Results ..4

NVIDIA Plug-in for Microsoft PIX for Windows..6
Appendix A. Frequently Asked Questions..8
Appendix B. Counters Reference ...9

Direct3D Counters ..10
OpenGL Counters ...11
GPU Counters...11
Simplified Experiments (SimExp) ...14

Appendix C. PerfAPI Specification...15
Appendix D. Notes for Linux Users ..19
Appendix E. Sample Code ..21

Contact..22
Appendix F. Accessing PerfKit in gDEBugger ..23

Accessing GPU Performance Counters..23
Performance Analysis Toolbar..24

NVIDIA GLExpert and gDEBugger integration...25

DA-01800-001_v04 i
October 2006

DA-01800-001_v04 ii
June 2008

The diagram below shows how the various components of PerfKit fit together.

 Introduction

Please read this entire document before you get started with PerfKit. Several
important issues are covered in this document that will help get things running
smoothly.

PerfKit gives every graphics application developer access to low-level performance
counters inside the driver and hardware counters inside the GPU itself.

The performance counters are available through PerfSDK using PerfAPI, as well as
through PerfMon and the Windows Management Instrumentation (WMI)
Performance Data Helper (PDH) interface. We also offer a plug-in for Microsoft
PIX for Windows to access GPU and driver counters while running Microsoft PIX
experiments.

The counters can be used to determine exactly how your application is using the
GPU, identify performance issues, and confirm that performance problems have
been resolved.

PerfKit consists of the following components:

 Instrumented display driver

 NVIDIA PerfHUD (Please read the separate PerfHUD User Guide for more)

 NVIDIA Plug-in for Microsoft PIX for Windows

 NVIDIA PerfSDK

 NVIDIA PerfAPI libraries, includes, and sample code

 PDH based interface

 NVIDIA Developer Control Panel (NVDevCPL) applet

 Sample code and helper classes

 gDEBugger (30 day trail version, courtesy of Graphic Remedy)

 PerfKit

System Requirements
 NVIDIA instrumented display driver, version 83.60 or later on Windows Vista

or XP

 PerfKit signals are available on all NVIDIA GPUs listed below:

 GeForce 9 Series

 GeForce 8 Series

 GeForce 7950 GX2

 GeForce 7950 GT

 GeForce 7900 GTX

 GeForce 7800 GTX 512

X

orce 6800 GT

Perf y not be available on other NVIDIA GPUs.

Release No

 GeForce 7800 GT

 GeForce 6800 Ultra

 GeF

 GeForce 6600

Kit signals may or ma

tes
 e 32-bi rfKit release only runs on 32-bit Windows XP.
 PerfKit release only runs on 64-bit Windows XP.
 a Helper (PDH) support on 64-bit Windows XP.

Th t Windows XP Pe
The 64-bit Windows XP
There is no Performance Dat

DA-01800-001_v04 iii
June 2008

DA-01800-001_v04 1

PerfKit
Getting Started

Installing PerfKit
Follow the instructions below to install the instrumented driver and get started using
PerfKit.

1. Install PerfKit by double clicking on the PerfKit.exe file downloaded from the
NVIDIA developer web site. This will install the Instrumented Driver,
NVPerfHUD, and NVPerfSDK.

2. Ensure that driver instrumentation is enabled from the ForceWare driver
control panel. Both the Enable driver instrumentation and Performance Data
Helper (PDH) support should be checked.

June 2008

DA-01800-001_v04 1
June 2008

PerfSDK

Using PerfSDK
There are now two ways to access the GPU and driver data made available with
PerfKit from within your own application. The first is using PerfAPI, and the
second is through the Performance Data Helper (PDH) interface introduced with
PerfKit 1.0 and is described in the next section. Finally, the NVIDIA Plugin for
Microsoft PIX for Windows is described last.

Using PerfAPI
The PerfAPI implementation is provided via the NVPerfSDK.h and
NVPerfSDK.lib files included in the PerfKit distribution. This API provides the
developer with greater access to the capabilities of the GPU and driver counters, as
well as providing an interface to Simplified Experiments (SimExp), which give even
more detailed yet easy to use information about GPU performance.

The typical application that wants to sample GPU (using round robin sampling) and
driver counters requires just a few source code changes. During setup, make a call
to NVPMInit() with a similar call to NVPMShutdown() during cleanup and
shutdown. To add a counter, simply call
NVPMAddCounterByName(“gpu_idle”), substituting the counter of
interest for “gpu_idle” in this example. Finally, once per frame, call
NVPMSample(NULL, &nCount) to sample the currently active counters and
NVPMGetCounterValueByName(“gpu_idle”, 0, &value,
&cycle) to retrieve the resulting counter value. Any number of driver counters
can be enabled concurrently and will be updated every frame. GPU counters,
however, are a more limited resource, and can only sample a certain number of
counters per frame. The counter values can always be queried, but they will be
refreshed in a round robin fashion as they are sampled.

Simplified Experiments (SimExp)
One of the new features provided by NVPerfAPI is the ability to run directed
experiments on the individual units of the GPU and gather performance
characteristics, called Simplified Experiments. For 8 locations in the GPU pipeline,
SimExp provides a “Speed of Light” (SOL) and a “Bottleneck” value. The speed of
light of a unit can be thought of as a utilization measurement. The “value” returned
is a count for how many cycles during the experiment the unit was active, and the
“cycle” returned gives the amount of time the experiment took to run. Both of
these values are in picoseconds. If you take the value returned and divide it by the
cycles, you get percentage utilization. Similarly, when running a Bottleneck

 PerfKit

experiment, the value roughly represents the amount of time this unit was a
bottleneck and the cycles is the experiment duration. Divide value by cycle and you
get a percentage of time that this unit was the bottleneck.

Finally, there is an additional counter that will run all of the experiments needed to
determine what unit in the GPU is the bottleneck. It runs all of the speed of light
and bottleneck experiments, passes the results through an expert system, and
returns an ordinal value for the unit that is the bottleneck. You can translate that
into a string name using NVPMGetGPUBottleneckName(value, name).

Since the Simplified Experiments require collecting data from multiple counters in
the GPU, they require multiple passes across the same scene data (as if the game
and all animations were paused) to complete the experiment. From a paused frame
in the application, this is accomplished using the
NVPMBeginExperiment()/NVPMEndExperiment() mechanism, detailed
below. As always, you still setup NVPerfAPI using NVPMInit() and enable the
counter of interest using NVPMAddCounterByName(”GPU Bottleneck”).
Then, inside of your drawing loop, you would do the following:

NVPMBeginExperiment(&nCount);
for(i = 0; i < nCount; i++) {
 NVPMBeginPass(i);
 // Draw the scene, including Present or
SwapBuffers
 NVPMEndPass(i);
}
NVPMEndExperiment();

Once this is completed, you can query
NVPMGetCounterValueByName(“GPU Bottleneck”, 0, &value,
&cycles) to determine which unit is the bottleneck. Because all of the
underlying speed of light experiments and bottleneck experiments are run in order
to determine this value, you can also query those values when the experiment is
over.

One of the things that NVPerfHUD does in order to further analyze the scene for
performance issues is to group sets of draw calls by the current GPU state
(including pixel shader/vertex shader, textures, render target, etc.). This is
accomplished by timing each individual draw call and collecting similar draw calls
into “state buckets”. Each draw call can be timed using the
NVPMBeginObject()/NVPMEndObject() mechanism. Once you know
how many draw calls are in your scene, allocate space for them using the
NVPMAllocObjects(count) call. Then, inside of the NVPMBeginPass()
NVPMEndPass() pair, add calls to NVPMBeginObject(objectId)
NVPMEndObject(objectId) around the draw call, and call Present or
SwapBuffers after the last NVPMEndObject() but before NVPMEndPass().
See Appendix C for further details on the NVPerfAPI specification.

DA-01800-001_v04 2
June 2008

 PerfKit

Using PerfSDK with PDH
When using PDH, you first need to tell the driver and PDH subsystem what
counters you are interested in collecting. This is done through the NVIDIA
Developers Control Panel (NVDevCPL). To start the NVDevCPL, open the
Windows Control Panel (from the Windows Start Menu) and double click on the
NVIDIA Developer Control Panel icon. Once it is open, you can select which
signals to report while the application is running. Note that turning on signals
incurs overhead so only enable signals you are interested in for the given
experiment.

Before you try to sample a counter, make sure you have added it to the list of
Active Counters. The GPU can sample a pre-set number of counters per clock,
and this number can vary from GPU to GPU. If you choose more than this
number of counters, the GPU counters are sampled in a round robin fashion,
and the list on the right will show an approximately equal icon to reflect the
reduced accuracy.

If you run your application in a window, you can interactively enable/disable
GPU counters. This allows you to set your application up to sample all of the
counters of interest and only look at one or two at a time without having to
shut down the application, rerun NVDevCPL, restart, etc. This can greatly reduce
the configuration turn-around time during performance profiling runs. For a
complete list of counters and a description of their use, see Appendix B.

DA-01800-001_v04 3
June 2008

 PerfKit

Graphing the Results
One way to see the counters is through the Windows system utility called PerfMon.
This helpful utility graphs PDH information over time. Once you have used the
NVDevCPL to enable the counters you want to sample, you can add them to the
PerfMon graph using the + toolbar button. You need to select one of the
NVIDIA performance objects from the drop-down list (Direct3D Driver, GPU
Performance, or OpenGL Driver), and then the instance you want to graph.

If you want to use the counters in your own application, use the helper classes
supplied with PerfKit, which include a PDH interface as well as a simple, API
agnostic graphing library (see Appendix D for details). Consult the sample code for
hints on how to use these. You can also call PDH directly and use the sampled
values in any way that makes sense for your application.

DA-01800-001_v04 4
June 2008

 PerfKit

Following is the sample code for setting up PDH:

// Setup
PDH_HQUERY hQuery;
PDH_COUNTER hCounter;

PDH_STATUS status = PdhOpenQuery(0,0,&hQuery);
PdhAddCounter(hQuery,
"\\NVIDIA GPU Performance(GPU0/% gpu_idle)\\GPU
Counter Value",0,&hCounter));

// Periodically...
PDH_STATUS status = PdhCollectQueryData(hQuery);
PDH_FMT_COUNTERVALUE cvValue;
PdhGetFormattedCounterValue(hCounter,
PDH_FMT_DOUBLE|PDH_FMT_NOCAP100|PDH_FMT_NOSCALE,0,
&cvValue);

// cvValue.doubleValue

DA-01800-001_v04 5
June 2008

 PerfKit

NVIDIA Plug-in for
Microsoft PIX for Windows

PerfKit includes a plug-in that allows you to use all the PerfKit performance
counters in Microsoft PIX for Windows. This PIX plug-in enables you to display
driver and GPU counter data alongside the associated Direct3D calls for additional
correlation and performance tuning. The PerfKit installer places the PIX plug-in in
the appropriate directory for PIX to access it. To set up sampling, first remember
to enable the counters that you are interested in the NVDevCPL (see Installing
PerfKit above). Once this is done, you are ready to enable the counters in PIX.

From the Experiment window in PIX, make sure you select the Advanced View
(using the More Options button from the Basic View). Select the Action Type “Set
Per-Frame Counters” in the upper combo box and then press the Customize
button. This will bring up the PIX Counters dialog with the available counter types
on the left. Open the Plug-in Counters element and the NVIDIA Performance
Counters sub element to display the counters you enabled in the NVDevCPL.
Select the counters of interest and press the Add button. These will now show up
in the data stream that PIX produces.

DA-01800-001_v04 6
June 2008

 PerfKit

Here is an example of PIX for Windows output:

DA-01800-001_v04 7
June 2008

DA-01800-001_v04 8

Appendix A.
Frequently Asked Questions

What does this error message mean, “HW necessary for GPU counters
is unavailable, HW counters are disabled.”
 Not all GPUs have the features necessary to provide the GPU counter data.

PerfKit signals are available on all NVIDIA GPUs listed under System
Requirements. PerfKit signals may or may not be available on other GPUs.

What does this error message mean, “Performance monitoring has
been disabled by PDH.”?

PDH has a safe guard mechanism that can disable a data provider. If
NVDevCPL detects this flag, you have the option of resetting it. We have not
seen this happen in any released version of PerfKit, only during testing.

I have discovered a problem that is not listed above. Who should I
call?
 We want to make sure NVPerKit is a useful tool for developers analyzing their

applications. Please let us know if you encounter any problems or think of
additional features that would be helpful while using PerfKit.
Contact us at: PerfKit@nvidia.com

June 2008

mailto:PerfKit@nvidia.com

DA-01800-001_v04 9
June 2008

Appendix B.
Counters Reference

There three types of counters available through PerfKit. Hardware counters
provide data directly from various points inside the GPU, while the software
counters, both OpenGL and Direct3D, give insight into the state and performance
of the driver. Simplified Experiments are multipass experiments that give detailed
information about the state of the GPU. All of the GPU counters give results
accumulated from the previous time the GPU was sampled. For instance, the
triangle_count gives the number of triangles rendered since the last sample was
taken. If you are using perfmon to sample these counters, you need to remember
that it will be sampling once per second, so to get the average number of triangles
per frame you need to divide by the average frame rate during that time. Once you
integrate the counters into your own application, and can sample on a per frame
basis, the numbers can then be correlated to a given frame.

All of the software/driver counters represent a per frame accounting. These
counters are accumulated and updated in the driver per frame, so even if you sample
at a sub-frame rate frequency, the software counters will hold the same data (from
the previous frame) until the end of the current frame.

The PDH interface returns counter data as either raw or as apercentage. Raw
counters count events (triangles, pixels, milliseconds, etc.) since the last call.
Percentage counters are event counts based on the clock rate where the event count
is divided by the number of cycles. For example, gpu_idle counts the number of
clock ticks that the GPU was idle since the last call. This value is automatically
divided by the total number of clock ticks to give the percentage of time that the
GPU was idle.

In contrast, sampling the GPU counters with the NVPerfAPI always returns raw
numbers for the value and cycle counts. Counting experiments (triangle_count,
vertex_count, etc.) return the same number for value and cycles, representing the
number of items encountered during the experiment (triangles, vertices, etc.). Other
experiments, like gpu_idle, rop_busy, etc. return the number of clock cycles the
GPU was signaling that state as the value, and the number of cycles the experiment
ran in cycles. You can query the attribute NVPMA_COUNTER_DISPLAY_HINT
to programmatically determine if a counter should be displayed as a raw value (like
triangle_count for instance), or as a percentage (like gpu_idle). To display a
percentage, simply divide the value by the cycle count to calculate the appropriate
percentage.

The Simplified Experiments report the results in a hybrid fashion. The event is the
integer percentage of the counter (XXX SOL, XXX Bottleneck) representing
percentage utilization and percent of the time the unit was a bottleneck, respectively.
The cycle count is the number of picoseconds that the experiment was run. Finally,

 PerfKit

the result of GPU Bottleneck is an integer in the event count that is the unit that is
determined to be the system bottleneck.

Table 1 shows a description of the available software and hardware counters. A #
next a counter denotes that PDH will return a raw counter and % denotes that
PDH will return a percentage counter. Again, these are always returned as raw
values from NVPerfAPI.

When using the counters with NVPerfAPI, you can use the “Official Name” as
denoted in the chart. When configuring your application to use PDH counters, you
need to construct the identifier string for PDH using the Official Name. The tables
below show the performance counters available in each counter domain.

The syntax for counters is:

\\Machine\PerfObject(ParentInstance/ObjectInstance#I
nstanceIndex)\\Counter Type

Direct3D Counters

Table 1. Direct3D Counters

Direct3D Counter Description Official Name
FPS (#) D3D FPS

Frame Time (1/FPS) (#) in mSec D3D frame time

Driver Time (#) in mSec D3D time in driver

Driver Sleep Time (all reasons) (#) in mSec D3D driver sleeping

Triangle Count (#) D3D triangle count

Triangle Count Instanced (#) D3D triangle count instanced

Batch Count (#) D3D batch count

Locked Render Targets Count (#) D3D Locked Render Targets

AGP/PCIE Memory Used in Integer MB (#) D3D agpmem MB

AGP/PCIE Memory Used in Bytes (#) D3D agpmem bytes

Video Memory Used in Integer MB (#) D3D vidmem MB

Video Memory Used in Bytes (#) D3D vidmem bytes

Total video memory available in bytes (#) D3D vidmem total bytes

Total video memory available in integer MB (#) D3D vidmem total MB

Total Number of GPU to GPU Transfers (#) D3D SLI P2P transfers

Total Byte Count for GPU to GPU Transfers (#) D3D SLI P2P Bytes

Number of IB/VB GPU to GPU Transfers (#) D3D SLI Linear Buffer Syncs

Byte Count of IB/VB GPU to GPU Transfers (#) D3D SLI Linear Buffer Sync Bytes

Number of Render Target Syncs (#) D3D SLI Render Target Syncs

Byte Count of Render Target Syncs (#) D3D SLI Render Target Sync Bytes

Number of Texture Syncs (#) D3D SLI Texture Syncs

Byte Count of Texture Syncs (#) D3D SLI Texture Sync Bytes

DA-01800-001_v04 10
June 2008

 PerfKit

PDH Syntax:
 \\NVIDIA Direct3D Driver(CPU/Counter name\\D3D Counter Value

PDH Example: FPS
 \\NVIDIA Direct3D Driver(CPU/D3D FPS\\D3D Counter Value

Note that “D3D triangle count” will return the total number of primitives, summed
up from the primitive count sent in the DrawPrimitive call, not taking into account
instancing. “D3D triangle count instanced” takes into account the frequency
divider and returns the total number of triangles sent to the GPU.

OpenGL Counters

Table 2. OpenGL Counters

OpenGL Counter Description Official Name
FPS (#) OGL FPS

Frame Time (1/FPS) (#) in mSec OGL frame time

Driver Sleep Time (waits for GPU) (#) in mSec OGL driver sleeping

% of the Frame Time driver is waiting (%) OGL % driver waiting

AGP/PCIE Memory Used in Integer MB (#) OGL AGP/PCI-E usage (MB)

AGP/PCIE Memory Used in bytes (#) OGL AGP/PCI-E usage (bytes)

Video Memory Used in Integer MB (#) OGL vidmem usage (MB)

Video Memory Used in bytes (#) OGL vidmem usage (bytes)

Total amount of video memory in bytes OGL vidmem total bytes

Total amount of video memory in integer MB OGL vidmem total MB

Number of batches in the frame OGL Frame Batch Count

Number of vertices in the frame OGL Frame Vertex Count

Number of primitives in the frame OGL Frame Primitive Count

PDH Syntax:
 \\NVIDIA OpenGL Driver(CPU/Counter name\\OGL Counter Value

PDH Example: FPS:
 \\NVIDIA OpenGL Driver(CPU/OGL FPS\\OGL Counter Value

GPU Counters
The following diagram shows the various parts of the GPU and what signals
correspond to each part.

DA-01800-001_v04 11
June 2008

 PerfKit

Syntax:
 \\NVIDIA GPU Performance(GPU0/Counter name\\GPU Counter Value

Example: GPU Idle:
 \\NVIDIA GPU Performance(GPU0/% gpu_idle\\GPU Counter Value

DA-01800-001_v04 12
June 2008

 PerfKit

Some of the most common signals are explained below:

gpu_idle: This is the % of time the GPU is idle since the last call. Obviously,
having the GPU idle at all is a waste of valuable resources. In general, you want to
balance the GPU and CPU work loads so that no one resource is starved for work.
Time management or using multithreading in your application can help balance
CPU based tasks (world management, etc.) with the rendering pipeline.

vertex_attribute_count: The number of vertex attributes that are fetched and
passed to the geometry unit is returned in this counter. A large the number of
attributes (or unaligned vertices) can hurt vertex cache performance and reduce the
overall vertex processing capabilities of the pipeline.

culled_primitive_count: Returns the number of primitives culled in primitive
setup. If you are performing viewport culling, this gives you an indication of the
accuracy of the algorithm being used, and can give you an idea if you need to
improve this culling. This includes primitives culled when using backface culling.
Drawing a fully visible sphere on the screen should cull half of the triangles if
backface culling is turned on and all the triangles are ordered consistently (CW or
CCW).

vertex_shader_busy: This is the % of time that vertex shader unit 0 was busy. If
this value is high but, for instance, pixel_shader_busy is low, it is an indication that
you may be vertex/geometry bound. This can be from geometry that is too detailed
or even from vertex programs that are overly complex and need to be simplified. In
addition, taking advantage of the post T&L cache (by reducing vertex size and using
indexed primitives) can prevent processing the same vertices multiple times.

primitive_count: Returns the number of primitives processed in the geometry
subsystem. This experiment counts points, lines, and triangles. To count only
triangles, use the triangle_count counter. Balance these counts with the number of
pixels being drawn to see if you could simplify your geometry and use
bump/displacement maps, for example.

triangle_count: Returns the number of triangles processed in the geometry
subsystem

vertex_count: Returns the number of unique vertices transformed by the geometry.
This can give you an idea of how good your vertex sharing is from the use of
strips/fans/etc.

fast_z_count: This returns the number of blocks that were processed through the
GPU’s fastZ hardware. If you are doing z only passes, this will let you know if you
are utilizing the hardware optimally.

shaded_pixel_count: Counts the number of pixels generated by the rasterizer and
sent to the pixel shader units.

shader_waits_for_texture: This is the amount of time that the pixel shader unit
was stalled waiting for a texture fetch. Texture stalls usually happen if textures don’t
have mipmaps, if a high level of anisotropic filtering is used, or if there is poor
coherency in accessing textures.

pixel_shader_busy: This returns the % of time that pixel shader unit 0 was busy
and is an indication of if you are pixel bound. This can happen in high resolution
settings or when pixel programs are very complex.

DA-01800-001_v04 13
June 2008

 PerfKit

shader_waits_for_rop: This is the % of time that the pixel shader is stalled by the
raster operations unit (ROP), waiting to blend a pixel and write it to the frame
buffer. If the application is performing a lot of alpha blending, or even if the
application has a lot of overdraw (the same pixel being written multiple times,
unblended) this can be a performance bottleneck.

rop_busy: % of time that the ROP unit is actively doing work. This can be high if
alpha blending is turned on, of overdraw is high, etc.

Simplified Experiments (SimExp)
Table 4 lists the Simplified Experiments. The value returned is picoseconds that
the unit was utilized or the bottleneck and the cycles returned is picoseconds that
the experiment was run. Divide value by cycles to get % bottleneck and %
utilization.

Table 4. Simplified Experiments

SimEXP Counter Description Official Name
2D Unit (blit) is Bottleneck 2D Bottleneck

2D Unit (blit) utilization 2D SOL

Index Unit is Bottleneck IDX Bottleneck

Index Unit utilization IDX SOL

Vertex Shader Unit is Bottleneck GEOM Bottleneck

Vertex Shader Unit utilization GEOM SOL

ZCull Unit is Bottleneck ZCULL Bottleneck

ZCull Unit utilization ZCULL SOL

Texure Unit is Bottleneck TEX BOTTLENECK

Texture Unit utilization TEX SOL

Raster Operations Unit is Bottleneck ROP BOTTLENECK

Raster Operation Unit utilization ROP SOL

Pixel Shader Unit is Bottleneck SHD Bottleneck

Pixel Shader Unit utilization SHD SOL

Frame Buffer Unit is Bottleneck FB Bottleneck

Frame Buffer Unit utilization FB SOL

Index for GPU Bottleneck GPU Bottleneck

DA-01800-001_v04 14
June 2008

DA-01800-001_v04 15
June 2008

Appendix C.
PerfAPI Specification

All functions return NVPM_OK if everything worked out just fine. They can also
return NVPM_ERROR_INTERNAL for internal errors. If this happens, please
send email to NVIDIA PerfKit@nvidia.com with the result from
NVPMGetExtendedError(). Please note that all of the NVPM_WARNING_*
messages have not been implemented yet, and will be supported in a future release.

Setup NVPerfAPI:

NVPMRESULT NVPMInit();

Error return values:

NVPM_ERROR_DRIVER_MISMATCH: NVPerfAPI version and driver version
do not match

Shutdown NVPerfAPI:

NVPMRESULT NVPMShutdown();

Error return values:

NVPM_ERROR_NOT_INITIALIZED: NVPMInit wasn't called or didn't
complete sucessfully

Enumerate available counters:

The callback function will continue to be called until all of the counters are
enumerated or until anything but NVPM_OK is returned.

typedef NVPMRESULT (*NVPMEnumFunc)(UINT unCounterIndex, char
*pcCounterName);

NVPMRESULT NVPMEnumCounters(NVPMEnumFunc
pEnumFunction);

Error return values:

NVPM_ERROR_BAD_ENUMERATOR: A bad/NULL pointer was sent for the
enumerator function

mailto:NVPerfKit@nvidia.com

 PerfKit

NVPM_WARNING_ENDED_EARLY: Enumeration was stopped before the end
of the counter list was reached

Retrieve the number of counters available:

NVPMRESULT NVPMGetNumCounters(UINT *punCount);

Get various counter information:

Passing NULL for pcString and a valid pointer for punLen will return the length of
the name in punLen. Passing a pointer in pcString and a buffer size in punLen will
attempt to write the name (\0 term) to pcString. If the buffer is too small, nothing
is written and punLen is set to the string length needed.

NVPMRESULT NVPMGetCounterName(UINT unCounterIndex,
char *pcString, UINT *punLen);
NVPMRESULT NVPMGetCounterDescription(UINT
unCounterIndex, char *pcString, UINT *punLen);
NVPMRESULT NVPMGetCounterAttribute(UINT
unCounterIndex, UINT unAttribute, UINT *punValue);

Error return values:

NVPM_ERROR_STRING_TOO_SMALL: pcString is too small based on size
passed in punLen

Enable a counter for sampling:

NVPMRESULT NVPMAddCounter(char *pcName);
NVPMRESULT NVPMAddCounter(UINT unIndex);
NVPMRESULT NVPMAddCounters(UINT unCount, UINT
*punIndices);

Error return values:

NVPM_ERROR_INVALID_COUNTER

Disable a counter(s):

NVPMRESULT NVPMRemoveCounter(char *pcName);
NVPMRESULT NVPMRemoveCounter(UINT unIndex);
NVPMRESULT NVPMRemoveCounters(UINT unCount, UINT
*punIndices);
NVPMRESULT NVPMRemoveAllCounters();

Error return values:

NVPM_ERROR_INVALID_COUNTER

NVPM_WARNING_COUNTER_NOT_ENABLED

DA-01800-001_v04 16
June 2008

 PerfKit

NVPM_WARNING_NO_COUNTERS: No counters were enabled

Experiment interface:

Signals to NVPerfAPI that the user is ready to begin sampling. It returns in
pnNumPasses the number of passes it will take to provide data for all of the enabled
counters.

NVPMRESULT NVPMBeginExperiment(int *pnNumPasses);
NVPMRESULT NVPMEndExperiment();

Error return values:

NVPM_ERROR_NO_COUNTERS: No counters are enabled

NVPM_ERROR_NOT_IN_EXPERIMENT: NVPMBeginExperiment not called

NVPM_ERROR_EXPERIMENT_INCOMPLETE: Didn't call the correct number
of passes specified by NVPMBeginExperiment

Pass interface:

NVPMRESULT NVPMBeginPass(int nPass);
NVPMRESULT NVPMEndPass(int nPass);

Error return values:

NVPM_ERROR_NOT_IN_EXPERIMENT: NVPMBeginExperiment() was not
called

NVPM_ERROR_PASS_SKIPPED: Passes were not given in sequence

NVPM_ERROR_INVALID_PASS: An pass number not valid for the current
experiment was given

NVPM_WARNING_PASS_NOT_ENDED: Previous pass was not ended with
NVPMEndPass()

NVPM_ERROR_NOT_IN_EXPERIMENT: NVPMBeginExperiment() was not
called

NVPM_ERROR_NOT_IN_PASS: NVPMBeginPass wasn't called or was called
with another pass number

NVPM_WARNING_OBJECT_NOT_ENDED: The last NVPMEndObject was
not called

NVPM_WARNING_PASS_INCOMPLETE:
NVPMBeginObject()/NVPMEndObject() was not called for all allocated objects

Object interface:

DA-01800-001_v04 17
June 2008

 PerfKit

Allocate slots for counter data to be put into. If this isn't done, all data is put in
"slot 0". Up to NVPM_MAX_OBJECTS (currently 1024) objects are currently
supported.

NVPMRESULT NVPMAllocObjects(int);

Error return values:

NVPM_OUT_OF_MEMORY: Too many objects are trying to be allocated.

NVPMRESULT NVPMBeginObject(int nObjectID);

NVPM_ERROR_UNKNOWN_OBJECT: Object was not allocated with
NVPMAllocObjects()

NVPM_ERROR_NOT_IN_PASS: NVPMBeginPass was not called

NVPM_ERROR_NOT_IN_EXPERIMENT: NVPMBeginExperiment was not
called

NVPM_WARNING_OBJECT_NOT_ENDED: NVPMEndObject wasn't called

NVPMRESULT NVPMEndObject(int nObjectID);

NVPM_ERROR_UNKNOWN_OBJECT: Object was not allocated with
NVPMAllocObjects()

NVPM_ERROR_NOT_IN_PASS: NVPMBeginPass was not called

NVPM_WARNING_DRAW_COUNT_CHANGED: The number of DPs for the
changed from one pass to the next

Retrieving results:

NVPMRESULT GetCounterValueByName(char *pcName, int
nObjectID, UINT64 *pulValue, UINT64 *pulCycles);
NVPMRESULT GetCounterValue (UINT unIndex, int
nObjectID, UINT64 *pulValue, UINT64 *pulCycles);
NVPMRESULT NVPMGetGPUBottleneckName(UINT ulValue,
char *pcName);

NVPM_ERROR_COUNTER_NOT_ENABLED: Asked for a counter that isn't
currently sampling

NVPM_ERROR_EXPERIMENT_NOT_RUN: No data because a new
experiment needs to be run (usually happens when they run an exp, enable a
counter, and try and sample the previous experiments)

NVPM_ERROR_EXPERIMENT_RUNNING: Cannot sample while the
experiment is running

Misc functions:

UINT NVPMGetExtendedError()

DA-01800-001_v04 18
June 2008

DA-01800-001_v04 19
June 2008

Appendix D.
Notes for Linux Users

For users of PerfKit for Linux, certain components of this document are not
functionally relevant, particularly those dealing with Microsoft PIX for Windows,
PDH, and Direct3D. However, our NVPerfSDK for Linux remains entirely
unchanged from the Windows XP version, and the list of available counters, both
GPU and OpenGL, are identical between the two platforms. The only notable
difference for developers is that the library they link against is libNVPerfSDK.so
(rather than NVPerfSDK.lib), which is included with both the NVPerfSDK samples
as well as the installation of the instrumented driver.

Other things to note:

• Prior to running applications that use NVPerfAPI to access GPU counters,
a user with root privileges must modify the X configuration file to include
the following option in either the Device or Screen section:

Option “PerformanceMonitorMode” “1”

This acts as a security opt-in mechanism, necessary because PerfKit requires
special, privileged access to the GPU and OS to properly gather GPU
counter data. Only a user with root privileges can install the instrumented
driver and modify this configuration. Enabling this option will allow any
non-root privileged users to use PerfKit to its full extent.

• By default, the instrumentation and performance analysis functionality is
fully enabled in the OpenGL drivers included with the instrumented driver
package shipped with PerfKit. Quick measurements show that the impact
of this is extremely minimal: generally less than 1%, especially as rendering
complexity increases. However, if the developer would like to disable these
code paths, for any reason, simply set the environment variable
__GL_PERFMON_MODE to 0. Obviously, with this variable set, no
GPU or OpenGL counters will be available. To re-enable these paths, unset
the variable or set it to 1.

DA-01800-001_v04 21
June 2008

Appendix E.
Sample Code

The sample code provided with PerfKit illustrates how to implement support for
the performance counters in your application via PDH.

Note: PDH is the Performance Data Helper interface provided by Microsoft and
used by perfmon.exe and others.

The purpose of this sample code is twofold:

 Provide code you can copy/paste into your own applications
 Demonstrate the performance issues associated with using the performance

counters

To use this sample code, you must have installed an instrumented driver and also
enabled performance instrumentation in the display driver control panel. You must
also use the NVIDIA Developer Control Panel to enable the following counters:

 gpu_idle
 D3D frame mSec in driver
 OGL FPS

The OpenGL Demo draws a simple tessellated sphere. The number of tessellations
varies smoothly each frame, except every 100th frame it draws the sphere very
highly tessellated for that single frame (the Direct3D demo currently doesn’t draw
any geometry). While this is happening, the OpenGL Demo displays the values of
the counters in various ways on the screen.

The code accompanying this demo includes source code for 3 helper classes and
examples of how to use them.

 CPDHHelper wraps some of the Win32 PDH library’s calls for simpler usage.
 CTrace is similar to a hybrid Queue and CircularQueue (it can be used

both ways). It is for storing values read from the CPDHHelper so that a
counter’s history can be available.

 CTraceDisplay is a helper class for displaying the trace data in a variety of
manners.

 PerfKit

Use CPDHHelper::add() and the identifier string for each counter you want
to monitor. The construction of this string is a bit ugly, so please pay attention to
how this is done in the demo. Open perfmon.exe (supplied with windows) and use
the add feature to add a new counter. Inspection of the displayed counter name and
information along with comparison to the sample strings should be sufficient for
your usage. MSDN has further information about the construction of the string, in
addition to a few macros and other tools to help with it.

Once counters are added to CPDHHelper, call sample() to retrieve values. Then
call value(i) where i is the number of the counter you want to read (0 based, in
the order you added them). This returns a win32 structure. The “doubleValue”
entry is demonstrated in the Demo code, but you may prefer others.

Values are insert()’d into a CTrace. Values can be read out either via the
[] operator or the () operator. One streams the data, the other wraps it, in wrap-
around style.

CTraceDisplay can display data in a variety of ways. LINE_STREAM uses the
[] operator for a streaming plot. There are also BAR and NEEDLE methods. Play
around and use your favorites. The display’s are in a bounding box provided at
creation time or later, with 0,0 being the bottom left corner of the window. A
background color may be selected, including alpha values. You can enable blending
in the mode of your choice if you want to be able to “see through” the displayed
trace. CTraceDisplay has sub classes for Direct3D and OpenGL to implement
some API specific calls.

Further details are in the sample code.

Contact
Please let us know if you encounter any problems or think of additional features that
would improve PerfKit. You can reach us at the following email address:

 PerfKit@nvidia.com

DA-01800-001_v04 22
June 2008

mailto:PerfKit@nvidia.com

 PerfKit

Appendix F.
Accessing PerfKit in gDEBugger

gDEBugger is an OpenGL and OpenGL ES debugger and profiler which helps you
save precious debugging time and boosts your application performance. This tool is
available from our partners at Graphic Remedy; a trial version is part of the PerfKit
installation package.

This section explains how to access PerfKit’s performance counters through
gDEBugger.

Accessing GPU Performance
Counters

gDEBugger is fully integrated with PerfKit. This provides gDEBugger with the
ability to display, in real time, the NVIDIA graphics system performance metrics in
the Performance Graph view.

Double clicking on an item in the list opens the Performance Counters dialog where
you can add new counters and set the attributes of each counter.

DA-01800-001_v04 23
June 2008

 PerfKit

Note: there is no need to enable the counters in the NVDevCPL.

Performance Analysis Toolbar
The gDEBugger Performance Analysis toolbar enables you to pinpoint application
performance bottlenecks quickly and easily. The toolbar contains commands which
allow you to disable stages of the graphics pipeline one by one. These commands
include: eliminate all OpenGL draw commands, force single pixel view port, render
using no lights, force 2x2 stub textures and force a stub fragment shader. If the
performance metrics improves when a certain stage has been turned off, then you
have found a graphics pipeline bottleneck!

Saving Performance Data Counters in a File

The performance data can be saved in a file (.csv). Saving performance data in a file
enables you to compare performance tests for your application using different
hardware and driver configurations or to perform regression tests (compare the
performance of two versions of your application).

DA-01800-001_v04 24
June 2008

 PerfKit

NVIDIA GLExpert and gDEBugger
integration

The NVIDIA GLExpert integration enables you to receive all GLExpert reports in
gDEBugger. It also enables you to break the application run whenever a GLExpert
report is triggered by the debugged application and receive the call stack and source
code that caused the GLExpert report.

GLExpert Settings dialog allows you configure all the NVIDIA GLExpert driver
reports directly from gDEBugger.

gDEBugger will display all NVIDIA GLExpert reports in the Process Events view
whenever they are reported.

DA-01800-001_v04 25
June 2008

 PerfKit

Note: the gDEBugger "NVIDIA GLExpert Settings" dialog affects only the
debugged process, unlike the NVIDIA Developer Control Panel, which has system
wide effect.

DA-01800-001_v04 26
June 2008

NVIDIA Corporation
2701 San Tomas Expressway

Santa Clara, CA 95050
www.nvidia.com

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”)
ARE BEING PROVIDED “AS IS." NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED,
STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS
ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A
PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation
assumes no responsibility for the consequences of use of such information or for any
infringement of patents or other rights of third parties that may result from its use. No license is
granted by implication or otherwise under any patent or patent rights of NVIDIA Corporation.
Specifications mentioned in this publication are subject to change without notice. This
publication supersedes and replaces all information previously supplied. NVIDIA Corporation
products are not authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in
the United States and other countries. Other company and product names may be trademarks of
the respective companies with which they are associated.

Copyright

© 2008 NVIDIA Corporation. All rights reserved.

	 Introduction
	System Requirements
	Release Notes
	PerfKit Getting Started
	Installing PerfKit

	PerfSDK
	Using PerfSDK
	Using PerfAPI
	Simplified Experiments (SimExp)

	Using PerfSDK with PDH
	Graphing the Results

	 NVIDIA Plug-in for Microsoft PIX for Windows

	Appendix A. Frequently Asked Questions
	Appendix B. Counters Reference
	Direct3D Counters
	PDH Syntax:
	PDH Example: FPS

	OpenGL Counters
	PDH Syntax:
	PDH Example: FPS:

	GPU Counters
	 Syntax:
	Example: GPU Idle:

	Simplified Experiments (SimExp)

	Appendix C. PerfAPI Specification
	Appendix D. Notes for Linux Users
	Appendix E. Sample Code
	Contact

	 Appendix F. Accessing PerfKit in gDEBugger
	Accessing GPU Performance Counters
	Performance Analysis Toolbar
	Saving Performance Data Counters in a File

	NVIDIA GLExpert and gDEBugger integration

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

