
CHAPTER 30

REAL-TIME RAY TRACED
CAUSTICS
Xueqing Yang and Yaobin Ouyang
NVIDIA

ABSTRACT

We present two real-time ray tracing techniques for rendering caustic effects.
One focuses on the caustics around metallic and transparent surfaces after
multiple ray bounces, which is built upon an adaptive photon scattering
approach and can depict accurate details in the caustic patterns. The other is
specialized for the caustics cast by water surfaces after one-bounce
reflection or refraction, which is an enhancement of the algorithm of caustics
mapping, highly fluidic in sync with the water ripples, and able to cover large
scene areas. Both techniques are low cost for high frame rate usages, fully
interactive with dynamic surroundings, and ready-to-use with no data
formating or preprocessing requirements.

30.1 INTRODUCTION

Caustics are commonly seen phenomenon in scenes containing water,
metallic, or transparent surfaces. However, in most of today’s real-time
renderers, they are either ignored or roughly handled using tricks like decal
textures. Although objects casting caustics may only occupy a small portion
of the screen in most cases, the delicate optical patterns are very challenging
to simulate with a limited time budget. Fortunately, the arrival of GPU ray
tracing brings out the possibility of performing photon mapping [6]—the most
efficient technique for simulating caustics so far—in real time to accurately
rendering these effects.

Noticeably, in the book Ray Tracing Gems, Hyuk Kim [7] proposed a simple
scheme to execute photon mapping in real time: tracing photons through the
scene, blending them directly onto a screen-space buffer, and then applying a
spatial denoiser to obtain the final patterns. Albeit easy to implement, the
method uses a fixed resolution for photon emission with uniform distribution,
which limits its application for large-scale scenes, and the blend-denoise

©NVIDIA 2021
A. Marrs, P. Shirley, I. Wald (eds.), Ray Tracing Gems II, https://doi.org/10.1007/978-1-4842-7185-8 469

RAY TRACING GEMS II

Figure 30-1. Screenshots of real-time ray traced caustics. Top: the classic “POV-Ray glasses”
(courtesy of Gilles Tran). The caustics and glass meshes are ray-traced up to 12-bounce refraction
and reflection. Bottom: the undersea water caustic effect from the game JX3 HD Remake
developed by Kingsoft Seasun Studio.

process is prone to exhibit either blurry or noisy results. In the same book,
Holger Gruen [4] showed an improved caustics mapping algorithm for
underwater caustics, which traced photons from a rasterized water mesh and
reconstructed the lighting in screen space. Although being able to eliminate
most artifacts in some earlier attempts of rendering underwater caustics, the
algorithm still cannot produce sharp but noise-free caustic patterns.

To simulate high-quality caustics in real time by utilizing GPU ray tracing (see
Figure 30-1), we present two techniques in this chapter:

1. Adaptive Anisotropic Photon Scattering (AAPS): The AAPS technique
presented in Section 30.2 is for generating caustics around
high-polished metallic and transparent objects. It facilitates traditional

470

CHAPTER 30. REAL-TIME RAY TRACED CAUSTICS

forward photon tracing with photon differentials [5, 10], an anisotropic
approach to obtain finer scattering quality and higher efficiency. In
addition, inspired by [1, 3, 11], the technique handles photon emission
adaptively to generate highly detailed caustic patterns in local regions
and to maintain temporal stability. A soft caustic algorithm for area light
sources is also provided.

2. Ray-Guided Water Caustics (RGWC): The RGWC technique presented in
Section 30.3 is for creating caustics above and under water surfaces. It
is a continuation of Gruen’s work [4] and improves it over several
aspects: intensifying the optical details in water caustic by applying
photon difference or procedural meshes; supporting most light types
and their relevant properties, including textured area lights; being able
to cover vast scene regions through cascaded caustics maps; and being
flexible on performance-quality trade-off with user-controlled
bias-variance preference.

30.2 ADAPTIVE ANISOTROPIC PHOTON SCATTERING

The AAPS method simulates caustics by revamping some techniques from
photon splatting, a category of light propagation methods that is a variation of
classic photon mapping. In the previous GPU-based method [8], photons are
shot and drawn as isotropic particles. AAPS modifies these particles to
project elliptical footprints by evaluating photon differentials during
hit-bounce time, and then invoking the rasterization pipeline to draw them
against the scene depth with additive blending. Such an anisotropic setup can
significantly save the bandwidth and bring superior details.

Besides the anisotropic photon setup, our algorithm has two additional
novelties:

> A negative feedback loop to distribute photons adaptively into the
important areas, i.e., regions close to the camera or parts of the screen
where the outcome exhibits temporal instability.

> “Soft caustics” cast by area light sources, which is done by modifying
photon differential information at the emission stage.

The algorithm maintains the following buffers:

> Task buffers: A set of buffers for guiding the photon emission in the
current frame, including the quadtree buffer and the light ID buffer
(Section 30.2.1).

471

RAY TRACING GEMS II

> Photon buffer: A structured buffer recording photon data, including hit
position, photon footprint, and intensity.

> Feedback buffers: A couple sets of textures in the light space for tracking
feedback information, including the average screen-space area of
photon footprints, caustics variance, and ray density (Section 30.2.3).

> Caustics buffer: A render target for splatting photons in the screen space.

The workflow is executed in four steps (see Figure 30-2):

1. Emit photons according to the task buffers and trace them through the
scene. For any photon hitting an opaque surface, create a record in the
photon buffer and add its footprint area to the feedback buffers.

2. Perform photon scattering (splatting) on the caustics buffer: each
photon in the photon buffer is drawn as an elliptical footprint against the
scene depth. The shape and intensity of the footprint are calculated from
photon differentials and the surface normal, respectively.

3. Apply the caustics buffer to the scene, which is usually done by
accessing the scene attributes in the G-buffer and performing a deferred
lighting pass.

4. Combine the feedback buffers of the previous frame and the current
frame to generate the task buffers for the next frame.

1

2

Caustics Buffer

Back Buffer

Camera

3

Photons Photon Buffer

Task Buffer

Feedback Buffers
4

Figure 30-2. The AAPS workflow. The numbered circles relate to the numbered list in the text.

472

CHAPTER 30. REAL-TIME RAY TRACED CAUSTICS

In the rest of this section, we first elaborate these four steps in detail
(Sections 30.2.1–30.2.3) and describe two approximating methods for
simulating dispersion (Section 30.2.4) and soft caustics (Section 30.2.5),
respectively. Then, we show our results and the performance tests in typical
applications and give some guidance on optimizing performance
(Section 30.2.6). Finally, we discuss the algorithm’s limitations
(Section 30.2.7) and present extended usages (Section 30.2.8).

30.2.1 PHOTON TRACING

To implement adaptive photon emission, we maintain a 2D texture called the
ray density texture to guide photon distribution, in which all light sources’
light-space views are tiled together to track the per-pixel ray count that
should be traced (Figure 30-3). The texture is then expanded into a sequence
of global ray IDs for photon emission that are placed in a 1D buffer called the
quadtree buffer, in which a quadtree is constructed for accelerating queries
and is updated every frame. An additional 2D texture called the light ID buffer
is also created for light source lookup.

During photon tracing, each ray generation shader thread is dispatched to
trace one ray from one of the light sources. The light source ID and the ray’s
location in the ray density texture are obtained by querying the quadtree
buffer, and the ray’s origin or direction is determined by the location mapped
to one of the light spaces. Figure 30-4 shows an example of this searching
process: First, the shader thread searches for the ray’s location, starting from
the top of the tree and traversing down to the leaf node whose ID range

10 9 5

4 3 17

1 5 12

Ray Density Ray Footprints

Figure 30-3. The ray density texture in light space. Left: the per-pixel ray count in the ray density
texture. Middle: visualized ray distribution and initial photon footprint size derived from ray
density. For each pixel, we set the ray count to the nearest square number less than the number
of rays. Right: shooting rays according to the samples’ locations in the texture.

473

RAY TRACING GEMS II

3 13

20 41

4 8

12 13

Task ID = 11

3 13 20 41 4 8 12 13

Quadtree Buffer

Ray Footprint

L0 L1

L2
L3 L4

Light ID Buffer

Figure 30-4. An example of the ray query process: In the quadtree buffer, each quadtree node’s
ID equals the highest ray ID inside its subtrees, and the ray count in the subtree equals its ID
subtracted by its previous sibling’s. For a thread with task ID 11, the ray generation shader starts
searching from four subtrees 3, 13, 20, and 41 containing 4, 10, 7, and 21 rays, respectively; then,
it traverses into subtree 13, which contains four subtrees 4, 8, 12, and 13; finally, it traverses into
subtree 12 to find the matching ray ID 11. The 2D location of ray ID 11 is then used for retrieving
the light source data from the light ID buffer and generating the UV parameters to sample the
light source.

contains the thread ID. Then, it uses the location to look in the light ID buffer
and find out which light source to sample, and it calculates the UV parameters
and transforms the location into the light space. Finally, the thread computes
the initial size of the photon footprint from the ray density at that position and
then sets up a ray to trace the photon. The quadtree query code looks as
follows:

1 // taskId is calculated from thread ID.
2 // sampleIdx is the task offset inside current quadtree node.
3 uint2 pixelPos = 0;
4 uint sampleIdx = taskId;
5 uint4 value = RayCountQuadTree[0];
6

7 // Discard threads that don't have a task.
8 if (taskId >= value.w)
9 return;
10

11 // Traverse quadtree.
12 for (int mip = 1; mip <= MipmapDepth; mip++)
13 {
14 pixelPos <<= 1;
15 if (sampleIdx >= value.b)
16 {
17 pixelPos += int2(1, 1);
18 sampleIdx -= value.b;
19 }

474

CHAPTER 30. REAL-TIME RAY TRACED CAUSTICS

20 else if (sampleIdx >= value.g)
21 {
22 pixelPos += int2(0, 1);
23 sampleIdx -= value.g;
24 }
25 else if (sampleIdx >= value.r)
26 {
27 pixelPos += int2(1, 0);
28 sampleIdx -= value.r;
29 }
30 // Calculate linear index based on mipmap level and pixel position.
31 int nodeOffset = GetTextureOffset(pixelPos, mip);
32 value = RayCountQuadTree[nodeOffset];
33 }
34

35 // lightInfo = {light ID, range, anchor point X, anchor point Y}
36 uint4 lightInfo = LightIDBuffer.Load(int3(pixelPos, 0));
37 // Get pixel size from ray density texture.
38 float2 pixelSize; uint2 lightAtlasCoord;
39 GetRaySample(pixelPos, sampleIdx, lightAtlasCoord, pixelSize);
40 // Calculate light UV for ray configuration and delta UV for footprint.
41 float2 lightUV = (lightAtlasCoord - lightInfo.zw) / lightInfo.y;
42 float2 deltaUV = pixelSize / lightInfo.y;

Tracking the photon footprints during the ray tracing is done by estimating
photon differentials [10]. Supposing a ray shot from a light has two positional
parameters p = p(u, v) in the case of a directional light source, or two
directional parameters d = d(u, v) in the case of a point light, the photon’s hit
position p′ after the ray tracing is determined by all parameters p′ = p′(u, v).
The algorithm generates two small perturbations for each ray, updates them
using the chain rule when the photon hits a surface, and uses the
perturbations of photon position∆p′ to determine the new size of the photon
footprint:

∆p′ =
∂p′

∂u
∆u +

∂p′

∂v
∆v. (30.1)

The photon differentials are evaluated in closest-hit shaders. Once reaching a
visible, opaque, and rough surface, the photon’s attributes are recorded in the
photon buffer, including the hit position, intensity, incident direction, and final
footprint, which is determined by the partial derivatives ∂p′/∂u and ∂p′/∂v at
the last hit point.

30.2.2 PHOTON SCATTERING

In the photon scattering step, we construct the photon footprints as
quadrilaterals based on their differentials and then draw them into the
caustics buffer using additive blending. During the rendering, each footprint’s
lighting result is computed by the photon’s intensity, incident angle, and

475

RAY TRACING GEMS II

Figure 30-5. Mesh caustics cast on a glossy surface. A GGX shading pass is performed for each
photon footprint.

surface attributes at the hit point retrieved from the G-buffer. Figure 30-5
shows an example in which the caustics are cast on a glossy surface, where
the incident angle and intensity from the photon, the local geometry, and the
material information from the G-buffer are collected to perform a GGX
shading pass.

After photon scattering, a compute shader back-projects the current screen
pixels to the previous frame to calculate the caustics variance between the
two frames, and it stores the result in the alpha channel of caustics buffer.
The variance values are used for ray density calculation, which is a part of the
feedback mechanism (described in the next section).

30.2.3 FEEDBACK BUFFERS

The AAPS technique features a mechanism of a negative feedback loop to
determine the photon distribution adaptively. At its core, a couple of textures,
together called feedback buffers, are placed in the light spaces and updated in
each frame to evaluate the spatiotemporal importance of the traced photons
(Figure 30-6).

The projected area texture contains the average screen-space area of the
photon footprints. At the end of photon tracing, each photon’s final footprint is
calculated and its area in the screen space is added to the light-space location
in this texture where the photon was emitted.

476

CHAPTER 30. REAL-TIME RAY TRACED CAUSTICS

Photon
Buffer

Caustics
Buffer

Screen Space

Projected Area

Caustics Variance

Ray Density

Feedback Buffers (Light Space)

Figure 30-6. The mechanism of feedback buffers. Top left: at the end of the photon tracing stage,
each photon footprint’s screen-space area is calculated and added to the projected area texture in
light space. Bottom left: the caustics variance between the current and previous frames is stored
in the caustics buffer. At the end of the photon tracing stage, each photon samples variance from
the caustics buffer and accumulates it into the caustics variance texture in light space. Right: the
projected area and caustics variance are combined to generate the ray density.

The caustics variance texture contains the average color variance of the
screen-space pixels covered by the photons. At the end of photon scattering,
each photon collects the variance value from the caustics buffer’s alpha
channel at its footprint’s center and writes the value into the pixel of this
texture where the photon was emitted. This looks as follows:

1 // At the end of photon tracing, calculate screen-space coordinates and
footprint area.

2 float3 screenCoord;
3 float pixelArea = GetPhotonScreenArea(photon.position, photon.dPdx, photon.

dPdy, screenCoord);
4 // Read variance value from caustics buffer.
5 float variance = GetVariance(screenCoord);
6 // Write feedback buffers; lightAtlasCoord is the 2D coordinate in light

space.
7 uint dummy;
8 InterlockedAdd(ProjectedArea[lightAtlasCoord], uint(pixelArea), dummy);
9 InterlockedAdd(Variance[lightAtlasCoord], uint(variance), dummy);
10 InterlockedAdd(PhotonCount[lightAtlasCoord], 1, dummy);

The ray density texture is computed for the next frame by combining the two
previous textures to compute a suggested ray density, which is used as a

477

RAY TRACING GEMS II

Figure 30-7. Comparison of target projected area of photon footprint set to 20 (upper left) and 80
(upper right). The second row shows the point visualization of the photons. Detailed caustics
patterns are well captured without apparent noise.

guide for the per-pixel ray count:

d′ = d
a
at

+ vg, (30.2)

where d′ is the suggested ray density, d is the previous ray density, a is the
average screen-space projected area, at is the target projected area, v is the
caustics variance, and g is the variance gain. In order to create sharper
details, we can set at to a smaller value to restrict photon size (Figure 30-7
shows a comparison between two at values); and to suppress temporal
flickering, we can set g to a higher value.

Applying d′ directly for subsequent usage may cause the small local features
to be unstable if the change is too steep. To avoid this, we filter d′ by blending
with the neighboring pixels’ current ray density:

dfinal = wtd′ + (1 – wt)
∑

i widi∑
i wi

, (30.3)

where dfinal is the final ray density, d′ is the suggested ray density, the di are
the current ray densities of the pixel and its neighbors, and wt and wi are
temporal and spatial weights, respectively, which should be set between 0
and 1. A higher value of wt enables faster updates but less stable results.

478

CHAPTER 30. REAL-TIME RAY TRACED CAUSTICS

Figure 30-8. Light dispersion though prisms.

30.2.4 DISPERSION

Accurately simulating light dispersion (as shown in Figure 30-8) requires
computing spectral ray differentials, as done by Elek et al. [2], plus the
emission spectrum of light sources and the absorption spectrum of
materials. To avoid such complicated input data and huge computational cost,
we employ a perturbation-based approach instead.

First, at each refraction point, an index of refraction (IOR) perturbation is
calculated based on the thread ID:

∆i = 2
tmod sd
sd – 1

– 1, (30.4)

where∆i is the IOR perturbation in the range [–1, 1], t is the thread ID, and sd
is the number of separated monochromatic colors. In Figure 30-9a, sd is set
to 7, thus the white light is split into seven monochromatic colors. Then,∆i is
applied to modify the IOR and generate the refraction ray.

Next, at the end of the photon tracing stage,∆i is used for calculating the
modulation color. The RGB triplet of modulation weights can be computed by

Cf = saturate
(
–∆i,wg(1 – |∆i|),∆i

)
, (30.5)

where Cf is the modulation color in RGB channels and wg is the weight factor

479

RAY TRACING GEMS II

(a) Seven color bands (b) Jittered IOR perturbation

Figure 30-9. Monochromatic color separation: (a) The white light is split into seven color bands.
(b) Continuous color separation with jittering is applied.

for the green channel, which ensures that all modulation colors can be
combined into grayscale colors:

wg =
sd + 1
2sd – 2

. (30.6)

Finally, each photon’s color is multiplied by its modulation color Cf. The
dispersion effect now looks like a series of colorful bands. To make the color
distribution smoother over the spectrum, the IOR perturbation∆i can be
jittered. Figure 30-9b shows the results with jittering.

30.2.5 SOFT CAUSTICS

AAPS can simulate soft caustics cast by area light sources. Unlike directional
or point light source, an area light source can emit photons with independently
varied position and direction. Thus, we need to formulate a proper method on
estimating photon differentials based on the four perturbations.

Suppose that a photon emitted from an area light has two positional
parameters p = p(u, v) and two directional parameters d = d(p, q). The final hit
point of the photon p′ is determined by all parameters p′ = p′(u, v, p, q). Adding
either a positional or a directional perturbation to the ray’s origin will raise a
shift to the hit point (Figure 30-10). Our solution for area light sources is to
treat all four perturbations∆u,∆v,∆p,∆q as independent random variables
obeying standard normal distribution and the photon footprint as the
significant area of resulting probability distribution. The perturbations of the

480

CHAPTER 30. REAL-TIME RAY TRACED CAUSTICS

Area Light

Photon
Footprint

Opaque Object

dp/du

dp/dv dp'/dv

dp'/du

Δp
Δp'x x

Figure 30-10. Adding a positional perturbation∆p on the ray’s origin will raise a positional
perturbation∆p′ on the hit point.

photon position are∆p′ = ∆p′p +∆p′d, in which

∆p′p =
∂p′

∂u
∆u +

∂p′

∂v
∆v, (30.7)

∆p′d =
∂p′

∂p
∆p +

∂p′

∂q
∆q. (30.8)

Here,∆p′p and∆p′d are 2D photon perturbation vectors in the local
xy-coordinate frame of the photon, raised by positional and directional
perturbations, respectively. Because all perturbation inputs are normally
distributed, both∆p′p and∆p′d obey normal distribution: ∆p′p ∼ N(0,Cp)
∆p′d ∼ N(0,Cd) in which

Cp =
(
∂p′
∂u

∂p′
∂v

)(
∂p′
∂u

∂p′
∂v

)T
, (30.9)

Cd =
(
∂p′
∂p

∂p′
∂q

)(
∂p′
∂p

∂p′
∂q

)T
. (30.10)

Because∆p′p and∆p′d are independent, the probability distribution of∆p′ is
the convolution of the probability distributions of∆p′p and∆p′d. Note that the
convolution of two normal distributions is still a normal distribution, with the
mean value and the covariance matrix being the sum of the two respectively:

∆p′ ∼ N(0,C), (30.11)

where C = Cp + Cd. To calculate photon differentials from C, we can find two
vectors∆p1 and∆p2 satisfying

C =
(
∆p1 ∆p2

)(
∆p1 ∆p2

)T
. (30.12)

But, such a parameterization is not unique. We just assume that∆p1 is along
the x-axis of the local coordinate frame and solve for∆p2 accordingly.

481

RAY TRACING GEMS II

Δd'
Δd

Δx Δx'

Figure 30-11. Our soft caustic algorithm tracks photon differentials for both ray position and
direction, combines them using convolution and generates a two-dimensional photon footprint.

(a) Soft caustics disabled (b) Soft caustics enabled

Figure 30-12. Use soft caustics to simulate soft transparent shadows. (a) The colorful shadow is
produced by caustics with softness set to 0. (b) With softness set to 0.15, the shadow is softened.
Notice that the caustics generated by a metallic cylinder on the right side are also softened.

SUMMARY First, our soft caustics implementation estimates photon
differentials for both positional and directional perturbations. Then, it
constructs the covariance matrices Cp and Cd from the differentials and adds
both matrices to get the covariance matrix C for the composite footprint.
Finally, it calculates the combined photon differentials∆p1 and∆p2 from C
and applies them to the photon. Figure 30-11 shows the process, and
Figure 30-12 shows a scene with and without soft caustics.

30.2.6 RESULTS

The AAPS technique can easily achieve high frame rates for real-time usages
while producing accurate, noise-free images. By efficiently applying adaptive
photon distribution and anisotropic footprints, the total photons emitted can
be kept at a much lower level than traditional offline renderers with similar
image quality. Figures 30-13 and 30-14 show two scenes running in real time
in which the number of photons is around 50,000 to 100,000.

We picked two scenes for a performance test. The first scene is the classic
POV-ray glasses scene shown in Figure 30-1, in which all transparent objects

482

CHAPTER 30. REAL-TIME RAY TRACED CAUSTICS

Figure 30-13. Two views of the POV-ray glasses scene. Left: accurate refractive caustic patterns.
Right: reflective caustic patterns cast by normal mapping on the planar metal surface.

Figure 30-14. AAPS in real-world applications: a cutscene from the game Bright Memory:
Infinite featuring the mesh caustics cast by a shattered glass bottle.

have both reflected and refracted caustics enabled, and the number of ray
bounces is up to 12. The second scene is from the game Bright Memory:
Infinite and contains a shattered glass bottle (Figure 30-14), where the caustic
photons bounce up to eight times before hitting the ground. Beside mesh
caustics, both scenes contain large amounts of ray traced refractions and
reflections. The tests were performed against 1920× 1080 and 2560× 1440
resolutions on selected GPUs. All caustics are rendered at full resolutions
without any upscaling technique involved. The frame time breakdowns are
listed in Figure 30-15.

Based on the performance chart, we can expect that in a usual setup where
caustic effects cover a large portion of the view, the cost of rendering caustics

483

RAY TRACING GEMS II

2.92

54.42

1080p 1440p

RTX 2060

0

20

40

80

60

1080p 1440p

RTX 2070 Super

1080p 1440p

RTX 2080 Ti

1080p 1440p

RTX 3080

1080p 1440p

RTX 3090

3.55

85.97

1.94

33.84

2.53

55.96

POV-Ray Glasses: Frame Time Breakdown in Milliseconds

1.29

25.66

1.62

43.08

0.96

16.67

1.22

26.46

0.8

14.09

1.02

22.51

Mesh Caustics Transparent
Refraction+Reflection

Opaque Reflection Reflection Denoiser Post-processing Misc.

3.43

74.06

1080p 1440p

RTX 2060

0

20

40

80

60

120

100

1080p 1440p

RTX 2070 Super

1080p 1440p

RTX 2080 Ti

1080p 1440p

RTX 3080

1080p 1440p

RTX 3090

4.33

120.26

2.36

46.06

2.96

73.42

Bright Memory: Frame Time Breakdown in Milliseconds

1.68

36.1

2.12

59.2

1.19

20.71

1.39

32.32

0.8

18.3

1.21

28.46

Mesh Caustics Transparent
Refraction+Reflection

Opaque Reflection Reflection Denoiser Post-processing Misc.

Figure 30-15. Rendering time breakdown for the POV-ray glasses (Figure 30-1) and Bright
Memory (Figure 30-14) scenes at resolutions 1920× 1080 and 2560× 1440.

is on the level of 3–4 ms on a performance GPU (RTX 2060) and 1–2 ms on an
enthusiast GPU (RTX 3090). These data also show that the cost of caustics is
fractional in comparison to other ray tracing regimes. For example, the
multi-bounce reflection and refraction on the glass objects take more than
60% of the frame time but are essential for visual quality in a caustic-rich
scene. That said, for better performance, the user may have to put more
effort toward finding the acceptable appearance of translucent materials
other than tweaking caustic parameters.

Further investigation based on profiling tools shows that the AAPS process
has two main computational hot spots:

484

CHAPTER 30. REAL-TIME RAY TRACED CAUSTICS

> Photon tracing: In the POV-ray glasses scene, the photon tracing stage
takes roughly 60% of the caustic rendering time, in which photons
bounce up to 12 times before reaching their final hit points. To keep this
part of cost under control, the key is to reduce the unnecessary photons,
such as excluding materials that can only cast obscure caustics, finding
out the maximum acceptable target photon footprint area, culling out
photons whose energy falls under a certain threshold, and so on.

> Photon scattering: The scattering takes about 20% of the caustic
rendering time, which blends all photon footprints into the caustics
buffer. To reduce the overhead of blending, the resolution of the caustics
buffer can be downscaled to quarter screen size; or consider using an
upscaling technique, for example, Deep Learning Super Sampling
(DLSS) to boost the frame rate.

30.2.7 LIMITATIONS

In our implementation, the photon tracing step does not use the roughness
value in a physically accurate way, thus caustics are still sharp for rough
surfaces. We assume that a surface has zero roughness value when
calculating photon differentials. This drawback can be relieved by modifying
the differentials according to the roughness term. The main challenge is to
construct a good approximation to capture reflection and refraction lobes well.

Reflected and refracted caustics are generated in separated threads, which
means that having both types of caustics for one object will nearly double the
cost of photon tracing.

The calculation of dispersion is not based on continuous spectrum data, thus
it is not physically accurate.

Caustic effects seen through reflection and refraction are limited to screen
space. For example, if a mirror is placed near a surface that receives
caustics, we can only observe the caustics that fall in the current main
viewport through the mirror.

The support for area light sources is not optically accurate. For performance
consideration, the “soft caustics” cast by area light sources are done by
modifying the photon differentials on both ray origins and directions, which
means it may not produce the correct contact hardening look in the way of ray
traced soft shadows.

485

RAY TRACING GEMS II

Figure 30-16. Extended usage of AAPS: simulating transparent shadows. The colorful shadows
through the stained-glass windows are one-bounce refractive caustics.

30.2.8 EXTENDED USAGES

For extended usages other than regular caustic effects cast by glass or metal
surfaces, the mesh caustics integration also works for rendering transparent
shadows and light spots through textured windows. Figure 30-16 shows a
scene with stained glass. The light cast through the windows can be
efficiently simulated as a one-bounce refractive caustic. The cost is minimal
even if the effect covers a large portion of the screen.

30.3 RAY-GUIDED WATER CAUSTICS

Water caustics have the characteristics of being highly dynamic and
interactive, usually covering large areas, and only requiring one-bounce light
reflection or refraction, all of which lead us to research in specialized
rendering methods. Before describing our latest algorithm improvements, we
will give a brief recap to Gruen’s method [4]. The method involves mainly two
sets of buffers: the caustics map stores rasterized water geometry
information (positions and normals) from the view of the light source, which
may consist of two textures in practice, and the caustics buffer accumulates
photon footprints in screen space. The workflow consists of four steps:

1. Render water surfaces into the caustics map from the light view,
recording the positions and normals of the water surface (Figure 30-17).

486

CHAPTER 30. REAL-TIME RAY TRACED CAUSTICS

Caustics Map

Figure 30-17. Rendering water geometries into the caustics map from the light view. (From [4].)

2. Generate rays from positions recorded in the caustics map, and trace
them along the reflected or refracted directions calculated from the
surface normals. Once the rays hit the scene, record the information of
the hit points.

3. Render caustics into the caustics buffer, which is placed in screen space,
using the data of the hit points obtained in step 2.

4. Perform denoising on the caustics buffer, and composite the result with
the scene.

Our improvements focus on the surface caustics in step 2 and step 3. In
step 2, instead of only outputting the intensity of the ray hit point, we count the
number of valid hit points and record more data, including position and
direction. In step 3, we developed two independent approaches for generating
better caustic patterns: Photon Difference Scattering (notice that this is not
photon differentials), which treats each ray hit point as a photon and renders
it as a decal against the scene depth, and Procedural Caustic Mesh, which
reconstructs the caustic network as a triangular mesh, and then blends it
with the scene. As both approaches have pros and cons, users can switch
between the two options based on their preference of better performance or
higher quality. Besides these overhauls, we also introduce cascaded caustic
maps, an analog to cascaded shadow maps, to cover mass water bodies by
multi-scale rendering.

487

RAY TRACING GEMS II

Figure 30-18. Photon Difference Scattering. Left: creation of quadrilateral photon footprints at
ray hit points. Middle: photon footprints visualized as being rendered with equal size; notice the
mosaic artifacts. Right: water caustics rendered using PDS with no denoising applied.

30.3.1 PHOTON DIFFERENCE SCATTERING

The Photon Difference Scattering (PDS) technique, similar to photon
differentials, uses the finite difference of nearby rays’ data to compute photon
coverage, which can give more accurate results than using local
perturbations as in photon differentials. Unlike photon differentials, PDS does
not need to access the geometry data of the caustics receivers, so it is easier
to implement in game engines. With PDS, we can achieve the same quality of
the original caustics mapping method by casting much sparser rays, thus
greatly improving the ray tracing performance. The brightness adjustment by
footprint coverage ensures the correct intensity distribution from all incident
angles, while some slope angles may raise artifacts in Gruen’s method.

With the PDS approach, we treat ray hit points as photon footprints and
render them as decal sprites against the scene depth. Figure 30-18 (middle)
shows the photon footprints being rendered at a fixed size, which forms
correct caustic envelopes but leaves gaps in between. To fill the scene
surface with compact quads, we need to find a proper size for each footprint.

Fortunately, for water caustics each ray is cast from one single reflection or
refraction, which means that we can easily backtrace to the ray’s origin in the
caustics map and access its adjacent rays’ origins and directions. The right
size of the footprint is then estimated using these ray data around the hit
point (Figure 30-19).

The initial size of the footprint is determined by the resolution of the caustics
map and the desired precision set by the user, then its scaling factor is
derived from the current hit point and the estimated hit points:

Scale =
TriangleArea(hit0, hit1, hit2)

TriangleArea(pos0, pos1, pos2)
, (30.13)

where hit0 is the position of the current hit point, hit1 and hit2 are the

488

CHAPTER 30. REAL-TIME RAY TRACED CAUSTICS

Hit T of Current Ray

Neighboring Rays

Current Ray

Estimated
Neighboring
Hit Points

Current Hit Point

Figure 30-19. Calculating the size of a photon footprint by combining the ray’s origin, direction,
and hit point data with the adjacent ray’s origins and directions. The hit points of adjacent rays
(red) are estimated from the current ray’s hit T (green).

estimated positions of neighboring hit points, and pos0, pos1, and pos2 are the
corresponding original positions in the caustics map.

Before finally rendering the photon footprint onto the caustics buffer, the
intensity, size, and orientation of the quad sprite are also adjusted by the
photon direction and the surface normal: the quad is placed perpendicular to
the ray direction and then projected to the opaque surface (Figure 30-20).
Because the quad is smeared over the receiving surface, its intensity is cosine
weighted by the incident angle. The lighting result is calculated using the
scene materials during the scattering.

Choosing a proper shape for footprints can significantly improve the quality.
Figure 30-21 shows that the elliptic footprints provide better result than the
rectangular ones. In Figure 30-18 (right), after PDS was applied, the
footprints formed into continuous patterns without any denoising involved.

Surface Normal
Photon Direction

Projected Photon Direction on the Surface

Figure 30-20. The intensity, size, and orientation of the quad sprite are also adjusted by the
photon direction and the surface normal.

489

RAY TRACING GEMS II

(a) Rectangular footprints (b) Elliptic footprints

Figure 30-21. Comparison of caustics footprints: (b) elliptic footprints provide sharper and
clearer caustics than (a) rectangular footprints.

Figure 30-22. The results of using different caustics map resolutions with photon difference
scattering. Left: resolution 2048× 2048 covering a 30m× 30m area. Right: resolution
512× 512 covering the same area.

On the pro side, PDS can render high-quality water caustics with low cost and
can easily extend the supports for many types of light sources, including area
light. On the con side, it is sensitive to the caustics map resolution related to
the covering range—applying a low-resolution caustics map to a large scene
area may result in very blurry caustic patterns (Figure 30-22).

30.3.2 PROCEDURAL CAUSTIC MESH

The other approach for reconstructing caustic patterns is Procedural Caustic
Mesh (PCM), which converts hit points into an intermediate mesh: each hit
point is mapped to a vertex in the mesh whose topology is a triangle list that
maps to the regular grids in the caustics map. After the ray tracing pass, a
compute shader fetches the hit point data, evaluates the contribution and
intensity of each primitive according to its world-space area, discards invalid
primitives, and generates the index buffer. The mesh is then rendered onto
the caustics buffer in a rasterization pass (Figure 30-23). In practice, we build

490

CHAPTER 30. REAL-TIME RAY TRACED CAUSTICS

Figure 30-23. Procedural Caustic Mesh. Left: the refracted caustic mesh; notice that the shadow
area is culled from the mesh. Right: the rendered mesh modulated by scene materials.

Figure 30-24. The results of using different caustics map resolutions with PCM. Left: resolution
2048× 2048 covering a 30m× 30m area; Right: resolution 512× 512 covering the same area.
Notice that the qualities of the two are almost the same.

two procedural caustic meshes for every water object, one for reflection and
the other for refraction.

The advantage of this approach is that it always produces sharp caustic
patterns even if the caustics map resolution is very low (Figure 30-24).
However, it also raises the “black edge” artifact at object corners where the
mesh triangles span over the culling region (Figure 30-25). For the best
result, users can choose between PDS and PCM for better quality. In general,
PDS is more flexible and well suited for water areas in a confined space like
swimming pools, whereas PCM is more efficient when coupling with large
water bodies, such as lakes and oceans.

30.3.3 CASCADED CAUSTICS MAPS

To generate caustics for large water bodies like ocean surfaces, we have
implemented cascaded caustics maps (CCM) that work in the same way as
cascaded shadow maps (CSM). Figure 30-26 shows a configuration of four

491

RAY TRACING GEMS II

Figure 30-25. Left: artifact raised by PCM along the discontinuous edge of the scene geometry
due to inaccurate culling of mesh primitives. Right: in comparison, PDS has no such artifact.

Figure 30-26. Left: a CCM configuration of four cascades. Right: an aerial view of the ocean
surface with reflective and refractive caustics rendered by CCM.

cascades, where each cascade contains a caustics map at a user-selected
resolution. CCM can be coupled with PDS to mitigate blurry results when
rendering with limited photon budget but higher details are desired at near
sight, as it allows us to distribute more photons at the innermost cascade to
lift the quality and less photons at the outer cascades to keep the cost down.

Unlike CSM, to implement cascaded maps in a ray tracing pipeline, we need
to determine the number of shader threads for dispatching rays and the
scheme of assigning data to the threads. The following formula gives the
threads needed for the CCM:

Nthread = W× H×

[
1 +
(
1 –

1

Scale2

)
×
(
Nlevel – 1

)]
, (30.14)

where W and H are the width and height of the caustics map, Scale is the

492

CHAPTER 30. REAL-TIME RAY TRACED CAUSTICS

Level 0

Level 1

Level 2

Level 3

Figure 30-27. Assigning CCM data to ray generation shader threads: A setup with four cascades,
each cascade at 4× 4 resolution, with size scaling 2 between the cascades, where the gray areas
are overlapped. The cascaded setup only dispatches 52 threads in total, while a uniform setup
requires 1024 threads.

length ratio between two adjacent cascade levels, and Nlevel is the number of
cascades. Figure 30-27 demonstrates an example on the mapping between
the CCM and the shader threads.

30.3.4 SOFT WATER CAUSTICS BY AREA LIGHTS

We have extended the PDS method to simulate soft water caustics cast by
area light sources. Currently, only textured rectangular lights are supported,
but the technique can be easily expanded to accommodate more complicated
area lights. Applying a 2D texture to a rectangular light to define the surface
intensity and to emit photons accordingly allows us to simulate any planar
luminaries. Unlike with other light types, the photons leaving an area light are
going in all directions (Figure 30-28). Thus, water caustics exhibit “softness”
in the way of soft shadows.

Directional Light Point or Spot Light Area Light

Figure 30-28. Only one ray hits each point on the water surface with directional, point, and spot
lights. But with an area light, each point on the water surface may be hit by many rays.

493

RAY TRACING GEMS II

To simulate this soft effect in real time, we developed a temporal method to
reuse the caustic patterns over multiple frames. It consists of two steps:

1. For each valid point in the caustics map in the current frame, we select
an incident ray from a random sampling point on the rectangular light,
and we trace it through the water surface.

2. We accumulate the caustics over several frames with a temporal filter to
output the soft caustics.

Performance-wise, we can produce acceptable soft water caustics by any
rectangular lights at merely the same cost as other light types.

30.3.5 RESULTS

The RGWC technique rasterizes the water mesh into a caustics map, avoiding
ray tracing between light sources and water surfaces, which greatly helps the
rendering efficiency. Meanwhile, the two caustic reconstruction methods,
PDS and PCM, allow the creation of high-quality patterns while covering large
water bodies. In addition, CCM and soft water caustics greatly expand the
usability of RGWC.

The performance of RGWC is affected by many factors, such as the resolution
of the caustics map and the caustics buffer, the water coverage in the view,
and the number of light sources that affect the caustics. We performed some
testing using the two scenes shown in Figure 30-29.

Figure 30-29. Two scenes selected for RGWC performance tests. Left: swimming pool lit by one
directional light source. Right: seaside town lit by one directional light and having a four-cascade
CCM configuration. Both scenes have above and under water caustics enabled. The resolution of
the caustics buffer is set to full screen size. The caustics map is set to 1024× 1024.

494

CHAPTER 30. REAL-TIME RAY TRACED CAUSTICS

1.7

30.24

RTX 2060

0

20

10

30

50

40

1.02

29.5

Swimming Pool: Frame Time Breakdown in Milliseconds

Water Caustics Transparent
Refraction+Reflection

Opaque Reflection Reflection Denoiser Post-processing Misc.

1440p1080p

PDS PCM PDS PCM

2.31

52.13

1.14

51.02

1.3

19.9

RTX 2070 Super

0.78

19.41

1440p1080p

PDS PCM PDS PCM

1.8

34.47

0.88

33.49

1.02

14.87

RTX 2080 Ti

0.57

14.08

1440p1080p

PDS PCM PDS PCM

1.42

25.49

0.63

24.85

0.63

9.25

RTX 3080

0.42

9.03

0.89

15.23

0.48

14.82

0.55

8.02

0.38

7.72

0.76

13.32

0.42

12.8

1440p1080p

PDS PCM PDS PCM

RTX 3090

1440p1080p

PDS PCM PDS PCM

4.89

48.14

1080p 1440p

RTX 2060

0

20

40

80

60

1080p 1440p

RTX 2070 Super

1080p 1440p

RTX 2080 Ti

1080p 1440p

RTX 3080

1080p 1440p

RTX 3090

5.82

82.17

3.61

32.93

4.25

52.9

Seaside Town: Frame Time Breakdown in Milliseconds

2.65

25.78

3.16

41.61

1.84

16.65

2.18

26.58

1.6

15.82

1.88

23.17

Water Caustics Transparent
Refraction+Reflection

Opaque Reflection Reflection
Denoiser

Post-processing Misc.RTGI

Figure 30-30. Water caustics rendering time breakdown for the scenes Swimming Pool (top) and
Seaside Town (bottom) at screen resolutions 1920× 1080 and 2560× 1440.

Figure 30-30 (top) compares the performance of PDS and PCM on selected
GPUs using the test scene Swimming Pool (Figure 30-29, left). In general,
PCM is faster than PDS. Further investigations using profiling tools reveal
that part of the overhead of PCM comes from the workload that reconstructs
the new index buffer, which is dependent on the vertex number (same as the
size of the caustics map) but less dependent to the size of the caustics buffer.
And rendering the mesh avoids rendering overlapping sprites in PDS. This
explains why PCM is more efficient than PDS and less impacted by the screen
resolutions.

Figure 30-30 (bottom) lists the cost of CCM using the test scene Seaside Town
(Figure 30-29, right). The scene has four cascades of a 1024× 1024× 4
caustics map to cover the sea surface of 240× 240 m2. Because CCM does
not work with PCM, only PDS numbers are shown here. The usage of CCM

495

RAY TRACING GEMS II

significantly increases the cost of RGWC because all four caustics maps are
ray traced. However, the aerial view of the sea caustics cannot be easily
handled by PCM. Thus, CCM is the only option here to produce high-quality
caustic patterns for large scene coverage.

30.3.6 LIMITATIONS

In our implementation, we only render the reflected and refracted caustics
generated by the first bounce of photons. Photons bouncing multiple times
among the water ripples are not captured.

CCM only works for directional lights and does not support PCM.

Water caustics cannot be seen within ray traced reflections. For example,
when underwater, the total internal reflection on the water surface does not
show the underwater caustics.

30.4 CONCLUSION

In this chapter, we introduced two techniques to render caustics effect for
translucent or metallic objects and water surface. Adaptive Anisotropic
Photon Scattering can produce high-quality caustics effects with a reasonable
number of rays each frame, which insures the high performance required by
many games. As a bonus effect, this technique can also be used to produce
shadows cast by translucent objects, such as colored glass windows. Ray
Guided Water Caustics is a highly specialized technique to simulate
one-bounce water caustics, being very efficient and versatile to handle all
sorts of water bodies. Also, it does not need to track light propagation with
photon differentials that require additional hit shader code in all materials,
which makes it easy to integrate into commercial products.

We have integrated both techniques into NVIDIA’s customized Unreal Engine 4
branch. The source code can be obtained at the repository [9].

ACKNOWLEDGMENTS

We thank Nan Lin for providing reference materials and helping edit this
chapter. Thanks to Jiaqi Wang for his numerous work on creating and
polishing test scenes, performance tuning, and rendering quality control.
Thanks to Tao Shi for measuring performance statistics on various hardware
and configurations. We would also thank Evan Hart for his advice on CPU-side
performance optimization.

496

CHAPTER 30. REAL-TIME RAY TRACED CAUSTICS

REFERENCES

[1] Boksansky, J., Wimmer, M., and Bittner, J. Ray traced shadows: Maintaining real-time
frame rates. In E. Haines and T. Akenine-Möller, editors, Ray Tracing Gems,
pages 159–182. Apress, 2019.

[2] Elek, O., Bauszat, P., Ritschel, T., Magnor, M., and Seidel, H.-P. Spectral ray differentials.
33(4):113–122, 2014. DOI: 10.1111/cgf.12418.

[3] Estevez, A. C. and Kulla, C. Practical caustics rendering with adaptive photon guiding. In
Special Interest Group on Computer Graphics and Interactive Techniques Conference Talks,
pages 1–2, 2020.

[4] Gruen, H. Ray-guided volumetric water caustics in single scattering media with DXR. In
E. Haines and T. Akenine-Möller, editors, Ray Tracing Gems, pages 183–201. Apress, 2019.

[5] Igehy, H. Tracing ray differentials. In Proceedings of the 26th Annual Conference on
Computer Graphics and Interactive Techniques, pages 179–186, 1999. DOI:
10.1145/311535.311555.

[6] Jensen, H. W. Realistic Image Synthesis Using Photon Mapping. A K Peters, 2001.

[7] Kim, H. Caustics using screen-space photon mapping. In E. Haines and
T. Akenine-Möller, editors, Ray Tracing Gems, pages 543–555. Apress, 2019.

[8] Mara, M., Luebke, D., and McGuire, M. Toward practical real-time photon mapping:
Efficient GPU density estimation. In Proceedings of the ACM SIGGRAPH Symposium on
Interactive 3D Graphics and Games, pages 71–78, 2013. DOI: 10.1145/2448196.2448207.

[9] NVIDIA. NVIDIA RTX experimental branch of Unreal Engine 4.
https://github.com/NVRTX/UnrealEngine/tree/NvRTX_Caustics-4.26, 2020. (Registration
required to access link. See https://developer.nvidia.com/unrealengine).

[10] Schjoth, L., Frisvad, J. R., Erleben, K., and Sporring, J. Photon differentials. In
Proceedings of the 5th International Conference on Computer Graphics and Interactive
Techniques in Australia and Southeast Asia, pages 179–186, 2007. DOI:
10.1145/1321261.1321293.

[11] Wyman, C. and Nichols, G. Adaptive caustic maps using deferred shading. Computer
Graphics Forum, 28(2):309–318, 2009. DOI: 10.1111/j.1467-8659.2009.01370.x.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License
(http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits any

noncommercial use, sharing, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license
and indicate if you modified the licensed material. You do not have permission under this license to share
adapted material derived from this chapter or parts of it.
The images or other third party material in this chapter are included in the chapter’s Creative Commons

license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s
Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder.

497

https://doi.org/10.1111/cgf.12418
https://doi.org/10.1145/311535.311555
https://doi.org/10.1145/2448196.2448207
https://github.com/NVRTX/UnrealEngine/tree/NvRTX_Caustics-4.26
https://developer.nvidia.com/unrealengine
https://doi.org/10.1145/1321261.1321293
https://doi.org/10.1111/j.1467-8659.2009.01370.x

