

Tessellation Performance

Jon Story, AMD
Cem Cebenoyan, NVIDIA

Legend

 AMD specific

 NVIDIA specific

Why Tessellate?

 Enables substantial geometric
fidelity
 GPU side expansion very efficient

 Scale performance and quality
 Programmatic LOD control

 Compute at lower, adaptively
chosen, frequency

Geometric Realism With
Tessellation

Generating Geometry On-
Chip
 Coarse data read through IA

 Compact representation

 Hull shader controls
expansion

 Domain shader
evaluates surface

Hull Shader

Tessellator

Domain Shader

Vertex Shader

Geometry Shader

Pixel Shader

Geometry Data Flow

 Read coarse model data in VS
 Take advantage of this!

Optimize models for post-transform cache
Do transformations and animation
 Prepare all other per vertex attributes

VS Output DS Output

Is Tessellation Free?

 No!
 If adding more geometry was free,

we would have been doing this
along time ago...

 Tessellation should be used where
it will benefit image quality the
most

 So tessellate wisely...

How Many Triangles?
Tess Factor Triangles

1 1

3 13

5 37

7 73

9 121

11 181

13 253

15 337

... ...

64 ~6000

Tessellation Factor ~ 1

 Mesh would look identical if
rendered non-tessellated

 Using 3 additional pipeline stages
needlessly
 Total waste of GPU resources

 Use mesh bounding volume to
calculate the average tessellation
factor on the CPU
 If ~1 render non-tessellated

Use Occlusion & Culling

 Don‘t render occluded meshes!
 Even more important for tessellated

meshes
 Consider using occlusion queries or

predicated rendering
 Use the HS to cull patches outside

the view frustum
 Set tessellation factor to 0
 ~30% speed up in one application

Use Adaptive Tessellation
Techniques Aggressively
 Consider using a combination of

these techniques in your HS:
 Distance Adaptive
 Orientation Adaptive
 Density Adaptive
 Screen Space Adaptive

 Select the combination that yields
the biggest win in your app

 Over-tessellation will impact both
frontend and backend performance

Distance Adaptive
Tessellation
 Use the HS to determine the edge

tessellation factors based on
distance from view point

 If using a CPU check on the
bounding volume to switch
tessellation off:
 HS should use the same falloff values

to avoid tessellation popping

Distance Adaptive Tessellation: OFFDistance Adaptive Tessellation: ON

Orientation Adaptive
Tessellation
 Compute dot product of average

edge normal with view vector
 Back facing patches either:

 Use lower tessellation factors
 Get culled altogether

 Silhouette patches use higher
factors
 EdgeScale = 1.0f – abs(dot(N, V));

 Perfect for PN-Triangles
 ~3x gain at tessellation factor 9

Presenter
Presentation Notes
edge_normal = (point1_normal + point2_normal) / 2;

Orientation Adaptive Tessellation: OFFOrientation Adaptive Tessellation: ON

Density Adaptive
Tessellation
 Pre-compute tessellation factors

from displacement maps
 Calculate gradients from height

values
 Create a buffer of patch edge

tessellation factors
 Sample buffer in your HS to

determine tessellation factor

Density Adaptive Tessellation: OFFDensity Adaptive Tessellation: ON

Screen Space Adaptive
Tessellation
 Triangles under 8 pixels are not

efficient
 Consider limiting the global

maximum TessFactor by screen
resolution

 Consider the screen space patch
edge length as a scaling factor
 Watch out for patches at a skew angle

to the camera
 May need to tweak how this works

Draw Tessellated Meshes
Together

Bad 
Draw
Draw_Tessellated
Draw
Draw_Tessellated
...

Good 
Draw
Draw
Draw_Tessellated
Draw_Tessellated
...

 Toggling tessellation is a large
state change

 Minimize these transitions

Consider Using Stream
Out
 If you render tessellated meshes

multiple times consider streaming
out the tessellated mesh
 Shadow map slices
 Lighting passes

 Then render multiple times
through the non-tessellated
pipeline
 Make sure you measure, this may not

help performance!

General Rules

 Compute complex things as early
in the pipeline as possible
 VS possible?
 HS possible?
 DS possible?
 If not, then PS

 Try to minimize number of
attributes coming to PS stage

Hull Shader Tips : 1

 A long HS can affect performance
at low tessellation factors
 Keep simple
 Move work to the VS if possible

 Minimize vertex data passed from
the VS

 Minimize data passed to the DS
 Specify maxtessfactor() with HS

 May help the driver to optimize the
workload

Hull Shader Tips : 2

 Use a PASS-THROUGH Control
Point Phase
 Only requires 1 HW thread

Shading in the Domain
Shader
 Can hoist lower-frequency

computation from PS to DS
 E.g. ambient/volumetric lighting
 Test to see if this is a performance

win – it may well not be!
 This often works best with uniform

sampling of surface
 Tessellation with uniform screen

space triangle sizes
 Aim for rasterizer “sweet spot”

Shading in the Domain
Shader
 Example: underwater caustics

Presenter
Presentation Notes
Screenshots from the Island demo.

Caustics are calculated directly in the DS for each output vertex. Smooth linear interpolation produces a natural look with a smooth fallback. Top image uses a coarser tessellated mesh, thus the look is more blurred, but works faster.

Faster on both AMD and NVIDIA DX11 hardware.

Shading in the Domain
Shader
 Example: Fourier Opacity Maps

Presenter
Presentation Notes
FOM was presented at I3D 2010: http://www.sci.utah.edu/~bavoil/research/shadows/FourierOpacityMapping_I3D2010.pdf

Volumetric shadow technique that approximates using Fourier series. Pretty expensive (especially with multiple lights).

Well suited to DS shading because of the low frequency of volumetric soft shadows – computing every N pixels in DS and interpolating linearly works great. Not all work is moved to DS, just the FOM shadow math is moved there, billboard texture lookups and lighting still done in PS. DS shading gives you the flexibility to move work from unit to unit depending on the bottleneck. Tessellation gives us the opportunity to dynamically vary the shading rate (by outputting more “sample points” aka triangles from the tessellator).

DS shading in this sample is faster than PS shading on both AMD and NV hardware.

Domain Shader Tips

 A long DS can dominate
performance at high tessellation
factors
 Keep simple

 Calculate mip level for sampling
displacement maps
 Avoid thrashing the texture cache

 Minimize data passed to GS / PS

Summary

 Tessellation can be a big quality
and performance win

 Use occlusion & culling
 Disable tessellation if not needed
 Aggressively use adaptive

tessellation techniques
 Keep HS and DS stages as simple

as possible
 Use this killer DX11 feature to

make games look awesome...

Questions?

 jon.story@amd.com
 cem@nvidia.com

mailto:jon.story@amd.com�
mailto:jon.story@amd.com�
mailto:cem@nvidia.com�

	Slide Number 1
	Tessellation Performance
	Legend
	Why Tessellate?
	Geometric Realism With Tessellation
	Generating Geometry On-Chip
	Geometry Data Flow
	Is Tessellation Free?
	How Many Triangles?
	Tessellation Factor ~ 1
	Use Occlusion & Culling
	Use Adaptive Tessellation Techniques Aggressively
	Distance Adaptive Tessellation
	Slide Number 14
	Orientation Adaptive Tessellation
	Slide Number 16
	Density Adaptive Tessellation
	Slide Number 18
	Screen Space Adaptive Tessellation
	Draw Tessellated Meshes Together
	Consider Using Stream Out
	General Rules
	 Hull Shader Tips : 1
	Hull Shader Tips : 2
	Shading in the Domain Shader
	Shading in the Domain Shader
	Shading in the Domain Shader
	Domain Shader Tips
	Summary
	Questions?

