

Tessellation Performance

Jon Story, AMD
Cem Cebenoyan, NVIDIA

Legend

 AMD specific

 NVIDIA specific

Why Tessellate?

 Enables substantial geometric
fidelity
 GPU side expansion very efficient

 Scale performance and quality
 Programmatic LOD control

 Compute at lower, adaptively
chosen, frequency

Geometric Realism With
Tessellation

Generating Geometry On-
Chip
 Coarse data read through IA

 Compact representation

 Hull shader controls
expansion

 Domain shader
evaluates surface

Hull Shader

Tessellator

Domain Shader

Vertex Shader

Geometry Shader

Pixel Shader

Geometry Data Flow

 Read coarse model data in VS
 Take advantage of this!

Optimize models for post-transform cache
Do transformations and animation
 Prepare all other per vertex attributes

VS Output DS Output

Is Tessellation Free?

 No!
 If adding more geometry was free,

we would have been doing this
along time ago...

 Tessellation should be used where
it will benefit image quality the
most

 So tessellate wisely...

How Many Triangles?
Tess Factor Triangles

1 1

3 13

5 37

7 73

9 121

11 181

13 253

15 337

... ...

64 ~6000

Tessellation Factor ~ 1

 Mesh would look identical if
rendered non-tessellated

 Using 3 additional pipeline stages
needlessly
 Total waste of GPU resources

 Use mesh bounding volume to
calculate the average tessellation
factor on the CPU
 If ~1 render non-tessellated

Use Occlusion & Culling

 Don‘t render occluded meshes!
 Even more important for tessellated

meshes
 Consider using occlusion queries or

predicated rendering
 Use the HS to cull patches outside

the view frustum
 Set tessellation factor to 0
 ~30% speed up in one application

Use Adaptive Tessellation
Techniques Aggressively
 Consider using a combination of

these techniques in your HS:
 Distance Adaptive
 Orientation Adaptive
 Density Adaptive
 Screen Space Adaptive

 Select the combination that yields
the biggest win in your app

 Over-tessellation will impact both
frontend and backend performance

Distance Adaptive
Tessellation
 Use the HS to determine the edge

tessellation factors based on
distance from view point

 If using a CPU check on the
bounding volume to switch
tessellation off:
 HS should use the same falloff values

to avoid tessellation popping

Distance Adaptive Tessellation: OFFDistance Adaptive Tessellation: ON

Orientation Adaptive
Tessellation
 Compute dot product of average

edge normal with view vector
 Back facing patches either:

 Use lower tessellation factors
 Get culled altogether

 Silhouette patches use higher
factors
 EdgeScale = 1.0f – abs(dot(N, V));

 Perfect for PN-Triangles
 ~3x gain at tessellation factor 9

Presenter
Presentation Notes
edge_normal = (point1_normal + point2_normal) / 2;

Orientation Adaptive Tessellation: OFFOrientation Adaptive Tessellation: ON

Density Adaptive
Tessellation
 Pre-compute tessellation factors

from displacement maps
 Calculate gradients from height

values
 Create a buffer of patch edge

tessellation factors
 Sample buffer in your HS to

determine tessellation factor

Density Adaptive Tessellation: OFFDensity Adaptive Tessellation: ON

Screen Space Adaptive
Tessellation
 Triangles under 8 pixels are not

efficient
 Consider limiting the global

maximum TessFactor by screen
resolution

 Consider the screen space patch
edge length as a scaling factor
 Watch out for patches at a skew angle

to the camera
 May need to tweak how this works

Draw Tessellated Meshes
Together

Bad
Draw
Draw_Tessellated
Draw
Draw_Tessellated
...

Good
Draw
Draw
Draw_Tessellated
Draw_Tessellated
...

 Toggling tessellation is a large
state change

 Minimize these transitions

Consider Using Stream
Out
 If you render tessellated meshes

multiple times consider streaming
out the tessellated mesh
 Shadow map slices
 Lighting passes

 Then render multiple times
through the non-tessellated
pipeline
 Make sure you measure, this may not

help performance!

General Rules

 Compute complex things as early
in the pipeline as possible
 VS possible?
 HS possible?
 DS possible?
 If not, then PS

 Try to minimize number of
attributes coming to PS stage

Hull Shader Tips : 1

 A long HS can affect performance
at low tessellation factors
 Keep simple
 Move work to the VS if possible

 Minimize vertex data passed from
the VS

 Minimize data passed to the DS
 Specify maxtessfactor() with HS

 May help the driver to optimize the
workload

Hull Shader Tips : 2

 Use a PASS-THROUGH Control
Point Phase
 Only requires 1 HW thread

Shading in the Domain
Shader
 Can hoist lower-frequency

computation from PS to DS
 E.g. ambient/volumetric lighting
 Test to see if this is a performance

win – it may well not be!
 This often works best with uniform

sampling of surface
 Tessellation with uniform screen

space triangle sizes
 Aim for rasterizer “sweet spot”

Shading in the Domain
Shader
 Example: underwater caustics

Presenter
Presentation Notes
Screenshots from the Island demo.Caustics are calculated directly in the DS for each output vertex. Smooth linear interpolation produces a natural look with a smooth fallback. Top image uses a coarser tessellated mesh, thus the look is more blurred, but works faster.Faster on both AMD and NVIDIA DX11 hardware.

Shading in the Domain
Shader
 Example: Fourier Opacity Maps

Presenter
Presentation Notes
FOM was presented at I3D 2010: http://www.sci.utah.edu/~bavoil/research/shadows/FourierOpacityMapping_I3D2010.pdfVolumetric shadow technique that approximates using Fourier series. Pretty expensive (especially with multiple lights).Well suited to DS shading because of the low frequency of volumetric soft shadows – computing every N pixels in DS and interpolating linearly works great. Not all work is moved to DS, just the FOM shadow math is moved there, billboard texture lookups and lighting still done in PS. DS shading gives you the flexibility to move work from unit to unit depending on the bottleneck. Tessellation gives us the opportunity to dynamically vary the shading rate (by outputting more “sample points” aka triangles from the tessellator).DS shading in this sample is faster than PS shading on both AMD and NV hardware.

Domain Shader Tips

 A long DS can dominate
performance at high tessellation
factors
 Keep simple

 Calculate mip level for sampling
displacement maps
 Avoid thrashing the texture cache

 Minimize data passed to GS / PS

Summary

 Tessellation can be a big quality
and performance win

 Use occlusion & culling
 Disable tessellation if not needed
 Aggressively use adaptive

tessellation techniques
 Keep HS and DS stages as simple

as possible
 Use this killer DX11 feature to

make games look awesome...

Questions?

 jon.story@amd.com
 cem@nvidia.com

mailto:jon.story@amd.com�
mailto:jon.story@amd.com�
mailto:cem@nvidia.com�

	Slide Number 1
	Tessellation Performance
	Legend
	Why Tessellate?
	Geometric Realism With Tessellation
	Generating Geometry On-Chip
	Geometry Data Flow
	Is Tessellation Free?
	How Many Triangles?
	Tessellation Factor ~ 1
	Use Occlusion & Culling
	Use Adaptive Tessellation Techniques Aggressively
	Distance Adaptive Tessellation
	Slide Number 14
	Orientation Adaptive Tessellation
	Slide Number 16
	Density Adaptive Tessellation
	Slide Number 18
	Screen Space Adaptive Tessellation
	Draw Tessellated Meshes Together
	Consider Using Stream Out
	General Rules
	 Hull Shader Tips : 1
	Hull Shader Tips : 2
	Shading in the Domain Shader
	Shading in the Domain Shader
	Shading in the Domain Shader
	Domain Shader Tips
	Summary
	Questions?

