

Taking Fluid Simulation
Out of the Box: Particle

Effects in Dark Void

Joe Cruz – Airtight Games
Sarah Tariq - NVIDIA

Presenter
Presentation Notes
Today we are going to be talking about fluid simulation and how we used it to create some interesting particle effects in the game Dark Void

Overview

 Motivation

 Demos

 Simulation

 Case Studies

Presenter
Presentation Notes
Our talk today is on the theory and application of turbulence simulation in commercial videogames, and will focus on how nVidia’s implementation of 3d fluid simulation has benefited the visual effects seen in Capcom’s 3rd person action game, Dark Void.
So we will begin talking about the motivation behind using turbulence simulation, followed by some demos of Dark Void.
Sarah will talk about the theory and implementation of simulating turbulence.
We will then talk about how we rendered the simulation in-game and how it was integrated into the Unreal render pipeline.
Finally we will talk about how the effects themselves were contructed to work in engine, and what issues we faced.

MOTIVATION

Motivation

 We had a number of important effects
which would benefit from using fluid
simulation
 Smoke emitting from the jet pack of the

character
 Weapon effects

 Fluid simulation helped us improve the
look of these effects and made the game
more immersive and interactive

Presenter
Presentation Notes
Dark Void is a 3rd person action shooter for PC, Xbox 360 and PS3, which features, as core gameplay, the ability to fly in a jetpack. Much visual effects resources were focused on giving an immersive flight experience. (slide)
The PC version is qualitatively the best version of the game and because a PC can utilize nVidia’s latest GPU’s, it serves as an ideal platform for further refining the jetpack visual effects.
(slide)
Effects such as turbulent atmospheric disturbances really help communicate a sense of speed and danger.
The game becomes much more engaging and exciting, without the need to tweak gameplay!
So there is more than just an aesthetic value in applying realistic turbulence effects in this kind of action/flight game.
The question is- are we at a point that adding realistic turbulence simulations in videogames is a feasible prospect?

Fluid Simulation in
Games
 Jos Stam presented stable fluids in 99 and fluid

simulation for games at GDC 2003

 But it has taken a while for 3D fluid simulation to
take hold in the game industry
 Started seeing real fluid simulation in games only

in the past few years

 Why?

 Fluid simulation is expensive and does not look
good at a very small resolution or in a very small
region

 Fluid simulation is viewed as hard to direct and
control

Presenter
Presentation Notes
I think most of us would agree in saying that fluid simulation is capable of creating some very cool effects like explosions, flames and tidal waves - effects which otherwise would take a lot of pain staking work to mimic.
we often see fluid simulation based effects in movies, and we try to fake them in games using particles sprites and animated sprites, but we don’t see a lot of fluid simulation in games.

Why is this? It is not for lack of research - there has been work going into fluid simulation in computer graphics for more than a decade. Foster and Metaxas published one of the first papers on fluid simulation in 95, Stam presented his seminal work on stable fluids in 99, and he presented a fast easy implementation of the same work at GDC a couple of years later.

Yet games have been very tentative at adopting fluid simulation – we have only recently started seeing some fluid simulation in video games. Some notable games are Batman Arkham Asylum from last year which used fluid simulation to create smoke, Cryostasis from 2008 that used simulation to create water, and Hellgate London that used fluid simulation for smoke.

There are a number of reasons why fluid simulation is not more widely adopted.
The most important might be that fluid simulation is expensive, and if you scale down the resolution of the simulation too much, it might not look good enough to bother with. In addition, fluid simulation, similar to other simulations, is viewed as not being very controllable or art directable.

In this talk we will address these and other issues with fluid simulation and propose solutions.

Fluid Driven Effects In
Dark Void

Presenter
Presentation Notes
And here is a preview of the effects that we used fluid simulation to create in Dark Void. This first effect is a particle death effect – when an enemy is killed by a shot from the Disintegration Gun he bursts into bright emissive particles that are propelled by an underlying fluid simulation

Fluid Driven Effects In
Dark Void

Presenter
Presentation Notes
The other set of effects that we implemented are for the emissions from the Jet pack and Hover pack of the protagonist, Will. These effects include exhaust and heat simulated using fluid simulation. We will see later in this talk exactly how these effects were created, and what challenges we faced.

DEMOS

BASICS OF FLUID
SIMULATION

Describing a fluid

 A fluid with constant density and
temperature is described by
 u : its velocity field
 p : its pressure field

 The task of a fluid solver is to
compute u

Presenter
Presentation Notes

So, how do we specify this fluid that we are going to be simulating? If we assume that its density and temperature are nearly constant, then we can describe it by its velocity field u and pressure field p. These fields vary both in space and time.

The basic task of a fluid solver is to compute a numerical approximation of the velocity field, u. We can then use it to animate visual phenomena such as smoke particles or a liquid surface.

Navier Stokes Equations

 Compact form

()()fuuP
t
u

+∇•−=
∂
∂

Presenter
Presentation Notes
In order to determine the value of velocity and pressure over time we use the Navier Stokes equations.

These equations impose that that fluid conserves both momentum and mass.

Here is a compact form of the equations. This equation is specifying the evolution of the velocity field u, over time, t.

The first term is the advection term, which states that the velocity field pushes itself forward. The second term states that the velocity is affected by external forces f, like gravity.

Finally, the projection operator P projects the field onto its divergence free part. This ensures that the fluid satisfies important properties, like the amount of fluid flowing into a region is the same as the amount of fluid flowing out of a section. In order to do this we need to calculate and use the pressure field.

Solving the equations

 Trying to solve

 this is a PDE of the form

 To use this equation we have to
discretize the space, and then we can
use for example Forward Euler*

()txf
t
x ,=
∂
∂

()dttxfxx nnnn ,1 +=+

()()fuuP
t
u

+∇•−=
∂
∂

Presenter
Presentation Notes
Now that we have our equation how do we use it?

The equation that we are trying to solve is similar to this partial differential equation. This PDE basically states that the rate at which some quantity x is changing over time is given by some function f, which may itself depend on x and t.

To use this equation we will discretize our space (x) and time (t). After that there are many approaches to solving the equations at each position and time step.

The simplest is forward Euler Integration. To calculate the value of x at a given time step we add to the current value of x the current rate of change of x multiplied by the size of the timestep.

Note however that we do not actually use Forward Euler since it is not a good choice numerically – we discuss it here as a simple way to think about the equations.

Discretizing the space

 Grid Based (Eulerian)

 Particle based (Lagrangian)

Presenter
Presentation Notes
To use these equations we can either discretize the space into a grid – this is called Eulerian Simulation. Or we can discretize these equations onto a set of particles, using what is called Lagrangian simulation.

In Eulerian discretization we divide up the space into a bunch of cells and at each time step we calculate the value of velocity at the center or edges of these cells.

In Lagrangian discretization we represent the fluid by a number of particles that move along carrying with them the local velocity of the fluid.

Eulerian vs. Lagrangian

 In Dark Void we explored using both
SPH and Eulerian Simulation for different
effects
 Both approaches have their own advantages

 Particle based methods are not effective
for simulating large regions of
homogeneous fluids
 Need an enormous amount of particles

 For the use cases that we had Eulerian
Simulation was a better fit

• Dense smoke
• A lot of turbulent fine scaled motion was

needed

Presenter
Presentation Notes
We considered both Eulerian and Lagrangian approaches for Dark Void, and both have their own advantages, but we ended up using Eulerian simulation.

This is because of characteristics of the effects that we wanted to create – we wanted dense smoke in a large region with fine scale turbulent motion, and for these types of effects Eulerian simulation is more efficient.

()()fuuP
t
u

+∇•−=
∂
∂

Initialize Each time step

Advect
Add

forces Project

Velocity Velocity Velocity

Pressure

Simple Eulerian Fluid Solver

Velocity

Pressure

Presenter
Presentation Notes
So this is how our fluid simulation is going to work – it will follow the equation that we encountered earlier.

We start off by creating a grid of the desired resolution. We define the pressure at the center of each cell and the velocity at the faces of the cells. This type of partitioning is called a staggered grid, and it has good numerical properties. We then initialize these fields.

Then at each time step of simulation, we update the values of these fields by using the navier stokes equations. For each time step we advect or move the velocity forward. Then we add new velocity to the system. Finally we apply the projection operator, which makes the fluid field divergence free.

DEALING WITH EULERIAN
SIMULATION

Or how to live with the consequences of our choices

Eulerian Simulation Drawback:
stuck in a box

 Traditional issue
associated with
Eulerian fluid
simulation is that
simulation is
confined to a finite
rectilinear domain

 Thus it is hard to
use in large
environments with
unconstrained
motion

NVIDIA Fluid in a Box demo
- 2006

Note that the fluid
simulation is

stuck inside a stationary box

Presenter
Presentation Notes
Now that we have decided to use Eulerian simulation we have to deal with its drawbacks.

The main issue associated with Eulerian methods is that they are typically confined to a finite rectilinear domain, and therefore are hard to use in large environments with unconstrained fluid motion.

Scene

Typical Eulerian Simulation

Discretize
the space

and simulate

Composite rendered
smoke on top of scene

Render the
smoke by
raycasting
the volume

and
accumulating

simulated
density

Decide where to
place the smoke

Presenter
Presentation Notes
This is an overview of how Eulerian simulation might typically be used – we start by deciding where in the scene we would like to place our fluid. Then we discretize this space into a grid and simulate the fluid on this grid. In addition to velocity and pressure we also simulate a medium, for example smoke. This medium is then rendered in the rendering step using raycasting.
There are two crucial reasons why this approach is limited.
The first is that the simulation is stuck in a box which cannot move. Thus we either have to discretize a very large area, which would be expensive, or we have to limit our simulation to effects which do not move, for example smoke emitting from a hole in the ground.
The second is that we are visualizing the effect by rendering density which is also defined on the grid – hence the rendered smoke cannot escape the bounds of the simulation box.

Moving Simulation out of
the Box
 In order to allow our

effects to move
anywhere in the world
we use a combination
of

1. A moving fluid grid

2. Fluid advected particles
which are free to flow in
and out of the Eulerian
grid boundaries

NVIDIA APEX Turbulence
demo - 2009

Presenter
Presentation Notes

In order to get around this restriction of Eulerian simulation we use two key ideas:
 The first is that we use a simulation grid that can seamlessly move in the world
 and the second is that we use particles for visualizing the fluid flow. These particles are pushed by the fluid simulation when they are inside the simulation’s bounds, but they are also free to move outside of the simulation bounds. In this way we hide the edges of the simulation domain.

Moving the Simulation

 Our fluid grids can
move to track an
area of interest

 The simulation grid
moves at the same
speed as the object
of interest

 Our assumption is
that the interesting
fluid dynamics are
only happening in a
bounded area

Presenter
Presentation Notes
In Dark Void we attached our simulation grids to objects of interest, for example the jetpack. As the object moves the simulation grid moves with it, matching its speed. Thus the object remains stationary at the center of the grid.

In using this model we are assuming that all the interesting fluid dynamics are occurring in a relatively small region, for example the region of air surrounding the player and his jetpack. Thus we only do fluid simulation in this area and use simpler simulation methods outside.

Using Particles

 When particles are
inside the simulation
grid they are pushed
by the fluid

 When they are
outside they follow
other forces.

Particles advected by
fluid simulation

Particles moving
under inertia and

other simpler physics

Blend region

Presenter
Presentation Notes
The other thing we do to avoid being stuck in a box is that we use the fluid simulation to move particles. The advantage of using particles is that they can easily move outside the simulation boundaries.

if they fall inside the simulation’s influence they use the fluid’s velocity, and otherwise they use other forces and newtonian dynamics. By smoothly blending between these different rules, the fluid simulation grid’s extents are hidden, which removes visible artifacts arising from a finite simulation domain.

Moving the reference
frame

 Galilean Invariance

=

Simulating all the water
in a pool might be too

costly

But the fluid dynamics
are the same if instead
we force an opposite
flow past the body

* Images from Wikipedia under Creative
Commons Attribution ShareAlike 3.0 license

Presenter
Presentation Notes

I just mentioned that we are moving our fluid simulation grid to follow an object of interest. However, we need to do more than just “move” the simulation grid in the world – we also need to approximate the disturbance of air that would have occurred as our object moved through the world.

In order to do this we are exploiting a property known as Galilean Invariance.

The idea is similar to an infinity pool – instead of simulating all the water in the pool in order to get the dynamics of water near a swimmer we can instead confine him to a really small area, and force an opposite flow past him.

Galilean Invariance

 Translating an object with
velocity t

 Is the same as forcing a
flow past the object with
velocity –t

 In a coordinate frame
translating with velocity t

 Same as specifying the
flux across the boundaries

(a)

(b)

(c)

Presenter
Presentation Notes
Galilean Invariance states that translating an object with velocity t (the top figure) is equivalent to forcing a flow past the object with velocity –t in a coordinate frame translating with velocity t (middle figure).

With full slip boundary conditions, this is equivalent to specifying the flux across the domain boundaries (the figure at the bottom).

So essentially to simulate the air around a moving object we just need to move our simulation with the same velocity and set the negative of this velocity as boundary conditions on the simulation grid.

SIMULATION IN DARK
VOID

Fluid Simulation Pseudo
Code
u = SelfAdvection(u) (using MacCormack Scheme)

For i=1 to num_iop_iterations do

Apply impulses to u
Enforce solid boundary conditions on u

Clear pressure
Solve (using multigrid method)

end for

up •∇=∇2

puu ∇−=

Presenter
Presentation Notes
This is what the fluid simulation code looks like. We start by advecting the fluid field. Then we do one or more iterations of IOP which I will talk more about shortly. In each IOP iteration we enforce boundary conditions, apply impulses and then apply the Projection operator.

Step 1
Self Advection
 Advect the velocity forward based

on the velocity field of the fluid

() ()()xutxuxu ttt 11 −− ∗∆−=

Semi Lagrangian
advection

Presenter
Presentation Notes

The first step is self advection – the fluid pushes itself forward along its velocity field.
In code what this amounts to is that each cell uses its current velocity and position to determine where it would have been at the last timestep, calculates an interpolated velocity value at that position and then sets this intpolated value as its new velocity.
This method of advection is called Semi-lagrangian advection, and it is unconditionally stable, which means that no matter how large a timestep we choose, the simulation will not blow up.

MacCormack Advection

 Basic semi-lagrangian
advection is
unconditionally stable,
but it introduces
unwanted numerical
smoothing

 Use MacCormack scheme
 Preserves detail
 Stable for any time step
 Trivially parallelizable and

efficient on the GPU

Basic Semi-lagrange advection

MacCormack advection

Presenter
Presentation Notes
The semi-Lagrangian advection scheme is useful for games because it is unconditionally stable. However, it can introduce unwanted numerical smoothing, making water look viscous or causing smoke to lose detail. To get higher-order accuracy and better looking results, we use a modified MacCormack advection scheme which performs two intermediate semi-Lagrangian advection steps.
(See the appendix for more details of our implementation)

Step 2
Enforce solid boundary conditions and apply impulses

 Treat internal boundary conditions using
Iterated Orthogonal Projection
framework
 Lets us deal with internal solid objects
 Also allows us to apply arbitrary impulses to

the velocity prior to the projection step
 We use these impulses for the jets

 Satisfying boundary conditions
 Set the simulation cells that fall inside an

obstacle to the relative velocity of that
obstacle

Presenter
Presentation Notes
In the next step we apply forces to the velocity field and at this point we also deal with internal boundary conditions. We deal with both of these inside the Iterated Orthogonal Projection framework.

Using IOP we basically iterate over our constraints (for example boundary constraints and divergence constraint), solving them independently a few times until we are happy that they have been roughly satisfied.

IOP is an attractive method for handling boundary conditions because it allows for arbitrary impulses to be applied to u prior to the projection step, for example we can apply forces emitting from the rocketpack. It does not matter if these impulses are incompatible with the condition of having a divergence free velocity field, since we apply the divergence free projection after applying the impulses in each iteration.

In our examples, we have found a single IOP iteration is enough – additional iterations do not noticeably improve visual quality.

Step 3
Make the velocity field divergence free

 Enforced flux at boundaries should
propagate instantaneously via pressure
 Incompressible fluid = infinite speed of sound

 Therefore:
 Pressure solver must fully converge
 We cannot use Preconditioned Conjugate

Gradient, since it does not converge fast
enough

 We use Multigrid for this step

Presenter
Presentation Notes
The final step is to make the velocity field divergence free, which means that we have to solve for pressure.

Because we are enforcing flux at boundaries we need the pressure solver to fully converge. Although we could use conjugate gradient for solving for pressure it converges slowly. We could also use Fast Fourier Transform but it requires periodic boundaries, which are not appropriate for our case.

Thus, we are using multigrid which we believe to be a superior method for interactive GPU implementation because it converges extremely quickly, with a convergence rate independent of grid size. Furthermore, the individual steps of multigrid are all inherently data parallel, resulting in an efficient mapping onto a GPU.

Our multigrid solver uses an over-relaxation scheme and always performs a fixed number of multigrid cycles without checking for convergence. This enforces a constant simulation time and still converges very well over a range of resolutions.

over-relaxation scheme : [Yavneh 1996]

Particle Simulation

 Emitters in the scene add to one large
particle buffer
 Each emitter is allocated a separate region of

this buffer
 Emitters recycle dead particles

 For all the particles in this buffer we
 Add forces based on the fluid grids
 Add external forces for particles not falling in

any grid
 Update the particles, including moving them

forward based on their velocity, increment
their age, etc

Presenter
Presentation Notes
The second part of our system is a very simple particle system.
We maintain one large buffer for all the particles – each emitter is assigned a chunk of this buffer. This buffer is maintained in a compact state – all the particles assigned at a given time step are compacted at the front of the buffer (this way we only perform operations on the part of the buffer that is being used currently)

Emitters use lazy inplace updates to create new particles: at each time step an emitter can choose to randomly revive dead particles and assign them new positions and attributes. The decision of whether to revive a particle is made independently for each particle, and is based on the emitter birth rate and a random number generated for each particle. If the particle’s random number is less than the emitter birthrate then the particle is revived. The benefit of this system is that we can run a separate thread per particle without needing to do costly operations like sort, insertion or deletion.

Once all the emitters have updated particles for a given timestep we can then run a single kernel over all the particles to update their attributes. This includes updating their positions and velocities, incrementing their ages, etc.
We also optionally sort the particle buffer if we need to render the particles with alpha blending.

Creating Turbulence
 As the object of interest

moves it displaces air and
leaves a turbulent wake
behind it

 The object is represented as
a collision obstacle in the
simulation grid

 We also provide jets which
can inject forces into the
simulation

 By randomly varying the
force direction and strength
over time we can increase
the turbulence in the
system

The fluid simulation grid.
The yellow object is the collision
obstacle.
The red objects are the jets.
The green lines depict the flow.

Presenter
Presentation Notes
Turbulence or interesting fluid motion is created inside the simulation grid by the interaction of the fluid with collision obstacles (the internal boundary conditions that we talked about). To increase the turbulence in the simulation we also provide optional surface roughness for the collision obstacles.
In addition, we also have Jets, represented as user defined implicts, which can add impulses to the velocity field. The direction and strength of these impulses can be smoothly randomized over time.

Multiple Simulation Grids

 Fluid grids are
simulated
independently

 However, particles
falling in overlapping
regions of simulation
grids aggregate
forces from all of
them

Three overlapping fluid
simulation grids with their
approximate boundaries.
Particles in overlapping

region get affected by all
the relevant grids

Presenter
Presentation Notes
In order to make our fluid simulation simpler and limit the computational expense of having multiple simulation grids we do not have overlapping fluid simulations affect each other directly. However, particles can experience forces from multiple fluid simulation grids, and in this way we get the illusion of mutiple grids interacting at a fraction of the cost.

In the image on the right we have three simulation grids centered on three dying robots. Particles that are in the region of intersection of more than one grid will have all the overlapping grids affecting their movement.

PERFORMANCE

Cost

 Problem: fluid simulation is too
costly

 Solution:
 Implement it on the GPU, which gives

more than a 10x increase in
performance
We used CUDA for all our simulation,

flexible and easy to use

 Have a robust LOD and scalability
system – more on this later

Presenter
Presentation Notes
As we mentioned earlier, one of the main issue with using fluid simulation for interactive applications like games is that it is too costly.

In order to fit a reasonable simulation into our budget we use the GPU. Recent advances in the performance and programmability of GPUs has allowed developers to more easily implement complex effects like fluid simulation, and get more than a 10x speedup over using the CPU.

In our implementation we are using CUDA which is very powerful and flexible, however you can just as easily use Dx11 Compute or OpenCL. You can also use older GPGPU techniques like render to texture.

The other thing that is very important to control cost is having an effective LOD scheme that you can use to scale down cost on less powerful systems, or in particularly heavy scenes.

Performance numbers

Grid Size Effect Average Time
32x32x32 Disintegration

gun
5 ms

48x48x48 Jetpack 13 ms

Computational time for entire simulation (fluid
and particles).
Simulation is running on a GTX 285

Performance Bottlenecks

 Resolution of Simulation Grids
 Lower resolution grids are faster in absolute

terms
 But lower resolution grids are also more

inefficient – slower when measured in
normalized cost per grid cell

 Number of separate grids
 Cost of simulation increases sub-linearly with

number of grids
 particle advection cost also increases as grids

overlap

 Number of active particles in the world
 Each particle needs to sample velocity, move

itself forward etc

Presenter
Presentation Notes
The cost of simulation is influenced by three factors: the resolution of the simulation grids, the number of separate simulation grids and the number of active particles in the world.

Increasing the resolution of simulation grids improves the look of the simulation but also adds extra cost. Note however that if the grids are too small they are not able to fill the GPU and thus they are inefficient – if we calculate the normalized cost of simulating a grid cell the cost is highest for small grids, like 16 cubed and falls as the simulation grid size increases.

Increasing the number of separate grids increases the cost almost linearly. We do try to batch together some of the work for multiple simulation grids to bring down the total cost.

Finally, increasing the number of particles increases the cost of simulation since each particle potentially needs to sample velocity and update itself at each time step.

LOD options
 Change the size of simulation grids

 Costly operation – need a hysteresis threshold to
limit changing too often

 Simulation grids can skip an update every n
frames
 For example update the simulation every other

frame to cut simulation time in half
 Continue to sample velocity for particles every

frame

 Control the max particle count for emitters
 Emit fewer particles per frame based on computing

resources available
 Reduce the actual buffer size allocated to the

emitter

Presenter
Presentation Notes
There are a number of options of scaling the cost of the simulation, based on factors such as the simulation’s distance from the camera, the number of active simulations or even the simulation’s importance as defined by an artist.

To reduce the cost of the fluid simulation the most obvious method is to reduce the size of the simulation grid. Note however that switching between simulation grid sizes is a costly operation since we need to downsample or upsample the current velocity field to the new grid, and thus this option should be used sparingly and with a hysteresis threshold.
Another approach that is more amenable to frequent changes in LOD is to skip the simulation update every n frames. For example, to cut the simulation cost in half we can simulate only every other frame.

Finally, to reduce the cost of particle simulation we can choose to reduce the size of the particle sub-buffer assigned to an emitter. This option gives the best performance increase over the long term, but it comes at a one time cost of memory copies needed to re-compact the particle buffer. A cheaper option is just to reduce the size of particles that an emitter can revive.

Scaling the cost of the
simulation

128x32x128 grid
500K particles

19 fps simulation
and rendering

64x16x64 grid
200K particles

25 fps simulation
and rendering

32x16x32 grid
100K particles

45 fps simulation
and rendering

Presenter
Presentation Notes
To give an example of how scaling the simulation size and number of particles here we show three scenes with decreasing level of cost, achieved by reducing both the size of the simulation grid and the number of particles.
Note that as we move to lower cost settings the basic look of the simulation remains similar but we loose the fine scale turbulent details

MAKING THE EFFECTS
Case Studies

Disintegration Gun

Disintegration Gun

Presenter
Presentation Notes
The first effect we will talk about is the Disintegration Gun Death Effect. In this effect, you get to shoot your enemies with this shotgun-like weapon. When the enemy (affectionately know as the Grunt) is destroyed by the weapon fire, it disintegrates into a hail of sparks and vapor. Note that the effect is under the influence of turbulence.

Disintegration Gun

 Disintegration gun is one of the
most powerful and interesting
guns in the game
 Its shots disintegrate anything they

touch

 We wanted to experiment with a
really visually interesting and
memorable effect that was faithful
to the characteristics of the gun

Presenter
Presentation Notes
The weapon has consistently been the crowd favourite- so something this special requires an equally remarkable effect

Disintegration Gun

(a)
The fluid grid with the

implicit collision
obstacle in orange.

(b)
Two jet force emitters
are added create extra

turbulence. The
direction of force is

indicated by the arrows.

(c)
As the dying grunt

moves the simulation
grid (and the collision

implicit and jets) move
with it.

When the grunt rotates
the collision implicit and

jets rotate with it.

(d)
The emitters are placed

and rotated
independently. Here

emitters are placed at
the knees head and
torso of the grunt.

Presenter
Presentation Notes
Here is how the simulation for the disintegration gun works.

We define the fluid simulation by its size in number of grid cells, and also by its size in world space.
We then scale and place a collision implicit in the middle of this grid, to correspond roughly to the object that this grid is following – in this case the collision obstacle is the size of an enemy robot.
We then place any number of jet force emitters and particle emitters. In this example the particle emitters are attached to different parts of the robot – we have three particle emitters, attached to the head, knees and torso of the robot.

As the robot moves the fluid simulation, collision obstacles, jets and emitters move with it.

Disintegration Gun
Motion
 Simulation grid is centered on the dying

grunt as it moves
 32x32x32 sized grid
 Grid has a small collision obstacle at its center

to create extra turbulence
 As the grunt moves and rotates it imparts

linear and angular forces into the simulation

 Emitters are tied to different body parts
 The head, knee and torso
 Each emitter emits 10,000 particles

Presenter
Presentation Notes
When the grunt is shot by the Disintegrator gun, a turbulence grid is created at the grunt’s position and tracks it as it ragdolls.

In UE3, Collision implicits as well as jets were set up to various sockets on the grunt’s body.

Meanwhile, a special alpha-mapped disintegration shader effectively removes the grunt’s geo

Disintegration Gun
Motion
 Directional forces attached to same

sockets as emitters
 forces are smoothly randomized over time
 Forces are also pulsed on and off in addition

to the randomization

 Forces are turned off after the emitter,
and emitter is turned off before the final
effect finishes

Presenter
Presentation Notes
However, because of the size of the grunt’s turbulence grid, the particles are still under the influence of the jets and the collision implicits attached to the ragdolling grunt skeleton, thereby producing dramatic turbulent flows on the emitted particles.

Disintegration Gun
Rendering
 Particles are rendered as camera facing

quads

 Quads are stretched in the direction of
motion to simulate motion blur

 Particles are rendered with additive
blending

 We blend between different textures
over the lifetime of a particle

Jet Pack

Presenter
Presentation Notes
<Show a working demo of Dark Void with Will flying with the Jetpack.
Demonstrate hover, flight, shutdown maneuvers>

Real world references

Presenter
Presentation Notes
In many ways, the turbulent effect in the disintegrator gun was easy, as it is a fictitious weapon. We can therefore define the look of the turbulence behaviour to however aesthetically pleasing we want it to be.
But the jet pack was a whole other matter entirely, since it had real world analogues- namely jet aircraft and helicopters.

Real World References
 Helicopter & jump jet hover

vortices


Presenter
Presentation Notes
To correctly simulate exhaust and flight turbulence, we first looked at real-world examples of laminar flow and air disruption effects in these vehicles.
Note the continuous, mist-like quality of these high speed turbulence images. These presented special challenges to the lighting and rendering of our turbulence simulation.

The Jet Pack – in game

Jet Pack

 We needed to mimic a helicopter
turbine wash as a jetpack hover

 Simulation Grid attached to
player’s jetpack
 The character is represented as a

collision obstacle centered in the grid
 Grid moves at same velocity as

character
 Grid is 48x48x48 cubed

Presenter
Presentation Notes
Things to note- it was not a straightforward path to simply placing a turbulence grid and applying particle emitter settings. Gameplay requirements resulted in the motion of the character relative to the world to be rather unrealistic. In camera, this disparity wasn’t apparent. However, first turbulence iterations produced simulations that were not moving in expected ways relative to camera (this was entirely due to the character motion through the world). However, the use of force jets and tweaking of the collision implicit was important helping make the simulation robust & realistic-looking enough to deal with even unrealistic player motion.

Jet Pack

 Emitters placed at jetpack nozzles
 Attached to an artist defined sockets
 Emitters have between 15000 to

24000 particles each

 Force jets around emitters
 Also attached to socket

Jet Pack

 Actual implementation in-game
 Challenges were:

 Player flight motion relative to world
was tuned for gameplay, not realism

 Character animation relative to
camera was added to give a
heightened perception of speed

 Result: initial turbulence
simulation would show unrealistic
results

Presenter
Presentation Notes
The turbulence simulation was most susceptible to lateral motion, since the sideways/evasive motion of the character was very abrupt (the sideways player speed was tuned as a necessary gameplay consideration).
In these cases, the particles falling within the grid could only receive the grids and jets influence for a very very short time.

Jet Pack: Solutions

-The challenge was to keep as many
particles as possible within the
turbulence grid, thereby maximizing
the visual impact of the turbulence
simulation, despite very rapid
changes in velocity of the player

-balancing grid size, direction and
magnitude of jet forces per effect
were key parameters in helping the
artist solve this production problem

Presenter
Presentation Notes
We had to give special consideration to how the particles inherit the velocity of the player. The jet forces were important in that they imparted this component of the player’s velocity as a force on the emitted particles. Values ranged from 50 to about 130% of player velocity.

The Look

 Difficulty creating the
final look of the
jetpack

 Initial iteration showcased
the simulation and
rendering but was not
consistent with what a
jetpack should look like

 It looked more like a
steam engine 

Initial look

Final look

Presenter
Presentation Notes
Initially, the particle were drawn in an unlit translucent blended manner. Two problems were immediately evident- 1) particles did not respond to changing light conditions 2) particles could not show thickness or a sense of the internal gaseous volume. The result was thick, opaque particle that resembled steam engine smoke.

The Look

 We eventually settled on having a
much more transparent blue heat
effect

 Thick smoke is emitted whenever
there is a change in applied power
(i.e. the jetpack turns on or off)

 When the character lands the
jetpack shuts down and emits a final
burst of smoke

Presenter
Presentation Notes
The increased transparency helped in getting rid of the ‘cotton puff’ appearance of individual particles. Also, particles were rendered in a stretched manner, directed to the particle’s individual velocity vector.
At least 2 such particle systems were planned for differing jetpack contexts: hover (on/off) and cooldown.

Real vs. Simulated

CONCLUSION

Takeaway

 Detailed interactive 3D fluid
simulation is

 Feasible in a game’s budget today

 Versatile and art direct-able

 Scalable

Additional Information

 APEX Turbulence:
 Used for all the fluid simulation in Dark Void
 http://developer.nvidia.com/object/apex_turbulence.h

tml

 Interactive Fluid-Particle Simulation using Translating
Eulerian Grids, I3D 2010.
http://www.jcohen.name/papers/Cohen_Interactive_2
010.pdf

 Fluid simulation on GPU basics, GDC 2007
 http://developer.download.nvidia.com/presentations/2

007/gdc/RealTimeFluids.pdf

http://developer.nvidia.com/object/apex_turbulence.html�
http://developer.nvidia.com/object/apex_turbulence.html�
http://www.jcohen.name/papers/Cohen_Interactive_2010.pdf�
http://www.jcohen.name/papers/Cohen_Interactive_2010.pdf�
http://developer.download.nvidia.com/presentations/2007/gdc/RealTimeFluids.pdf�
http://developer.download.nvidia.com/presentations/2007/gdc/RealTimeFluids.pdf�

Acknowledgements

 Lots of thanks to
 Bryan Duduash, Neil Nafus, Dane

Johnston, Johnny Costello

 Airtight Games
 Capcom
 NVIDIA

APPENDIX

MacCormack advection

 Basic semi lagrange advection is a single
forward advection step (denoted below
by A)

 MacCormack Advection*:
()
()

()

()
()

),max(),min(

*5.0ˆ)()(

,min

,max
:

ˆ:
2

ˆ
:

ˆ:

ˆ:

min
1

max
11

11
min

1
max

1

1
min

1
max

1

11

1

1

φφφφφ

φφφφφφ

φφφ

φφφ

φ

φφ

φφ

φφ

φφ

+++

++++

+

+

+

++

+

+

+=<>

=

=

+=

−=

=

=

nnn

nnnn

nn

nn

n

nn

nn

nn

nn

andbetweenclamp
eorif

clamp
eestimatefinal

eerrorestimate

Astepbackward

Astepforward


Presenter
Presentation Notes
*note that this algorithm below is a modification from the basic maccormack; we use a different limiter for increased stability.

MacCormack advection uses two semi-lagrange steps and error correcting to come up with a more accurate estimate of advection.

The idea behind it is that after one step forward and one backward you should arrive at the starting point. The difference
between the starting point and the estimated location is equal to double the error. This
error is then used to correct the forward step. To keep the simulation stable the result is clamped
to the minimum and maximum values of the origin.

	Slide Number 1
	Taking Fluid Simulation Out of the Box: Particle Effects in Dark Void
	Overview
	Motivation
	Motivation
	Fluid Simulation in Games
	Fluid Driven Effects In Dark Void
	Fluid Driven Effects In Dark Void
	Demos
	Basics of fluid simulation
	Describing a fluid
	Navier Stokes Equations
	Solving the equations
	Discretizing the space
	Eulerian vs. Lagrangian
	Simple Eulerian Fluid Solver
	Dealing with Eulerian simulation
	Eulerian Simulation Drawback: �stuck in a box
	Typical Eulerian Simulation
	Moving Simulation out of the Box
	Moving the Simulation
	Using Particles
	Moving the reference frame
	Galilean Invariance
	Simulation in dark void
	Fluid Simulation Pseudo Code
	Step 1�Self Advection
	MacCormack Advection
	Step 2� Enforce solid boundary conditions and apply impulses
	Step 3� Make the velocity field divergence free
	Particle Simulation
	Creating Turbulence
	Multiple Simulation Grids
	Performance
	Cost
	Performance numbers
	Performance Bottlenecks
	LOD options
	Scaling the cost of the simulation
	Making the Effects
	Disintegration Gun
	Disintegration Gun
	Disintegration Gun
	Disintegration Gun
	Disintegration Gun�Motion
	Disintegration Gun�Motion
	Disintegration Gun�Rendering
	Jet Pack
	Real world references
	Real World References
	The Jet Pack – in game
	Jet Pack
	Jet Pack
	Jet Pack
	Jet Pack: Solutions
	The Look
	The Look
	Real vs. Simulated
	Conclusion
	Takeaway
	Additional Information
	Acknowledgements
	appendix
	MacCormack advection

