Lars M. Bishop
Tegra Developer Technologies Engi

A NnvibiA

Hi — I'm Lars Bishop, and I’'m an engineer in NVIDIA’s Tegra Developer Technologies group. Today, I'd like to share
some experiences we’ve had while helping developers bring high-end game content to Android and Tegra

Intended Audience rf,?zm

Programmers looking to get the most out of Android for high-
quality, high-end games
* Likely a C/C++-centric game developer
* Wants to see some real technical strategies and tips
* Assuming some basic familiarity with Android

Disclaimer/Background
* Java was not a core language when | went to school
* Java is/was not my first or native language
This frames many of these issues

My intended audience today is programmers, specifically those looking to move existing 3D game content to
Android, or developing new 3D game content for Android. The target programmer here is likely a C/C++ programmer
at their core, and I'll try to provide some real, tangible tips for them. I’'m assuming a basic familiarity with Android,
but not with native coding on Android. Note that much of this talk comes from the fact that my background and that
of the developers I've seen are not expert Java or Java plus native programmers, and so some of the items | bring up
may be less of a shock for seasoned Java hackers. Maybe.

What is Driving this Presentation? <

nvibDIA

“Hello World!” met “The Real World”

¢ Initial simple sample apps worked well
But cracks began to show in real-world game development
Fixes to these issues became a part of our NVIDIA Android

Samples Pack

So what specifically drove this presentation? Well, NVIDIA DevTech had created some basic “Hello World” samples
for Android and OpenGL ES 2.0

We then began to directly assist developers in bringing large, complex, high-end content to Android
And we quickly learned that there are some challenges in making the larger systems work well

We fed these lessons into our NVIDIA Android Samples Pack and into this presentation

>

nvibiA

Agenda

Elements of a compelling mobile experience
* Android Native (C/C++) gaming tips

Graphics content tips

Performance tools

The highest level agenda is that we’ll describe a few aspects of compelling mobile experiences, and then spiral down
into some Android cases relating to them. We'll focus on native code structure in Android. We’'ll spend some time
on specific graphics performance tips, and close with a discussion of some of NVIDIA’s publicly available performance
tools.

S

nvibiA

Android as a Gaming Platform

* Android has a lot going for it as a gaming platform
* Shader-based 3D APIs (OpenGL ES 2.0)

Java and Native (C/C++) code supported
* Expressive input devices

* Very open platform
* Wide range of Android devices (also a challenge...)

Even from a purely technical view alone, Android as a gaming platform has a lot going for it. Latest-generation
mobile 3D with shaders, Java and C/C++ code supported and the ability to use multitouch, accelerometer and other
input devices. Itis an open platform, and there are a wide range of exciting Android devices in the market and
coming to market (which can also be a challenge for an app developer)

Keys to a Compelling Mobile Game ,f,?zm

User Experience on a mobile device is complex
Power efficiency
* Don’t waste the user’s battery
» Convergence devices are “shared functionality” devices
Integration with and respect for the device’s core function
* User should be confident that everything will “just work”
* App and device responsiveness
Rendering quality and performance
* User expectations are set by non-mobile devices!
* Screen densities and sizes are rising

NVIDIA Confidential

User experience on a mobile device is many-faceted. We’ll focus on three basic parts today. Power-awareness is
important on mobile devices, where gaming is but one functionality and power is a shared resource. Integration with
the parts of the OS that provide the device’s core functionality, like telephony, must also be considered. App and
device responsiveness is pivotal. And finally, rendering quality and performance must do its best to come up to the
standards of non-mobile devices that consumers use for comparison. That’s quite a challenge!

S

nvibiA

Power Management

Use cycles wisely!
* Apps that drain the battery won’t be popular for long
Don’t spin needlessly
Be event-driven
Throttle frame rate reasonably
Use the efficient subsystem for the job

* Vertex shaders instead of CPU for skinning
Video core instead of CPU for video decode

Use cycles wisely; you are likely one part of a converged device experience, even if you are a full-screen game.

If a game drains a user’s battery, they’ll be afraid to play it for long out of fear that they won’t have enough battery
left to do the other things they need to later; make calls, surf the web, send email

If your game isn’t being played, it can’t self-advertise nearly as well!

In addition, just because you wrote a great engine and can run at 60fps does not mean you should

On mobile, an efficient game engine is just as much about saving power as it is about framerate

Also, put the work you are going to do onto the most efficient core for the task. Offload the general CPU core by
using the GPU and the video hardware

Power Management: Android . N>

nvibiA

Example: Keeping the screen on and bright
* Android includes multiple methods:
Activity timers: fine if the app is interaction-focused
“Wake Locks”: very aggressive, not recommended

Window flag: more integrated with app focus
Use the right one; the least invasive for your needs
* Don’t keep brightness on all the time in your game
Clear brightness flags between levels, in menus, etc
Or put these modes in windows with no power hints
Consider the needs of the game in each interaction phase
But don’t ignore them or skip them

A quick look at power management in Android by looking at the 600 milliwatt gorrilla: screen and backlight.

Android has aggressive power management as you’d expect, and the screen and backlight are core targets for power
management

Where possible, given no user input, user settings or app hints, it’ll turn off the screen as often as it can

But Android adds several methods to keep the screen on

User input just naturally keeps the screen on as you’d expect

But games and other media apps often want the screen on during input inactivity (for example hiding still in an
alcove in a shooter game)

One item that caught my eye initially were Android’s Wake Locks. They allow apps to manually force the screen
brightness be up even if the app is not focused. But this requires that the app manually manage it.

An Android window can also set a window flag that indicates the window wants the screen on whenever the app is
focused

Even 20s of no backlight here or there in a casual game can make a big difference to the user’s battery experience

failure to use them can lead to annoying timeouts and screen darkening during non-input phases of the game;
cutscenes, etc

Activity Timeout Only O |

nvibiA

Relying on input is risky, since the user may have aggressive
timeouts (15s)

L o . o fo) - o
ol 4 ol 4 5 . ol 4
LS ks © = Ea © o o

User starts User finds perfect Inactivity User taps screen
game hiding/camping timer puts to turn on display,
spot and waits device to fires gun/moves,
sleep gives self away.
Dies.

* (Yes, this is extreme and requires some other incorrect coding,
but you get the point...)

Activity timeouts alone may work well for a game that is entirely based on input coming in constantly, but say the
user starts a first person shooter, and then they find a perfect hiding spot. The wait there unmoving, not daring to
touch the screen, waiting for their enemy to come. With no user input, the activity timer goes off and darkens the

screen. In a panic, the user taps the screen a few times to wake it up. His character shoots his gun, gives away his
location and he is killed. Unhappy user...

Hard WakeLock <3

nvibiA

Hard wakelocks need constant (manual) management (at best) to
avoid keeping the screen bright when it should not be

. (o] . o o
8- =8~-E3~ 0 ~0

User starts Alert comes up on Battery drains at Battery flat!
game screen, user high rate
offhandedly drops
device in pocket.
Game’s wakelock
keeps screen fully
bright.

Hard wake locks are system level items. You lock the screen’s brightness up and it stays there until your game
releases it manually. But say the user is playing a game when they see a warning dialog that they are late for their
important meeting. They drop the device in their pocket as-is and they run for it. Even though the active window is
just a calendar dialog, your game still kept the wake lock. So the device warms their pocket with the brightness fully
on for the entire meeting. At the end of the meeting, the user’s battery is flat. Unhappy user. Most apps should
avoid this big hammer as it can degenerate into my app equals bright.

10

>

nvibiA

. o o] : o
o o = 7 o Tam o

User starts User finds perfect Window flag User takes mortal
game hiding/camping keeps enemy by
spot and waits screen alive complete surprise
FTW!

-@E-CJ~ 0 ~e
- o o

User starts Alert comes up on Game is not the Battery saved!
game screen... active window,
screen can
darken

Window Flag

Window flags can be used to indicate that a particular window (like your game’s main action gameplay window)
should keep the screen bright. This allows the screen to go dark if your window is not the focused one for any
reason. So, see these use cases. The users starts a first person shooter again, they camp out, and the game window
stays the focused window, so the screen stays bright long enough for the user to see their mortal enemy, take them
by surprise and kill them for the win! On the other hand, the user again sees a warning dialog that they are late for
their important meeting and they run for it. Because the warning or the game’s pause window is active and not the
game’s main window, the screen is allowed to dim and the user’s battery is saved.

11

Platform Integration rf,?zm

Know the platform events to be handled
Do not want a user trying to pause their game manually when a call
comes in!
Don’t want user to lose their progress!
Be prepared to be swapped out or shut down
Mobile OSes can be very aggressive on managing memory
Know if and how your OS gives warnings before using The Hammer

Most modern mobile device Oses are better and better at ensuring that apps can’t break the basics, like completely
ignoring incoming calls

But that’s just level zero of user experience

Modern mobile Oses tend to go steps further and actively manage apps out of the way for system events. The bigger
challenge is for the app to ensure that the user does not lose app state when the app gets managed out

The user should be confident that your app/game will do the right thing no matter what

E.g. when a call comes in, put the game in pause mode. When the call ends, don’t just unpause and leave the user
scrambling to catch up — show a pause menu. That’s perhaps a basic, trivial example, but shows the point.

12

S

nvibiA

Platform Integration: Android

* Android applications have complex lifecycles

* Android tries to keep apps resident
Better responsiveness
Not visible/accessible != process exited

Can kill some processes at surprising times

In order to free resources
But clearly documented and completely handle-able

* Android components have a carefully laid-out state graph

Android has a rather complex, but well-documented state graph for the lifecycle of application components. This is
important for resource management, power management and system integration. Android tries to keep parts of
inactive apps resident in memory and process space if it can to make things more responsive. Also, if it needs to, it
can kill applications, even partially visible ones (although that’s very rare) if it needs resources. Lets look at a part of
that state graph.

13

Android Activity States o <3

nvibiA

Active
On top of the stack of visible activities
Does not mean the user is actively interacting with it...
Paused * Paused
Invisible; user has moved to home screen, another app in front, etc

* (Rare) partially visible, but covered by another transparent or part-
screen app

Stopped

App being closed

Completely invisible (likely no rendering surface)
Shut Down/Killed

Process no longer running

Active

Stopped

NVIDIA Confidential

Android defines numerous Activity states between which it will transition Activities as appropriate
The states shown here are merely an interesting subset

Android includes a detailed spec of what an Activity can expect to have happen to it in each state; care should be
taken to understand these expectations

Note the red arrows in the diagram —these in particular can cause confusion for developers. Lets look at the paused
to killed case now

http://developer.android.com/guide/topics/fundamentals.html

14

Android and “Paused” Activities >

nvibiA

Note the direct Paused—Killed arrow!
A paused Activity can be killed!
“at any time without another line of its code being executed”
Would you see this in testing? Maybe not
But the spec allows it

Paused b 3 5
/ * This is why onPause documentation recommends saving
persistent state
If you don’t, a user could lose their data
E.g. game progress
Implement important system callbacks in your apps

The important bits that some new developers miss in this spec is the fact that a “Paused” Activity is “killable” — note
the direct arrow in the previous state graph from paused to killed.

While the spec says that it tries to avoid doing this, the fact is that once the Activity has acknowledged being placed
in a paused state (by returning from the onPause) callback,

the OS reserves the right to kill the Activity’s process at any time without another line of its code being
executed.

No additional warning.

This is why the onPause callback is supposed to save persistent state of the Avctivity, like game progress.

If your games’s onPause callback it does not save game progress and the Activity that interrupted your
game suddenly needs a lot of resources,

the OS may kill off your Activity,

and your user could lose their game progress with no chance to have avoided the loss.

Which makes it a user experience issue. Activities should know and implement the callbacks like onCreate,
onPause and onResume for best experience.

15

Paused Activities: the Flip Side >

nvibiA

* You should save your application’s persistent state in the
onPause callback

But once that returns, don’t waste more cycles rendering or
doing game logic

* You’re almost certainly not visible

* Even if you are, the window manager will use your last-rendered
frame

So don’t bother rendering again until you are Active

The flip side to the need to have code in the onPause callback to handle saving context. Once you are paused, do not
continue rendering and running game logic. The game should not be running anyway, since the user cannot interact
with it. Also, there’s no need to be concerned about redrawing for any reason —the window manager is composited,
and has a copy of your last-rendered frame to keep re-using until you are made Active again. So rendering or
spinning on other game work is likely doing nothing but stealing cycles from the active app and wasting battery.

16

Performance and Porting Existing Content rf,?zm

Existing set-top/desktop content is within the reach of Tegra
* See today’s developer sessions!
* This content is generally C/C++
* Core Android apps are Java-launched
* Device manufacturers can build native apps into a device’s OS
* But that’s not a solution for ISVs

* But Android provides an official method of using native C/C++
code across multiple devices: Java’s JNI and Android’s NDK

As you’ve already seen and will see continually throughout the day, high-end content is within reach with Android on
Tegra. Most of this source content is C/C++ or based on C/C++ engines. But installable Android apps are Java-based.
Well, device manufacturers can choose to build native apps into their devices, but that’s not an option for most ISVs.
To assist, Android provides a way for ISVs to use native code across multiple devices and OS versions; Java’s JNI and
Android’s NDK

17

Android and JNI A

nvibiA

Android does not allow for 100% native apps
* All apps are still Java-launched
From the Android Ul PoV, apps are Java classes
Native code resides in shared libraries (.so’s)
Native code is called from Java via the JNI standard

JNI == Java/Native Interface
Java-specific, not Android-specific
Defines the call protocol and data interchange between Java and Native
Can feel very fragile at times: take care to match code
Is not “free “to call “across” the boundary; batch your native code

NVIDIA Confidential

All installable apps on Android are Java-launched. In terms of the Android Ul and launcher, apps are Java

components. But your app can install and call native code stored in shared libraries. This is done via Java’s JNI or
Java/Native Interface. This is a generic Java standard for calling back and forth between Java and compiled C/C++
code. It defines a calling protocol and a set of functions for native code. Sadly, it is a bit fragile, and can be pretty
easy to get wrong initially. And the calls across the so-called JNI boundary are not free. But it is extremely useful

18

Android, Java and JNI >

nvibiA

We’ll think in three levels:
Android, which manages and calls the apps/activities/etc
“Java”, the Java class(es) that form(s) the application
“Native”, the native code called by the app’s Java class(es)

Android

Java Call to native code Additional Java work...

javaFunc

O iy [

Native Do native Do native
C/C++ stuff C/C++ stuff

X/Platfomi‘unc/

We’ll use these kinds of diagrams for the rest of this presentation. Time roughly flows left to right on the diagram.
We think in three levels; the android system that calls down into our Java-based Android app. The Java-based
android app that can call other Java methods or can call down into the native level via JNI. Note that Java can call

native code, Native code can call native system calls and Native code can call Java methods, too (we refer to that as
“Calling up”)!

>

nvibiA

Case Study: Android Lifespan + Native Code

* Android activity lifespan also affects native code
* The “classic” app exit/restart model is not safe to assume

onCreate onCreate

Call to native code Activity, Process | Activity | gl to native code
Java exits launches

Nat've NativeFunc NativeFunc

Library| static Library:| Static
loaded| 3 == j ; unloaded loadedij == 0

So let’s see how the Android app lifecycle we introduced can affect native code. Process management in Android
and other mobile OSes isn’t just about killing things, but also about leaving things resident when possible for
responsiveness. This can be a bit of a shock to developers if they do not pay attention to the spec and other docs.
Basically, assuming that your native code’s shared library will be reloaded (and thus reinitialized) on each launch is
dangerous. Here, we show that assumption graphically; if we assume that when the activity is stopped, the process
exits and our library is unloaded, then when we are launched again, we can assume the we’ll be reloaded, and static
init will get called again. This is a risky assumption.

20

Android Lifespan and Native Code (2) <3

nvibiA

When the Activity restarts, static variables may or may not be re-
initialized

Here’s what often happens

onCreate onCreate

Call to native code Activity Activity Call to native code
relaunches

Native t NativeFunc t NativeFunc f_

Library| static Process running, Static
loaded| j == j 2 Library stays resident

NEVE]

When your app’s activity stops and then gets launched again, Android may have kept your process and thus your
native code library resident. So, when you activity gets launched again, static initialization does not happen. See the
diagram. First time through, static is zero. We set it to one and then we exit. But when we get re-launched, the

library is still resident, so the data is still one! If we were assuming that the data would be zero at activity startup,
bad things will happen

21

S

nvibiA

Android Lifespan and Native Code Conclusion

Best option is to avoid initializing static data automatically
Don’t assume that at start up, all C-style statics are 0
Don’t use static class instances with default constructors

Include a function to specifically init all static data, so you can
call it on each (re-) initialization of the activity

* Avoid in-function statics for “first-time” stuff
static int firstCallToThisFunction = 1;
if (firstCallToThisFunction)
// Do critical operation such as

// resetting/initializing or loading..

The best option is NOT to base your code on pre-main or static initialization. For all static or global data members,
include manually-called initialization and shutdown functions, so you can manage your own lifespan independent of
library loading and unloading. And be careful of “first time” statics hidden in functions. They can catch you out later.

Alternative: Android Native Code “Thunk” rf,?zm

* Android+JNI does not include Java functions to unload a shared
library

* So you cannot manually unload the Java-referenced code
But you can make the Java-referenced library a little “Thunk”

* Put the bulk of your code (including static inits) in another library

* Pack that library in your APK

* Do not load it from Java

* Load it using dlopen

* Manage its lifespan manually

One of our developers suggested another trick. They had too much code that was based on static initialization for
them to even consider reworking all of it for a content port. Instead, they recognized that the number of calls into
their code was very minimal. Thus, adding another indirection would not be an issue. So they placed all of their
application code in an additional shared library that was in the APK but NOT loaded by Java. Then, their Java-loaded
shared library would use dlopen and diclose whenever they wanted to completely shutdown and reinitialize their
statics.

23

>

nvibiA

Native Code Thunk in Practice

onCreate onCreate

Call to native code Activity Activity Call to native code
Java pauses relaunches

.. JNj &= t --------- - k --------- =
Native NativeThunkFunc NativeThunkFunc
Thunk library| Load Library and Process running, thunk | Load Library and
loaded Query function ptrs library stays resident | Query function ptrs

/ NativeRealFunc f l / NativeRealFunc f

Library2 Static Set Library2 Library2 |gtatic
loaded 3 ==0 3 =1; unloaded reloaded 3 ==0
manually manually manually

Here’s how it works. The library loaded by Java is nothing more than a thunk that manually loads the main library,
here called Library2. It loads that implementation library and queries the required function pointers. Now, the thunk
library can call the real code via the function pointers. When the app throws the onPause callback, the thunk can
unload the implementation library, causing post-main shutdown. The thunk stays resident. When the app is re-
launched, the still-resident thunk can reload the library and cause the pre-main static initialization to run again.

24

Android and Threading |

nvibiA

Threads are key to:

Keeping Android responsive with native code

Unleashing the power of high-end multi-core CPUs like Tegra
Use threads!

Current console and PC engines are already well-threaded
Our terms:

“JNI Thread”: a thread that enters native code by calling from the JVM
“Native Thread”: a thread that is entirely created and managed in native

Threads are very important in Android games to keep the app and OS responsive and smooth

and for getting the most out of powerful CPUs like the multicore CortexA9 in Tegra. So use them! Luckily, most
modern console and PC engines not only use them, they depend on them to run well. For the rest of the
presentation, we’ll use the term JNI thread to refer to a thread that called down from Java through JNI to native
code. The term native thread will refer to threads that are directly created and managed in native code.

25

Native Threads and JNI <3

nvibiA

* Threads can and should be created as needed in native code

* You cannot automatically make JNI calls in native-created
threads

Each thread needs a JNI Environment object (JNIEnv)

* Threads not calling down from Java must be:
Registered before calling JNI or you’ll crash
* Un-registered before exit, or else the JVM may throw an exception

* Our sample code does this in a thin wrapper for thread creation,
nv_thread

JNI does allow the native code to create and manage threads. But you need a little more if you want to call back up
to Java from a native thread. All JNI functions require you to pass a JNI Environment object. For JNI threads, that’s
easy, the JNIEnv is passed down in the native function call itself as the first parameter. But a native thread has none

by default. And calling a JNI function with another thread’s JNIEnv doesn’t work. TRUST ME, | learned the hard way.

So, native-creative threads must be manually registered with JNI to get a JNIEnv, and must be un-registered before
exiting or you’ll throw an exception. Our sample code has a wrapper to do this for you...

26

»,
nv_thread rf,,zm

NVIDIA DevTech sample code that wraps pthread creation so that

the resulting thread is registered with the JVM

Caches the all-important JNIEnv object in thread-local storage
Provides function to return the calling thread’s JNIEnv

» Still has limitations:
Some JNI code can only be called from JNI threads, not native

* And can lead to some surprises for those new to JNI (like me...)

Nv_thread allows you to call a pthread create-like function that automatically registers your thread, stores the JNIEnv
in thread-local storage, makes it easy for you to query that JNIEnv, and un-registers your thread when you return
from it. We found it to be pretty handy. It has some limitations that are really JNI limitations, and as we soon found,

JNI from native threads can lead to some surprises...

27

>

nvibiA

Sidebar: How to Leak a Lot of Memory

JNI scopes based on call life Java->Native

Java objects passed to Native are de-ref’ed on return from the Java-
Native call

JavaFunc| Create Call Native Java call Ref count falls to
Javaobj and pass obj ends 0, object deleted e

Implicit refinc = = Implicit ref clearing

Native \ /
NativeFunc
(Ref=2 Ref=2

Do Native Return to
Stuff Java caller

A quick sidebar on how we were able to leak a lot of memory really quickly.

Java Objects passed via JNI to native code or queried from Java get a reference added to them to ensure they do not
get deleted by the JVM during the native call. When the thread that called down from Java to Native returns to Java,
all of those “local references” are released

So in this case, we see that the references all work out at the end of the java call and we reclaim the storage

28

|
How to Leak a Lot of Memory (2) i
We often call from Native->Java
Some Native-Java calls return Java objects
Those refs are reclaimed at the end of the enclosing Native call

JavaFunc (gl Native JavaFunc2 Ref count falls to
Func Create Return obj 0, object deleted e

Javaobj to Native

Java st Rt 7
%

= JNl: = = — Implicit ref inc and dec * Implicit ref clearings

Native \N /

NativeFunc - -

Do Native Call Java Do Native Return to
stuff Func stuff Java caller

In our case, we also have helper functions in Java that we call up to from native. In the case in question, JavaFunc
calls down to NativeFunc, which then calls back up into JavaFunc2. JavaFunc2 is a helper function that loads data for
us. The helper function allocates a big block of data in Java and passes it back to native. The implicit reference is
there again, and when the enclosing NativeFunc returns to Java, that implicit reference is deleted. The reference
count is zero because there are no Java references, and the block of memory is reclaimed.

29

How to Leak a Lot of Memory (3) rf,?zm

“Ah, forgotten, but not gone.” George S. Kaufman

If the Native-Java call is made in an ongoing Native thread, there is no
“return to Java” that clears the local refs!

JavaFunc2

Create Return obj

Javaobj to Native

- Native
Ongoing Ref count sits at 1,
Native e & N object “leaked” 6
Thread o Native all Java o Native

stuff Func stuff -

But we moved the code calling up from Native to Java into a native thread.

And that’s when the leak was created

Since the thread was created in native code, it NEVER returned to Java

When we returned from the particular native function that called up into Java, we stayed in native

So the objects never get deleted!

30

How to (NOT) Leak a Lot of Memory

S

nvibiA

Manually manage the implicit reference on the returned object
Use a manual DeleteLocalRef to avoid leaks!
* Good to do at the end of the native sub-function that uses the queried object

JavaFunc

Create

Java obj

- Native

Ongoing
Native ;
Thread Do Native Call Java

stuff Func

DeleteLocalRef,

ref count goes to 0
Do Native object deleted

stuff

In these cases, you must explicitly release the object references when you are done with them in native code using

DeletelLocalRef

We added those calls, and the leak went away.

31

Native code and Android rf,?zo.,,

* Android + JNI does NOT mean you just throw together code with
any set of Linux headers and toolchains

Developers want to know that their code will “just work” across
as many Android versions and hardware devices as possible

* Android needs to innovate moving forward while continuing to
run existing content seamlessly

* Android’s NDK makes this easy

The NI provided with Android is NOT carte blanche to mix and match Linux kernel headers and random favored
toolchains. Developers want confidence that the app they are building today will run on the widest range of Android
devices and will continue working just as well with upcoming OS releases. Android ensures this with the NDK...

32

The Android NDK >

nvibiA

* Android’s Native Development Kit

Designed to allow applications to mix native and Java code while
ensuring wide device compatibility

Provides a set of toolchains, supported compiler/linker options,

and a list of “stable APIs”

* Currently, not all major functionalities are available from the NDK
* These can be done in the app’s Java class directly
Or exposed to native from Java via JNI

Google provides the Android NDK, or native development kit. This is a set of toolchains, makefiles, and headers and
libs that expose a set of “stable” APIs. The concept of “stable” here is not runtime stability, as much as APl and ABI
stability across Android versions and hardware. This does mean that not all Android or Linux functionalities are
available via the NDK. So what did and didn’t make the current cut?

33

NDK — What’s There (Currently) >

nvibiA

POSIX stuff
* PThreads and related objects i
File /O

* Sockets II

™

Memory management

Math # —
Basic C++ support ¢
® Multimedia

OpenGL ES 1.x
OpenGL ES 2.0

* Error / message logging

What'’s in the NDK? Well, a lot of pivotal functionalities you need to implement a game engine in native code: POSIX
threads and sockets, math, 3D rendering, basic C++

34

NDK — What’s NOT There (Currently) >

nvibiA

* C++ Exceptions and RTTI, most of STL
* Multimedia

OpenMAX IL or any other video or audio support
EGL

* User input devices
* Android Ul integration/functionality

What'’s missing? Well, to be honest, some pretty important things you need to COMPLETE that native game engine.
Currently, you cannot use RTTI or exception handlingin C++. There are no NDK audio or video APIs. And no user

input devices or Android Ul functionalities are available in native right now. But as you’ll see, NVIDIA’s samples assist
with some of this.

First-shot: How we used the NDK for 3D >

nvinia
We posted a threadable function that would call native to render
one frame and then re-post itself to be run again “soon”
* After each frame, we returned from native to Java app to Android

systemInit /{ /

Post request Call Swap Post Call Swap Post
to run render native buffers request native buffers request
Java App to run \ to run

e

render render

NativeRender NativeRender
Render one frame Render one frame

So how did our original samples render 3D? Quite simply. The diagram here is pretty complex, but the basic idea is
simple. In Java, we posted a request to call our Java frame rendering function on the main app thread. In that
function, we then called down to Native to render the 3D and manage the animation. The we returned to Java to
swap buffers. Before we returned from the java render function, if we weren’t exiting or paused, we posted another
request to run the rendering function. And so on...

36

S

nvibiA

Rendering and Responsiveness

* As rendering took more time (complex data), issues appeared
Longer rendering times meant that “render” was taking longer

Android \
render liMein render:

Call Swap Post
native Time in native: buffers request
Java App \

=N = - —— \1
NativeRender

Native
Render one frame:

That worked fine for HelloWorld, but as we began working in the RealWorld, the longer frame times meant we spent
more time per frame in Native. That meant our Java render function was taking more time on the main app thread.
Which lead to...

ANRs and Threads rf/?zom

During an engine port, rendering in a JNI thread caused issues
* Overall system Ul slowed, input queues backed up!
* Could even emulate this in our smaller demos
Spending “too much time” in app code in Java OR in native on
the main app thread can make Android less responsive
* At the limit, Android declares the “app not responding”
* An “ANR” dialog is shown to the user
* This can be solved by moving the main loop into its own thread

An interesting set of behaviors — our app was getting less responsive, and the input queues were backing up. Turns
out that spending too much time doing Java or Native work in that app thread makes a lot of things less responsive!
In fact, at the limit, if we put long sleeps in the render function, we got ANR’s. ANRs, or Application Not Responding
errors are thrown by Java when the app spends too much time in a function on the main Ul thread. It shows the user
a warning and lets them choose to KILL the app. Not good. The solution is to move the main rendering loop into its
own thread. There are a few ways to do this.

38

Render Thread: The Java Way >

nvibiA

GLSurfaceView and GLSurfaceView.Render solve this issue
Runs the rendering in its own thread

Can completely solve the render-based ANR issues

No need for native code

* We chose to move the main loop to native code at the same time

* This lead us to another way to avoid the rendering ANRs
The nv_event sample library...

The Android class GLSurfaceView includes the member Renderer, which makes it possible to specify a rendering
function that will be run in its own thread. This avoids the issue we saw with posting rendering to the main Ul
thread. In our case, when we started our samples pack, this API did not allow us to use OpenGL ES 2.0, so it was not
a solution for us. But that’s historical. We could now do this in Java, but we have chosen to move it all into native
and provide an event queue to make porting easier. We created the nv_event sample library.

39

»,
nv_event rf/lzom

NVIDIA DevTech helper library that eases the porting of native
event-loop apps into the NDK

Provides a “main”-like entrypoint for apps
Allows for more common in-app render looping
* Avoids doing any significant native app work in JNI threads

Remaps Android’s callback-based events to a message queue
* App just provides its native entrypoint (NVEventMain)

Our nv_event helper library provides a main-like entrypoint for native apps and adds event-queue querying in native
code to allow for easy porting or creation of native event/render-loop applications. It provides Java code to remap
Android event callbacks into queued events.

40

>

nvibiA

Main Loop in Native Code

Avoids ANRs by launching a native thread in a wrapper function
Wrapper function does initialization and calls the app’s “main”
App can run as an event/render main-loop without blocking JNI threads

Requires that events be available as a polled/waited queue...

onCreate

Calls down to init app and spawn app thread | ©PCreate can return to Android, but app’s
NEVE] main loop is still running in its own thread!
NI = =

-J

£ NVE: tINIInit
Native ———=—

App-supplied init nv_event code App-supplied main-
code that must be spawns native thread loop function
run in a JNI thread

NV_event avoids ANRs by launching a native thread on creation and running the app’s main function in that thread.
The Java onCreate function returns, and the app is happily looping on rendering and events in its own thread. Of
course, we still need those events.

S
Event Queues nf,.zm

nv_event includes event handling code
* Turns the various Android input callbacks into a stream of events

Native app code can block or block-with-timeout on the queue
Similar to other platforms like Win32 and OpenKODE

* Java code does event culling/coalescing

nv_event includes Java and native code to fill a thread-safe event queue with input and system events from the
Android input callbacks

Java code does event culling/coalescing
Some touchscreens generate streams of unchanging events...
Avoids redundant JNI calls, app-level handling

That queue is available to the native app code

42

>

nvibiA

nv_event and Event Queue Handling

onTouchEvent onKeyDown onTouchEvent

Parse event and Parse event and Parse event and
post to queue post to queue post to queue

\\ NVEventInsertNewest

Thread-safe Event Queue

Native T NVEventRemoveOldest

NVEventGetNextEvent

Blocks on queue non-
empty or timeout

NVEventAppMain

Native-created app = Get event -
main-loop thread) Handle event .

Here’s what it looks like. Up top, the Android event callbacks are implemented by the helper lib and push the events
into the queue. The app sits in it own thread, looping on the event queue, blocking or timing out as it chooses.
Which lets the native app work a lot more like Win32 or OpenKODE apps, and eases porting while solving the ANR
issue.

Nv_event: Looking Back rf,?zo.,,

Nv_event is a powerful framework, especially for large native
engine codebases that are multithreaded

But it can feel complex, and may not be needed for some games
* And calling JNI from native threads adds to complexity
* If you can rework your main loop into Java, you might want to
consider doing so
But nv_event can still serve as an example of how many of these
apparently “Java only” operations can be done in Native

Nv_event is a powerful framework, especially for large native engine codebases that are already multithreaded to
their core. But it can feel complex, and may not be needed for some games — calling JNI from native threads adds to
complexity, and complexity adds some risk.

If you can rework your main loop into Java, you might want to consider doing so

But nv_event can still serve as an example of how many of these apparently “Java only” operations can be done in
Native. It can also serve as a great “quick port” layer to get your app up on Android quickly. From there, you can
migrate it into a more Java-centric architecture as time permits to better handle pause, resume, etc.

Keep in mind that nv_event is a work in progress. For example, we do not currently generate events or callbacks into
the native code for pause — we’re looking into options for doing this smoothly.

44

S

nvibiA

Content... Lots of Content...

* High-end games have a lot of media and data

* Android can store data in the application’s installer pack (.APK)
Or you can install it to removable storage (SD card)

* Each option has pros/cons

High-end games tend to contain a lot of data for their worlds, sounds and the like. Android offers two ways to deploy
this data. It can be packed into the application’s installer pack (called the APK), or it can be stored on removable
storage, like an SD card. There are pros and cons to each.

45

In-APK Data >

nvibiA

Pros:

Data packed into APK automatically during build

Installs automatically with the app

Easy to load the files into the app (from Java)

Automatic compression/expansion; aligned for fast streaming

Cons

Large files make each recompile/repack/install take a long time
Pre-Froyo, devices often had small partitions to hold installed APKs

* Froyo allows apps to specify that they can be installed to SD card
Read-only

If the data is packed into the APK, then the packaging and deployment is automatic along with the app. There’s nice
code in Java to load files from the pack, and it even gets compressed and expanded for you. The data is aligned
during packing for fast streaming. But, the code to load APK-based data in native is tricky and involves offsetting
tricks. Also, packing in large data bloats the APK, often by tens of megs. This, in turn makes debug iteration slow
because rebuilding and redeploying take longer. The partition sizes on older devices for app install were designed for
some code and a little data. Not a full-sized 3D game. Prior to Froyo, these partitions were the only allowed install
locations. Froyo allows apps to include a flag in their manifest that specifies the app can be installed to local storage
partitions, or to removable storage, making this less of an issue. And the data is read-only.

46

S

nvibiA

External Data

Pros:
Files can be much larger (limited only by user’s SD card)
Custom compression, etc and native loading can make loading faster
Does not bloat the size of the installed APK
Makes debug iteration much faster
* Data can be updated independently of app
Cons:
App-managed (but Froyo makes it less so)
App must figure out how to install the data
* App could download the content from a website on first run
Must carefully query the device’s external storage path

NVIDIA Confidential

Saving your data to external storage allows your data to be limited only by the user’s SD card. You can do your own
compression, and you can use native file calls to load efficiently. And debug iteration is fast because the APK only has
your code in it. Of course, you have to manage it yourself, specifically you must install the data to the card yourself.
As of Froyo, however, if you install your data to a specific location on the storage card as per the Android spec,
Android will automatically delete it when the app is uninstalled. But you will still need to install the data from
somewhere. You could have the app download the data from the game’s servers on the first run. That takes more
work. But the sheer size of the datasets in the apps we saw meant external storage was the way to go for our
developers.

47

Tip: Know your Permissions! =

nvibiA

Every Android app has a manifest XML file

Declares a lot of basic naming, Java class mappings, etc
But also declares the desired permissions for the app

Not having the right permissions can cause confusing bugs:

No INTERNET permission? Socket calls fail...

No WRITE EXTERNAL STORAGE? Writing the SD card will fail...
* These affect Java AND NDK code
* Get to know these

http://developer.android.com/reference/android/Manifest.permission.html

Android apps all include a manifest XML file that describes things like the Java code to be used, the startup
information, and the icon and strings. But it also includes a very important list of requested app permissions. The list
is long, but not having the right permissions can lead to API failures that can waste time. For example, not having the
INTERNET permission declared will cause your native POSIX socket functions to fail. Given how hard sockets are to

debug already, that’s not a problem you need. So check out the Manifest permission docs on the Android website
for a list.

48

Graphics Tuning rf/?zom

* Several focii:

* App-level feeding of the APIs
Vertex/Geometry tuning
Pixel/Fragment tuning

* Tools

Next, we’d like to talk about tuning 3D content. We’ll focus on app-level API calls, vertices and geometry, fragments
and shading, and then discuss some performance tools.

49

OpenGL ES 2.0 >

Becoming widely supported on major smartphone OSes /
platforms and other mobile platforms

Current and next-generation mobile 3D hardware is generally
built for ES 2.0

* Availability of powerful vertex and pixel shaders are an important
upgrade:
* Performance: avoid per-vertex CPU work that was common when
shoehorning modern content into ES 1.x
Differentiation: huge range of effects now possible

* Power: Use the right core for the job; dedicated vertex units avoid lighting
up CPU’s FPU as much

OpenG LES2is becoming widely supported on major mobile platforms

Current and next-generation mobile 3D hardware is generally built for ES 2 support

The addition of programmable vertex and pixel shaders which is core to ES 2 has important ramifications on
numerous user experience factors.

Performance and content differentiation of shaders versus fixed-function are well known

But there are also potential power improvements by offloading vertex-related work from a general CPU core to a
vertex-focused shader core.

50

App Behavior Tuning :,?ZD.A

Within reason, minimize the number of GL ES calls
Cull state changes based on high-level app knowledge
Driver has to handle anything in the spec. Your engine knows better!
Don’t over-batch if you can cull, but do avoid small batches

Shaders can be “heavy state”

Uniforms are shader state; when changing from one shader program to
another, all of the uniforms from the new shader must be set up

Avoid shader thrashing; group rendering calls by shaders

Overall, you want to spend as little time in the driver code as possible. So, the best calls for performance are the
ones you don’t make. Use your high-level engine information to avoid redudant render state changes. Batch your
geometry reasonably. Don’t draw one to 10 tris at a time. Do not over-batch if it hurts the ability to cull invisible
geometry, but be reasonable.

Shaders are particularly heavy state changes because all of the shader constants in a shader are swapped out with
the shader. So ever shader change causes a lot of constants to be shuffled around.

The diagram at the bottom shows two orderings for the same content. One changes shader on every draw call. The
second sorts the geometry by shader and avoids changing shaders nearly as often. The latter can be a big
performance win in some cases.

51

Vertex/Geometry Tuning rf,?zo.,,

Good, compelling content tends to be large
Memory bandwidth can be tight
Optimize all aspects of memory bandwidth usage
Vertex formats
Vertex layout (interleaving)
Normals are particularly ripe for smaller formats like 8-bit signed
* Maximize use of static VBOs/IBOs
Use indexed primitives, sort for vertex caching
IBOs+VBOs to allow for maximal GPU parallelism

Geometry can generate a lot of memory bandwidth, so while good datasets can and should be geometry-heavy, they
should choose their vertex component formats well. Interleave vertices for good memory behavior. Select the
smallest vertex component type you can get away with. For example, Tegra can handle byte components, which can
be good for normals. Use indexed primitives and gIDrawElements so that you can take advantage of vertex re-use.
And use VBOs and IBOs for as much of your geometry as possible to maximize the ability of the driver to get out of
the way of the GPU.

52

Fragment/Pixel Tuning :,?ZD.A

Screen densities on newer mobile devices are high
Lots more pixels to fill now (854x480, 1024x600, etc)
Content optimization is likely to focus on the fragment pipeline

Common fill limitations:
Memory bandwidth (texture reads, alpha blending, buffer writes)
GPU cycles (long shaders)

I've joked that devices are making up for have larger screens by having denser pixels, but it really is true. The number
of pixels to be filled continues to rise, and thus optimization most frequently focuses on the pixel or fragment
pipeline. The most common fill limitations are memory bandwidth from textures and alpha blending, and GPU cycles
from the longer and longer shaders that we see with high-end content.

53

Fragment Shaders rf/?zom

Do work in the (likely under-utilized) vertex unit if possible
Longer vertex shaders, shorter fragment shaders...

How much shader precision do you need?
Use lowp and midp where possible
Important for varyings and locals

Fragment bottlenecks can be well upstream of the shaders!
Investigate your depth complexity
Investigate your culling

* Alpha testing via discard is often a performance loss, not a gain

One way to optimize fragment shaders is to offload them! Be on the lookout for data that is linear or close to linear
across a triangle. In those cases, consider moving computation of those from the fragment shader to the normally-
underutilized vertex shader. Consider shader precision. If you do not need full floating-point precision (and you
rarely do in a fragment shader) then declare a lower precision on the variable. Keep in mind that what appear to be
fragment bottlenecks may not be the shaders themselves. Keep your depth complexity in mind and consider culling
options. Finally, keep in mind that for various reasons, using the shader instruction discard like the classic fixed-
function alpha testing is often a performance loss, not a gain in modern hardware.

54

S

nvibiA

Textures

Texture format selection matters

Compression is (still) king

Use deep textures, but only where they’re needed
Use 1- and 2-component textures where possible

Use mipmapping to improve performance AND visual quality

But beware trilinear and especially anisotropic filtering, which often have
a performance penalty

No standard compression+Alpha formats exist for GLES

RGBX32==2MB \ DXT1==256KB

Textures are the major component of data read bandwidth in 3D rendering. And with screen sizes getting larger,
using smaller textures is less and less of an option. Instead, use compressed texture formats to reduce the “depth”
dimension of your texture sizes. Also, consider using 1 and 2 component luma and luma alpha textures for grayscale
and 2 vector textures. Mipmapping can be a big performance win if you do not over-use trilinear filtering and avoid
anisotropic filtering. Note however, that there is currently no completely standard OpenGL ES compressed texture
format with alpha. The GL ES standard compression format (ETC1) has no alpha support. So proprietary formats will
almost certainly be required right now. This is a good reason to consider the post-install data downloads, as the
device’s texture format support can be queried and a matching pack of nicely compressed texture data downloaded.

55

Depth and Scene Complexity rf,?zo.,,

Consider rough depth sort or a depth pre-pass to optimize later
color pass for expensive shaders
Can reduce the expense in the fragment unit
* Additionally, consider extensions like Occlusion Query to really
allow for app-level culling of hidden items
* Can reduce the expense in all units

As mentioned earlier, being fragment limited can be caused further up the pipeline. Consider a rough front-to-back
sorting of your opaque geometry, or (if you have heavy fragment shaders), consider a depth-only pre-pass. Also,
consider powerful extensions like Occlusion Query to avoid even vertex and CPU-level work for obscured objects.

56

EGL Config Confusions rf,?zm
EGLConfigs define the pixel depth, aux buffer formats, API
support, etc for surfaces and contexts

Querying and selecting a config can be confusing:
eglChooseConfig(disp, attribs, &config, 1, &count);

Don’t be tempted to just grab first matching config

See the EGL spec - the sorting method required by the spec ended up

being confusing to some developers

E.g. requesting 16bpp RGB can return 32bpp RGB F/RST even if an exact
16bpp config existed

* Spec requires that the deeper config be returned first!

* Other surprises in there, too
Request a long array of matches, and sort in the app
Note that GLSurfaceView already does a “closest match” sort

entiat

When selecting an EGLConfiguration upon which to base their rendering, apps generally set up the list of desired
color channel bits, depth bits, stencil bits and supported APIs.

Then, they call eglChooseConfig to return a match.

Applications often rely implicitly upon EGL’s configuration sorting algorithm to do what they want.

They request only the single “best match” config and use it blindly.

The problem here is that the EGL spec’s sorting method can return surprising results;

requesting a 565, 16 bit rendering config can return a 32-bit rendering config as the best match, even if 565 is
supported.

The spec requires the deeper config to be returned first.

For best results, applications should request a longer list of configs that match and sort and cull them manually using
their own sorting metric.

If you are using GLSurfaceView, it already does a form of “closest match” sorting. It may “just work” for you. But if
you have specific needs, sorting configs yourself is still safest. The GLSurfaceView sort may have a different idea of
“gsoodness” than your app.

57

S

nvibiA

Losing your EGL Context

You can lose your EGLContext while paused
In fact, if you use GLSurfaceView, you WILL lose it, as GLSurfaceView
attempts to be aggressive and consistent on this front

Be ready for this case!

Look out for eglSwapBuffers or eglMakeCurrent returning FALSE and
an error code of EGL._CONTEXT LOST

Be ready to reload all textures, VBOs, etc following the event

This is best done by compartmentalizing/grouping your GLES content
loading as much as possible so it can be re-run

This requires careful planning and good testing!
But will really help you run well

NVIDIA Confidential

Be ready to lose your EGLContext. And in so losing your context, losing ALL of your OpenGL ES resources. This can be
a painful rework of your code if you don’t consider it early on. Split out your GLES resource loading as cleanly as
possible so you can call it as needed.

58

S

nvibiA

Window Size and Composition

Android is a composited OS

Your window is drawn to the screen by a GLES-based compositor
If you’re really stuck on fill rate issues on a high-resolution
screen...

SurfaceHolder.setFixedSize may be your friend

Sets a constant, fixed size for your window

Window manager will automatically scale your backbuffer to the full
screen size during composition

Filter-magnifies if needed
Not great, but can work well on a high-density screen

NVIDIA Confidential

Since Android is already a composited OS, it has decoupled the size of a window with the size of its presentation on
screen. So, if you find that you need to lower your 3D fill rate on a large-screen device, you can fix your window size
to be small, and Android will scale up while compositing. There’s no free lunch, though — your game will look blurrier
than one that runs at the native resolution.

59

S

nvibiA

Performance Tuning Tools

Use performance tools early and often

* Technical artists can be excellent users of performance tools
Know where your CPU and GPU cycles are going
Prove your bottlenecks

60

PerfHUD ES >}

Mobile-centric NV PerfHUD
* Works exclusively with Tegra-based development kits
Renders stats and graphs on a separate host PC
Minimizes overhead on mobile device
Allows for more screen real estate for feedback
Most mobile dev is done with a host PC, anyway S

Currently, host PC must be MS Windows-based = :
Publicly available on Android! B ||

* Includes/Supports ==isse==s—0
* Stats graphs =
Directed tests
2x2 textures, ignore draw/all calls, etc

* Frame profiling/debugging

NV Perf HUD ES is the mobile version of NVIDIA’s popular perf hud performance tool exclusively for Tegra-based
development kits. Unlike PC perf hud, which generally renders stats to the application’s window, perf hud ES renders
detailed performance graphs on a connected Windows-based host PC while the application runs live and interactively
on the device. Using the host PC avoids trying to render the graphs on the smaller device screen and offloads the
additional work. Perf HUD ES is now publicly available for Tegra Android on NVIDIA’s developer website. In addition
to the live graphs, it supports making changes to the rendering to diagnose performance issues and even has an
object-by-object, call by call frame profiler and debugger

61

Handy PerfHUD ES Features (2) >

nvibiA

* Call Trace / Frame Debugger Mode

* Full list of state calls in frame (redundancy checking)
Frame “scrubbing”

* Partial-frame (frame-to-call) views including FBOs

Color buffer
* Depth buffer

The call trace mode in Perf HUD ES allows you to capture every GL ES call in an entire frame and “scrub” through the
frame, seeing the contents of all buffers after each draw call, and even viewing the shaders, textures and geometry
used to render each object.

Handy PerfHUD ES Features >

nvibiA

Performance Dashboard Mode

Ultra-fast top-level performance triage
Hit the common, top-level issues quickly
Ignore all calls (are we just app-limited?)

1.
2. Null fragment shader (are we shader-heavy?)
3. 2x2 textures (are we memory-bound?)
4. Disable primitive batches by histogram
Break-on-GL-error
For those rare (ahem) cases where your code isn’t checking each call

Performance triage can be done very quickly in perf hud using the directed test options. These options tell the driver
to null out all GL ES calls, use a NULL fragment shader, replace all textures with 2x2, or disable all small or large draw
calls. Finally, the mode also allows for basic debugging by being able to halt rendering on the first GL error

63

<
Tegra Developers’ Zone >

nvibDIA

http://developer.nvidia.com/teqra <, EVELOPER ZONE
OS Support packs '
Android
Linux

Windows CE
* SDK’s, demos, apps
Docs
Development Tools
Public support forums/community
* Access to the Tegra board store

In closing, I'll invite everyone to visit NVIDIA’s Tegra developer zone. It includes access to the developer kit hardware
store, OS images, tools, samples and documentation, as well as developer forums.

64

. S
Conclusion S

nvibiA

* Android is a powerful gaming platform, especially on high-
performance systems like Tegra

Leverage the Android NDK for high-performance and lower-effort
conversion of high-end content

* Use OpenGL ES 2.0 to get the most out of modern devices

* Visit NVIDIA’s Tegra developers zone for devkits, tools, and
sample code

* Keep pushing the content envelope!

65

