
Adam Marrs, 3/23/2020

RTXGI:
SCALABLE RAY TRACED
GLOBAL ILLUMINATION IN REAL TIME

Presenter
Presentation Notes
Hi, my name is Adam Marrs.

I’m a Senior Graphics Engineer at NVIDIA, and - today - I am going to talk about RTX Global Illumination – or RTXGI for short.

RTXGI is a new software development kit that provides scalable, real time solutions for global illumination using ray tracing.

2

DirectX® Raytracing API

NVIDIA RTX GPUs

Real-Time Ray Tracing Applications

Presenter
Presentation Notes
To get started, let’s take a step back.

2 years ago Microsoft introduced the first hardware-independent GPU ray tracing API, with DirectX Raytracing.

At SIGGRAPH that year, we announced the Turing GPU architecture and our RTX series of GPUs – which provide hardware acceleration for DirectX Raytracing (and other APIs).

This was an inflection point in real-time graphics, making it possible for new games to ship with visual effects that weren’t possible before.

3

REINVENTING REAL-TIME

Battlefield V Control

Presenter
Presentation Notes
Since then games like Battlefield 5, Control, and many others have released with more accurate reflections, shadows, transparencies, and more – all made possible by real-time ray tracing.

The constraints and possibilities of real-time rendering have shifted, and now we have the opportunity to reinvent the way we approach rendering algorithms.

4

GLOBAL ILLUMINATION, IN REAL TIME

Light maps [Quake97, Mitchell06]

Virtual point lights [Keller97, Kaplanyan10, Ding14, Xu16, Luksch19]

Reflective shadow maps [Kaplanyan10, Billeter12, Ding14, Malmros17, Xu16]

Light propagation volumes [Kaplanyan09, Kaplanyan10, Boeckmann19]

Sparse voxel cone tracing [Crassin11, McLaren16]

Denoised ray tracing [Mara17, Schied17, Metro19, Archard19]

Irradiance probes/voxels [Greger98, Ramamoorthi01, Tatarchuk05, Gilabert12, McGuire17, Majercik19]

Presenter
Presentation Notes
Global illumination is a computationally intense and visually important effect than can benefit from this shift in possibilities.

Diffuse global illumination is so important that a lot of techniques have been developed over the years to simulate it.

I’ve listed a handful of those solutions here, sorted into categories based on how the GI problem is approached.

Although there are quite a few ways to solve the GI problem, a familiar “quality vs. performance” tradeoff has limited the effectiveness of the solutions. GI solutions are typically either:

- high quality but prohibitively expensive to run in real-time across a range of hardware, or they

- fit in real-time frame budgets but have fundamental limitations in how visibility is handled when lighting is sampled and stored in an intermediate world, camera, or screen-space data structure – causing visual artifacts.

The new flexibility real-time GPU ray tracing provides enables us to change the dynamic of this long standing tradeoff…

5

https://www.gdcvault.com/play/1026182/

Presenter
Presentation Notes
…and last year at GDC, we introduced a new algorithm that does just that.

In a talk titled “Dynamic Diffuse Global Illumination with Ray Traced Irradiance Fields”, Morgan McGuire describes an approach based on irradiance probes that uses real-time ray tracing to remove the visual artifacts caused by insufficient visibility information in an irradiance probe based data structure.

I highly recommend watching this talk, it’s great. It is available for free in the GDC vault at the link shown here.

The algorithm and results presented in this talk were the beginning of the next wave of ray traced algorithms that remove long standing limitations…

…but, we also want to make it easy for everyone to take advantage of these breakthroughs without having to reinvent or reimplement what is shown in talks like this one.

https://www.gdcvault.com/play/1026182/

6

DirectX® Raytracing API

NVIDIA RTX GPUs

Real-Time Ray Tracing Applications

NVIDIA RTXGI SDK

Presenter
Presentation Notes
To this end, I’m happy to announce the launch of the RTX Global Illumination SDK – a free software development kit that aims to make it easy for you to tap into the power of ray tracing for global illumination.

Positioned between the DirectX Raytracing API and your application, the RTXGI SDK provides global illumination solutions that use the flexibility of ray tracing to deliver image quality and performance not possible before.

7

RTX GLOBAL ILLUMINATION (RTXGI) SDK

Flexibility

Customizable, so you can tailor it to your specific needs

Scalability

Effective solutions for a wide range of target hardware

Convenience

Implement and optimize global lighting algorithms, so you don’t have to

High Level Goals

Presenter
Presentation Notes
There are three goals we have kept in mind while developing the RTXGI SDK.

First, we know every game presents unique challenges - so we are striving for the SDK to be flexible and customizable, so you can tailor it to your specific needs - and meet the challenges specific to your project.

Next, scalability. We are including solutions that reliably scale across a variety of hardware, so you can rely on a single GI solution and avoid the complexity of multiple hardware specific code paths.

And last, but not least – convenience. Implementing and optimizing the latest and greatest algorithms can be time consuming and difficult. We’re doing this, so you don’t have to.

8

RTX GLOBAL ILLUMINATION (RTXGI) SDK

Full C++ and HLSL source code

Sample application with full C++ and HLSL source

Runs on all DXR enabled GPUs: NVIDIA Turing, NVIDIA Pascal, other vendors

Scalable quality for GTX 1060 6GB through RTX 2080 Ti

Available now, for free (on GitHub)

Scalable Ray Traced Global Illumination in Real Time

http://developer.nvidia.com/rtxgi

Presenter
Presentation Notes
To meet these goals, we are releasing the RTXGI SDK with full C++ and HLSL source code.

We have created a sample application that demonstrates how to use the SDK and its features. Full C++ and HLSL source code is included for the sample too.

The RTXGI SDK runs on all DXR enabled GPUs. This means NVIDIA Turing, NVIDIA Pascal, and other vendors who support DXR.

The SDK provides scalability options for hardware ranging from the GTX 1060 6GB all the way up to the RTX 2080Ti.

And, even better – the SDK is available now – for free.

We are providing the source code through GitHub to make revision control as convenient as possible – and lower the friction when you move to future versions of the SDK.

We’re also using GitHub as the central location where you can report bugs, get support if you have questions, and submit pull requests if you’d like to contribute back.

Head over to the RTXGI page on developer.nvidia.com to request access to the SDK.

http://developer.nvidia.com/rtxgi

9

RTX GLOBAL ILLUMINATION (RTXGI) SDK

Based on irradiance probes

A common solution already used in many game engines today

Fixes light and shadow leaking issues caused by lack of visibility information

Dynamic Diffuse Global Illumination (DDGI)

UnityDunia (Far Cry engine)Unreal Engine

Image Credits: Epic Games, Ubisoft, and Unity. https://unity3d.com/learn/tutorials/topics/graphics/probe-lighting,
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/IndirectLightingCache, https://unity3d.com/learn/tutorials/topics/graphics/probe-lighting

Presenter
Presentation Notes
With the first release of the SDK, we are providing our implementation of the Dynamic Diffuse Global Illumination algorithm (or DDGI for short) that I mentioned earlier.

To refresh your memory, the DDGI algorithm is based on irradiance probes.

Irradiance probes have been around since 1998 and are supported by most game engines today.

In a nutshell, you fill the 3D world with small probes that measure and store diffuse GI. Until now, the lighting stored in these probes has typically been pre-computed offline and then sampled at runtime.

In the best case, the quality is excellent, but probes “leak” light and shadow when sampled away from the probe centers due to a lack of visibility information.

https://unity3d.com/learn/tutorials/topics/graphics/probe-lighting
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/IndirectLightingCache
https://unity3d.com/learn/tutorials/topics/graphics/probe-lighting

10

LIGHT & SHADOW LEAKS

Hooker 2016

Presenter
Presentation Notes
This problem is well known and has been talked about for years.

If the lighting changes radically near a probe because of a wall, light can bleed inside of a room from the outside sun.

If the probe lands inside of a wall, then all it sees is darkness and shadow can bleed everywhere.

This often leads to artists manually moving probes to some “good” location and manually placing blocker geometry to separate inside and outside.

That is a big workflow cost…and it doesn’t solve the GI problem if you want dynamic lighting with moving characters.

A character might be covering a probe no matter where you place the probe!

DDGI solves the leaking and dynamic lighting problems with ray tracing.

11

DYNAMIC DIFFUSE GLOBAL ILLUMINATION
Algorithm

Scene Authoring

Place volumes of probes in the 3D world.

Ray Trace & Shade

Trace and shade rays cast from
active probes in relevant volumes.

Use previous probe data during
shading for infinite bounce GI.

Update Probes

Blend ray traced results into probes,
storing irradiance and the distance

to geometry.

Render Diffuse GI

Compute indirect lighting and visibility from
ray traced probes. No leaks.

Irradiance

Distance to Geometry

Offline Runtime

Presenter
Presentation Notes
Here is the basic flow of the DDGI algorithm:

At scene authoring time, artists place volumes that contain DDGI probes in the 3D world.

12

DYNAMIC DIFFUSE GLOBAL ILLUMINATION
Algorithm

Scene Authoring

Place volumes of probes in the 3D world.

Ray Trace & Shade

Trace and shade rays cast from
active probes in relevant volumes.

Use previous probe data during
shading for infinite bounce GI.

Update Probes

Blend ray traced results into probes,
storing irradiance and the distance

to geometry.

Render Diffuse GI

Compute indirect lighting and visibility from
ray traced probes. No leaks.

Irradiance

Distance to Geometry

Offline Runtime

Presenter
Presentation Notes
Then, at runtime rays are traced and shaded from active probes in relevant volumes.

13

DYNAMIC DIFFUSE GLOBAL ILLUMINATION
Algorithm

Scene Authoring

Place volumes of probes in the 3D world.

Ray Trace & Shade

Trace and shade rays cast from
active probes in relevant volumes.

Use previous probe data during
shading for infinite bounce GI.

Update Probes

Blend ray traced results into probes,
storing irradiance and the distance

to geometry.

Render Diffuse GI

Compute indirect lighting and visibility from
ray traced probes. No leaks.

Irradiance

Distance to Geometry

Offline Runtime

Presenter
Presentation Notes
The results from the ray trace are then blended into the probes, storing irradiance and the distance to geometry.

14

DYNAMIC DIFFUSE GLOBAL ILLUMINATION
Algorithm

Scene Authoring

Place volumes of probes in the 3D world.

Ray Trace & Shade

Trace and shade rays cast from
active probes in relevant volumes.

Use previous probe data during
shading for infinite bounce GI.

Update Probes

Blend ray traced results into probes,
storing irradiance and the distance

to geometry.

Render Diffuse GI

Compute indirect lighting and visibility from
ray traced probes. No leaks.

Irradiance

Distance to Geometry

Offline Runtime

Presenter
Presentation Notes
Finally, diffuse GI is rendered in screen-space using the ray traced probes. The distance stored in the probes is used to determine visibility and eliminate the light and shadow leaking problem.

15

DYNAMIC DIFFUSE GLOBAL ILLUMINATION
Algorithm

Scene Authoring

Place volumes of probes in the 3D world.

Ray Trace & Shade

Trace and shade rays cast from
active probes in relevant volumes.

Use previous probe data during
shading for infinite bounce GI.

Update Probes

Blend ray traced results into probes,
storing irradiance and the distance

to geometry.

Render Diffuse GI

Compute indirect lighting and visibility from
ray traced probes. No leaks.

Irradiance

Distance to Geometry

Offline Runtime

Presenter
Presentation Notes
Note: that during the ray trace and shade step, existing probe data can be used during shading to create infinite bounce indirect lighting.

16

DYNAMIC DIFFUSE GLOBAL ILLUMINATION
Algorithm

Scene Authoring

Place volumes of probes in the 3D world.

Ray Trace & Shade

Trace and shade rays cast from
active probes in relevant volumes.

Use previous probe data during
shading for infinite bounce GI.

Update Probes

Blend ray traced results into probes,
storing irradiance and the distance

to geometry.

Independent of screen resolution and framerate

Render Diffuse GI

Compute indirect lighting and visibility from
ray traced probes. No leaks.

Irradiance

Distance to Geometry

Offline Runtime

Presenter
Presentation Notes
The middle two steps are the critical new tasks being performed at runtime, compared to traditional irradiance probe algorithms.

Importantly, these two steps are very scalable since they are both independent of screen resolution and framerate.

Another way to say this, is that the total number of rays traced is tied to the number of active probes, and each individual probe can be ray traced and updated at arbitrary frequencies.

This flexibility creates a lot of optimization opportunities and the ability to adjust workloads for a large range of hardware.

17

DDGI FEATURES & BENEFITS

Infinite bounce indirect lighting, for forward or deferred renderers

Ray traced quality, no denoising necessary

Accelerated content creation

No baking, no leaks

No UV parameterization or probe blockers

In-game and in-editor lighting updates for fast iteration

Summary

Presenter
Presentation Notes
To summarize, the DDGI algorithm brings several benefits to bear, including:

- infinite bounce indirect lighting, that works regardless of the design you’ve chosen for your renderer
- ray traced quality without a separate denoising step to manage
- and, accelerated content creation since you don’t have to work around light leaks or wait for lighting to be baked into textures. No UV parameterizations or probe blockers are necessary either.

Overall, these benefits should decrease iteration time and increase the quality of the final image.

18

RTXGI SDK: DDGI

Flexible resource management

Works with any material and lighting model

Perceptual encoding to speed up convergence when large lighting changes occur

Flexibility for programmers and artists to control performance and lighting quality

Performance: fast probe updates using GPU shared memory

Probe Relocation (early access)

Probe State Classification (early access)

Features and Improvements

Presenter
Presentation Notes
In addition to the features and benefits that the DDGI algorithm brings to the table, we have made a number of enhancements to the algorithm and its implementation in the SDK.

I’ve listed them here, and we’ll go through each one next.

19

RTXGI SDK: DDGI

Engines and renderers handle resources differently to solve different problems

Providing a choice in how resources are managed

SDK Managed Resources

SDK internally allocates/tracks/deallocates necessary GPU resources

Can’t manipulate resources directly, but black box design is easier to use

Application Managed Resources

Application allocates/tracks/deallocates GPU resources, passes pointers into SDK

Better flexibility for advanced applications, but greater responsibility

Flexible Resource Management

Presenter
Presentation Notes
First on our list is flexible resource management.

Since game engines handle resources in a variety of ways to tackle their specific challenges, we made sure the SDK provides choices when it comes to resources.

There are two resource management modes:

- In “SDK Managed” mode, the SDK internally allocates, tracks, and deallocates all the GPU resources it needs. This keeps the resources hidden from the application, but this black box design is easier to use for applications that don’t require tight control over the resources.

- In “Application Managed” mode, the application is responsible for all resource allocation, tracking, and deallocation. Resource pointers are passed into the SDK, providing more flexibility for advanced applications at the cost of more responsibility.

20

RTXGI SDK: DDGI

SDK does not force specific resource bindings or material properties

Probe ray tracing step is owned and implemented by the application

SDK provides utility functions, such as DDGIGetProbeRayDirection(…), to compute
unique, low discrepancy, spherically distributed directions on the unit sphere

Write ray traced results to the SDK’s radiance texture

Any Material or Lighting Model

Presenter
Presentation Notes
Next: to provide the widest possible support for arbitrary material and lighting models, the SDK doesn’t require specific resource bindings or material properties.

In fact, the probe ray tracing step is owned and implemented by the application – not the SDK.

To make the ray tracing process easier, the SDK provides a number of utility and helper functions. One of these functions is “DDGIGetProbeRayDirections”, which computes unique, low discrepancy, spherically distributed directions on the unit sphere.

The probe ray tracing step writes its results to the SDK’s radiance texture, which is then used in the probe update step.

21

RTXGI SDK: DDGI

Exponential weighting when storing irradiance to improve light-to-dark convergence

Moves irradiance into a non-linear space that more closely matches human perception

Hysteresis settings give you control over convergence time

Probe Change and Brightness Thresholds give programmers and artists control over
convergence speed, lighting quality, and performance tradeoffs

Perceptual Encoding, Hysteresis, and Artist Controls

Presenter
Presentation Notes
To improve light-to-dark convergence times, we’ve stored irradiance with exponential weighting. This moves irradiance into a non-linear space that more closely matches human perception, and also makes it possible to use a smaller texture format when storing irradiance.

We expose hysteresis settings to give you control over the influence of newly traced rays when updating probes, ultimately giving you control over how quickly the indirect lighting will converge to the correct result.

We’ve also included probe change and brightness thresholds. These thresholds are used to temporarily adjust the hysteresis when large lighting or brightness changes occur in a short period of time.

When using these thresholds, you have tighter control over lighting convergence speed, quality, and performance tradeoffs.

22

RTXGI SDK: DDGI
Hypothetical Frame

DDGI
Probe RT

DDGI
Probe UpdateGBuffer BVH BuildSkinning Post ProcessingDeferred

Lighting
DDGI

Lighting…Shadows, AO, Reflections, etc.

New passes for DDGI are shown in green

In practice, DDGI Lighting can be combined with an existing lighting pass

Timeline is for illustration purposes, does not represent performance (that’s next)

Presenter
Presentation Notes
We’ve spent time tuning the performance of our implementation to achieve the scalability goal I discussed earlier.

Here’s an illustration of a GPU timeline for a hypothetical frame. I’ve added the new DDGI passes - Probe Ray Trace, Probe Update, and Lighting – and highlighted them in green.

I’ve broken out the DDGI Lighting pass in the illustration to show that this is a step happens, but in practice it can be combined with an existing lighting pass.

Keep in mind this timeline is hypothetical and isn’t intended to represent performance – that is up next.

23

RTXGI SDK: DDGI
Performance

Two Rooms, GPU time in milliseconds
Stress Test Config | 16,384 Probes | 144 Rays Per Probe | 1920x1080

Probe RT Probe Update Lighting Total

RTX 2080 Ti 1.05 1.22 0.44 2.71

RTX 2060 2.34 2.81 0.93 6.08

GTX 1080 Ti 8.53 2.11 1.00 11.64

Presenter
Presentation Notes
Here is performance data for each of the three DDGI steps, for three different GPUs.

In the table, I have included performance numbers for the RTX 2080 Ti and RTX 2060 to show the two ends of the RTX GPU spectrum. Performance of all the other RTX boards will fall somewhere in-between these two.

I’ve also included numbers for the GTX 1080 Ti - the fastest last generation Pascal GPU – as a comparison point. Pascal GPUs do not have RTX acceleration.

The test setup uses a scene I’m calling “Two Rooms”. This scene is distributed with the SDK, so you run it and capture performance numbers yourself to compare.

I’ve placed over 16 thousand probes in the “Two Rooms” scene and used the SDK’s default settings of 144 rays per probe, 6x6 irradiance texture resolution, and 14x14 distance texture resolution. The lighting step is run at 1080p resolution.

In practice, you’ll most likely use way fewer probes than this due to a variety of optimization techniques (like dynamically disabling probes). Keep in mind that this also means the total per-frame cost in milliseconds - in practice - will likely be much lower than what is shown in this stress test.

All that said, this configuration works nicely as a general scalability test.

24

RTXGI SDK: DDGI
Performance

Two Rooms, GPU time in milliseconds
Stress Test Config | 16,384 Probes | 144 Rays Per Probe | 1920x1080

Probe RT Probe Update Lighting Total

RTX 2080 Ti 1.05 1.22 0.44 2.71

RTX 2060 2.34 2.81 0.93 6.08

GTX 1080 Ti 8.53 2.11 1.00 11.64

Presenter
Presentation Notes
Okay, let’s dig into the numbers!

The probe ray tracing step varies from 1 ms on the 2080 Ti to a whopping 8.53 ms on the 1080 Ti.

The benefit of RTX acceleration is in clear view here, with the RTX 2060 more than 3.6 times faster than the 1080 Ti, and the 2080 Ti eight times faster than the 1080 Ti.

25

RTXGI SDK: DDGI
Performance

Two Rooms, GPU time in milliseconds
Stress Test Config | 16,384 Probes | 144 Rays Per Probe | 1920x1080

Probe RT Probe Update Lighting Total

RTX 2080 Ti 1.05 1.22 0.44 2.71

RTX 2060 2.34 2.81 0.93 6.08

GTX 1080 Ti 8.53 2.11 1.00 11.64

Presenter
Presentation Notes
The probe update step ranges from 1.22 ms to 2.8 ms.

Remember, this is for over 16 thousand probes. That means the update time for a single probe is about 172 nanoseconds on the RTX 2060.

26

Two Rooms, GPU time in milliseconds
Stress Test Config | 16,384 Probes | 144 Rays Per Probe

RTX 2080 Ti RTX 2060 GTX 1080 Ti

Default Implementation 3.57 7.83 5.32

RTXGI SDK Implementation
with Shared Memory Optimizations 1.22 2.81 2.11

Speedup 2.92x 2.79x 2.52x

RTXGI: SDK DDGI
Fast Probe Updates

Presenter
Presentation Notes
If we zoom in on the probe update step, the SDK’s compute shader code is about 2.5 to 3 times faster across these GPUs compared to the original implementation.

This is accomplished by cooperatively performing computation and texture loads in thread groups and storing the results in GPU shared memory for fast access later.

27

RTXGI SDK: DDGI
Performance

Two Rooms, GPU time in milliseconds
Stress Test Config | 16,384 Probes | 144 Rays Per Probe | 1920x1080

Probe RT Probe Update Lighting Total

RTX 2080 Ti 1.05 1.22 0.44 2.71

RTX 2060 2.34 2.81 0.93 6.08

GTX 1080 Ti 8.53 2.11 1.00 11.64

Presenter
Presentation Notes
Zooming back out, the final lighting step is a fullscreen raster pass that scales linearly with screen resolution just like traditional irradiance probes.

28

RTXGI SDK: DDGI
Performance

Two Rooms, GPU time in milliseconds
Stress Test Config | 16,384 Probes | 144 Rays Per Probe | 1920x1080

Probe RT Probe Update Lighting Total

RTX 2080 Ti 1.05 1.22 0.44 2.71

RTX 2060 2.34 2.81 0.93 6.08

GTX 1080 Ti 8.53 2.11 1.00 11.64

Presenter
Presentation Notes
Pulling all of this together, we get the combined GPU time for the DDGI algorithm in our stress test configuration.

These total times give us a way to understand how the algorithm scales across GPU hardware, as well as a broad sense of what kind of performance to expect.

We see a 2x performance improvement going from the GTX 1080 Ti to the RTX 2060, and another 2x performance improvement going from the RTX 2060 to the RTX 2080 Ti.

That’s some straight-forward scaling! Do remember these numbers are for a stress test, and real-world scenarios won’t need this kind of brute force configuration. This means the times you’ll experience will be lower than the times shown here.

Also, the DDGI algorithm is able to trade image quality for lag in the lighting update. If you have a fixed frame budget and your target hardware is having a hard time fitting in budget at a specific quality setting, costs can be amortized over frames ensuring you always hit your performance target.

29

RTXGI SDK: DDGI

Any regular grid of probes has a hard time correctly handling all scenarios

Probe Relocation

Maintains world-space offsets for every probe

Uses the ray tracing results to determine proximity of back facing geometry

Attempts to move probes to more effective locations based on surrounding geometry

Sample application includes a linear descent optimizer that relocates probes over
several iterations (frames)

Early access feature, expect it to be updated and improved in future releases

Probe Relocation (early access)

Presenter
Presentation Notes
Now that we’ve looked at performance in a stress test scenario, you are probably thinking about optimizations for more common scenarios.

We are including two optimization features in this release of the SDK along these lines. These features are early access, so expect them to be updated and improved in future releases.

The first feature is called Probe Relocation.

Any regular probe grid has a hard time correctly handling all scenarios, including the regular grid employed by DDGI.

Probe Relocation improves on this by maintaining a world-space offset for every probe and using the results of the ray tracing step to attempt to move probes to a more effective location.

The ray tracing results give us an idea of the surrounding geometry. For example, if a probe is surrounded by back facing geometry it is probably inside another object. In this case, the probe will more effectively contribute to lighting if it is moved outside of the containing object.

The sample application includes an example of a simple linear descent optimizer that relocates probes positioned inside of geometry – outside of the containing geometry. This happens over the course of several iterations.

30

RTXGI SDK: DDGI

Not all probes in a scene contribute to the final lighting

For example, probe stuck in walls or too far outside the scene to be useful

These probes don’t need to spend time ray tracing or updating textures and can be disabled

Probe Classification

Maintains a state value (active, inactive) for every probe

Marks probes as active or inactive based on the results of ray tracing

As much as 30% to 80% of the probes can be disabled in many scenarios

Early access feature, expect it to be updated and improved in future releases

Probe Classification (early access)

Presenter
Presentation Notes
The second feature is probe classification.

With a regular or semi-regular grid of probes, not all probes in a scene are going to contribute to the final lit result.

Common examples are probes that are stuck in geometry (like walls), or probes that end up too far outside the interesting parts of a scene to be useful.

A clear optimization opportunity is to not spent time ray tracing or updating textures for these probes!

The probe classification feature maintains a per-probe state value that marks the probe as either “active” or “inactive”.

Inactive probes don’t need to ray trace and update textures at the same frequency as active probes (and they may not need to do anything!).

In many scenarios, like open worlds or large sparse spaces, anywhere from 30% to 80% of the probes can be marked as inactive.

Like probe relocation, this feature is in early access – so do expect it to evolve and improve in future releases.

31

Request Access
Go to the link above and click “Get Started”. You’ll need to
fill out a short survey to request access.

Clone the GitHub Repo
After filling out the survey and receiving an approval email,
you can access the full source distribution on GitHub.

Dive in with the Sample Application
A working sample application is included as an example
integration that demonstrates the SDK’s functionality.

Download the RTXGI SDK today!
http://developer.nvidia.com/rtxgi

Presenter
Presentation Notes
And there you have it, an introduction to RTX Global Illumination.

Hopefully I’ve piqued your interest in RTXGI.

The SDK is available now, go download it today! I can’t wait to see what you do with it.

You can request access to the SDK by visiting the link on screen. You’ll need to fill out a short survey to request access, and then once you receive an approval email you can clone the full source distribution from GitHub.

Get started by diving into the full source sample application we’ve included and let us know what you think!

http://developer.nvidia.com/rtxgi

32

THANK YOU

Alexander Majercik Kelsey Blanton

Josef Spjut Alex Hyder

Morgan McGuire Ethan Einhorn

Alan Wolfe John Spitzer

Ben Boudaoud

Presenter
Presentation Notes
Finally, I’d like to thank the talented team of people that came together to make the RTXGI SDK a reality.

33

QUESTIONS?

@acmarrs Issues

Presenter
Presentation Notes
And, of course, if you have questions, feel free to send me a note on Twitter or post in the SDK’s GitHub issues area.

34

REFERENCES
[Archard19] Archard, Zhdan, Shyshkovtsov, and Karmalsky, Exploring Raytraced Future in Metro Exodus, GDC Talk, 2019
[Billeter12] Billeter, Sintorn, Assarsson. Real-time multiple scattering using light propagation volumes. I3D 2012.
[Crassin11] Crassin, Neyret, Sainz, Green, and Eisemann, Interactive Indirect Illumination Using Voxel Cone Tracing, Pacific Graphics, 2011
[Dachsbacher05] Dachsbacher and Stamminger, Reflective Shadow Maps, I3D, 2005
[Ding14] Ding, In-Game and Cinematic Lighting of The Last of Us, GDC Presentation, 2014
[Gilabert12] Gilabert and Stefanov, Deferred Radiance Transfer Volumes: Global Illumination in Far Cry 3, Talk at GDC, 2012
[Greger98] Greger et al., The Irradiance Volume, IEEE CG&A 1998
[Hooker16] Hooker, Volumetric Global Illumination at Treyarch, SIGGRAPH Advances in Real-Time Rendering, 2016
[Kaplanyan09] Kaplanyan, Light Propagation Volumes in CryEngine 3, SIGGRAPH Advances in Real-Time Rendering Course, 2009
[Kaplanyan10] Kaplanyan, Real-time Diffuse Global Illumination in CryENGINE 3, SIGGRAPH Presentation, 2010
[Keller97] Keller, Instant radiosity, SIGGRAPH, 1997
[Luksch19] Luksch et al., Incrementally baked Global Illumination, I3D 2019
[Majercik19] Majercik et al., Dynamic Diffuse Global Illumination with Ray Traced Irradiance Fields, JCGT 2019
[Malmros17] Malmros, Gears of War 4: custom high-end graphics features and performance techniques, SIGGRAPH Talk, 2017
[Mara17] Mara et al., An Efficient Denoising Algorithm for Global Illumination, HPG 2017
[McGuire17] McGuire, Mara, Nowrouzezahari, Luebke. Real-Time Global Illumination using Precomputed LightField Probes. 2017
[Metro19] Battaglia, Interview with Ben Archard on Metro: Exodus, Eurogamer, Feb 17, 2019
[McLaren16] McLaren, Graphics Deep Dive: Cascaded voxel cone tracing in The Tomorrow Children, Gamasutra, November 28, 2016
[Mitchell06] Mitchell, McTaggart, and Green, Shading in Valve’s Source Engine, SIGGRAPH Advances in Real-Time Rendering Course, 2006
[Quake97] ID Software, Quake II, 1997
[Ramamoorthi01] Ramamoorthi and Hanrahan, An Efficient Representation for Irradiance Environment Maps, SIGGRAPH, 2001
[Schied17] Schied et al., Spatiotemporal Variance-Guided Filtering: Real-Time Reconstruction for Path Traced Global Illumination, HPG 2017
[Tatarchuk05] Tatarchuk, Irradiance Volumes for Games, GDC 2005
[Xu16] Xu, Temporal Antialiasing In Uncharted 4, SIGGRAPH Advances in Real-Time Rendering Course, 2016

Adam Marrs, 3/23/2020

RTXGI:
SCALABLE RAY TRACED
GLOBAL ILLUMINATION IN REAL TIME

Presenter
Presentation Notes
Thank you.

	RTXGI: �SCALABLE RAY TRACED �GLOBAL ILLUMINATION IN Real time
	Slide Number 2
	Reinventing real-time
	Global illumination, in real time
	Slide Number 5
	Slide Number 6
	RTX Global illumination (RTXGI) SDK
	RTX Global illumination (RTXGI) SDK
	RTX Global illumination (RTXGI) SDK
	Light & Shadow leaks
	Dynamic diffuse global illumination
	Dynamic diffuse global illumination
	Dynamic diffuse global illumination
	Dynamic diffuse global illumination
	Dynamic diffuse global illumination
	Dynamic diffuse global illumination
	DDGI Features & Benefits
	RTXGI SDK: DDGI
	RTXGI SDK: DDGI
	RTXGI SDK: DDGI
	RTXGI SDK: DDGI
	RTXGI SDK: DDGI
	RTXGI SDK: DDGI
	RTXGI SDK: DDGI
	RTXGI SDK: DDGI
	RTXGI: SDK DDGI
	RTXGI SDK: DDGI
	RTXGI SDK: DDGI
	RTXGI SDK: DDGI
	RTXGI SDK: DDGI
	Slide Number 31
	THANK YOU
	Questions?
	references
	RTXGI: �SCALABLE RAY TRACED �GLOBAL ILLUMINATION IN Real time

