
Enrich Visual Details
Using Direct3D 11

Tessellation

Tianyun Ni, NVIDIA

Direct3D 11
Tessellation: More
Detail, Less Storage

Tianyun Ni, NVIDIA

Presenter
Presentation Notes
Self-introduction
The goal of this talk is to familiarize you with the practical aspects of Direct3D11 tessellation technique.
for which we introduce tessellation development pipeline and answer frequently asked questions, such as which objects are best suited for tessellation? Which tessellation scheme should we use? And so on.

Tessellation on Characters

© Kenneth Scott, id Software

© Mike Asquith, Valve

© Bay Raitt

Presenter
Presentation Notes
As real-time graphics aspires to movie-quality rendering, a highly-detailed character demands increasing number of polygons for photo-realistic rendering.
Here are some screenshots of highly tessellated Game characters rendered on our engine.
For example, this character comes from id Software and has almost 1 million polygons.
Large number of polygons for each character imposes a challenge to limited video memory and bandwidth in practice.
While GPUs today can render meshes with this complexity in real-time, it's challenging to use them in games as is, because they consume a huge amount of memory and computation power.
But this is one of the areas where D3D11 tessellation can help.

Tessellation on Environmental
Objects

Screenshot from Unigine website

Presenter
Presentation Notes
In addition to game charaters, tessellation can also be applied to environmental objects, such as trees, grass, brick walls, pebble stone roads, houses….

Tessellation in other areas…

Terrain Rendering

Ocean

Hair

Other Possible Areas
Grass

Presenter
Presentation Notes
Moreover, tessellation can be used in the other areas. For example, Terrain rendering, ocean rendering, hair simulation and rendering, and many more possible areas.
So which objects are suitable for tessellation and which are not. I would say tessellationc an be applied to almost everything that needs more details in a game scene.
It is not needed when the detailed geometry is unnecessary. In this talk, I’ll focus on character tessellation as it’s the most common application for DX11 tessellation and it’s also more complicated than other cases.

Current Authoring Pipeline

…
Generate LODs

GPU

Control Cage, or
SubD Mesh Smooth Surface Displaced Surface

Polygon Mesh

Presenter
Presentation Notes
 let’s first review the current authoring pipeline for creating highly-detailed models.
The process starts with a control cage. It’s also known as a base mesh, or subd mesh. It is a coarse mesh, usually around 1% of the vertices and faces in its final mesh. This coarse mesh approximates the shape of the final surface and can be converted to a smooth surface using Bspline, Bezier, or subdivision techniques. -Then we apply displacement map to smooth surfaces to obtain highly-detailed characters.
The resulting dense polygon mesh is used to generate a set of meshes with various level of details. These meshes with different resolutions are input to the GPU for 3D rendering, and also possibly for animation and physical simulation.
This procedure has some disadvantages. First, it demands significant bus bandwidth and consumes large amounts of video memory. Second, the animation and physical simulation is performed by transforming the vertices in the dense mesh that requires more computations.

To improve performance by avoiding these drawbacks, can we just use control cage as input, and offload all these work from CPU to GPU? The answer is yes. Direct3D 11 Tessellation pipeline provides such a solution.

Direct3D 11 Pipeline For Real-
time Tessellation Rendering

Control Cage

Optimally Tessellated Mesh

GPU
(D3D 11 Tessellation)

Displacement
Map

+

Presenter
Presentation Notes
Using Direct3D 11 tessellation pipeline, the input to the GPU is just a control cage and a displacement map.
This compact representation is just one of the advantages in D3D 11 tessellation. With the design of new pipeline, we are able to take full advantage of GPU parallel computing and move the workload traditionally only performed on the CPU to the GPU.
The output is an optimally tessellated mesh. By “optimally tessellated”, we mean the mesh is only tessellated where actually needed.
With Dx11 tessllation technique, you don’t need store a set of predifined LOD meshes for each model. The desired level of detail is generated at run time according to your needs.
Besides Integer mode, there are fractional modes for supporting continuous level of details

Note that in practice, normal maps can also be part of the input. The normal maps can be generated from displacement map. Optionally, you can also add other maps such as occlusion map as input for better shading effect.

Content Creation Pipeline

 Modeling Tools
 Base surface
 (control cage)

 Sculpting Tools
 Detailed mesh

 Baker Tools
 Normal, displacement,

occlusion, and other maps

Presenter
Presentation Notes
A quick overview of existing pipeline for content creation. The base mesh is created using Modeling tools such as Maya, and 3D max.
The detailed can be added on top of the base mesh using sculpting tools, like zbrush, mudbox, or blender.
Displacement maps, as well as normal maps, occlusion maps are generated using baker tools.
Modeling, sculpting and baker tools altogether generates the art assets we can use for tessellation.

Baker tools
xNormal™
Mudbox™, ZMapper
Melody™, etc.
PolyBump™, etc.

Domain Shader

Hull Shader

Tessellator

Input Assembler

Vertex Shader

Setup/Raster

Input Mesh
(a collection of patch primitives)
Displacement Map
Normal Map (optional)

Patch Primitive

Pixel Shader

Direct3D11 Tessellation
Pipeline

Presenter
Presentation Notes
That is what D3D 11 graphics pipeline looks like. D3D 11 introduces 3 new pipeline stages between vertex shader and geometry shader. This new pipeline design makes efficient rendering of highly-detailed characters with animation in a single rendering pass.
In addition to 3 new stages, D3D 11 also adds a new primitive type: the patch. Patch is introduced to represent the structure of a face and its 1-ring. D3d11 Tessellation uses a compact representation that allows you to decompose a high resolution mesh into a control cage (which is defined with a low resolution mesh) and a displacement map.
This input mesh is decomposed to a set of patch primitives in index buffer. The new patch primitive is the only primitive type that is supported when tessellation stages are enabled. A patch primitive has arbitrary number of vertices between 1 and 32, and unlike any of the other primitive types, it doesn’t have any implied topology. This flexibility allows all possible configurations of a face with its 1-ring.

Domain Shader

Hull Shader

Tessellator

Input Assembler

Vertex Shader

Setup/Raster

Input Mesh
(a collection of patch primitives)
Displacement Map
Normal Map (optional)

Patch Primitive

Skinning,…

Pixel Shader

struct VERTEX
{

float3 vPosition : POSITION;
float2 vUV : TEXCOORD0;
float3 vTangent : TANGENT;
uint4 vBones : BONES;
float4 vWeights : WEIGHTS;

};

Direct3D11 Tessellation
Pipeline

Presenter
Presentation Notes
The first programmable stage is still the vertex shader, where we apply animation and deformation at a lower frequency
The idea is by performing animation and simulation on the control cage rather than the final dense mesh in the vertex shader to drastically reduces animation storage. It requires much less vertex transformations to be computed. Perform Expensive Computations at lower frequency can be applied to both realistic animation and physical simulation.

The typical data structure of each vertex looks like this. It contains position, texture coordinate, a tangent vector for normal computation later, and bones and weights for skinning.

Domain Shader

Hull Shader

Tessellator

Input Assembler

Vertex Shader

Setup/Raster

Input Mesh
(a collection of
patch primitives)

Patch Primitive

Skinning,…

•Compute Control Points (optional)
•Compute LOD

Geometry expansion

Pixel Shader

Direct3D11 Tessellation
Pipeline

Presenter
Presentation Notes
After the vertex shader, the hull shader is invoked per patch primitive. The control points of a patch are computed in the hull shader.

OpenGL calls the new stages “Tessellation Control Shader & Tessellation Evaluation Shader”, whereas DirectX calls them “Hull Shader & Domain Shader
the same features will also be exposed under OpenGL. However, we use Direct3D terminology,

The hull shader serves two purposes. One is to transform input vertices from one basis to another. In other words, to compute the control points of the converted parametric patches from the control cage. The other purpose is to compute tessellation factors.
The reason to compute tessellation factor is for adaptive tessellation. Instead of uniform tessellation, adaptive tessellation has various tessellation levels per patch or per model. And you can tweak that level of detail based on any metric that you choose, for example, you can have view dependent LOD, view-dependent LOD renders distant objects with lower resolution. Adaptive tessellation add geometry only where needed.

Geometry expansion occur in the Tessellator where a semi-regular tessellation pattern for each patch is produced based on the tessellation factors.

Tessellation Patterns

 Let lod be the TessFactor
at each edge

 Number of triangles on a
triangle domain
1+6*∑ i=1

lod/2(2*i), If lod is odd
6*∑ i=1

lod/2(2*i-1), If lod is even

 Number of triangles on a
quad domain
2*lod*lod

Presenter
Presentation Notes
The generated tessellation pattern are always symmetric along the edges and support integer and fractional tessellation factors.
The right figure shows one example of tessellation patterns generated by the tessellator for both triangle and quad domains when tessellation factor is 5.
To understand better how many triangles are generated in the tessellator, let assume lod be the tessellation factor at each edge and interior. The equation for computing the number of triangles fro a triangle domain is shown here. For a quad domain, the number of triangles is straightforward in terms of lod, it’s simply 2*lod*lod.

Direct3D11 Tessellation
Pipeline

Domain Shader

Hull Shader

Tessellator

Input Assembler

Vertex Shader

Setup/Raster

Input Mesh
(a collection of
patch primitives)

Patch Surface

High-detailed Mesh

Patch Primitive

Skinning

•Compute Control Points
•Compute LOD

Geometry expansion

Pixel Shader

•Surface evaluation
•Displacement mapping

•Normal mapping (move to
DS stage?)
•Shading calculation

Presenter
Presentation Notes
The Domain Shader takes the parametric coordinates of the vertices generated
by the Tessellator and the control points output by the Hull Shader and uses them to evaluate the
surface. Given a parametric coordinates, the domain shader evaluates the position and normal of the surface at that location. In addition, the Domain Shader also interpolates texture coordinates and can sample textures in order to apply displacement maps.
Moreover, the Domain Shader also has other responsibilities that would
traditionally correspond to the Vertex Shader. That includes projecting the vertex position to
screen, transforming normals and light vectors to the same space, etc.
The Domain Shader stage creates one thread for each generated vertex. These threads
are similar to Vertex Shader threads; they evaluate the surface in parallel and cannot communicate
with each other. Once the vertices have been transformed by the Domain Shader, the primitives generated by the
Tessellator are optionally processed by the Geometry Shader or directly sent to the triangle setup
stage for rasterization.
Shading calculation is done in the pixel shader. The normal calculation after displacement map can either perform in the pixel shader or in the domain shader. At this stage, we have shaded highly tessellated meshes for final rendering.
Alternative approach: computing normal in DS, which reduces the need for mip-mapping of normal map, which is beneficial because: a) filtering normal is difficult on its own. not clear which filter kernel is more correct b) is typically precomputed into texture atlas and mipmapping texture atlas often results in various artifacts c) computing normal in DS allows to use edge-ownership schemes for avoiding visible artifacts due to texture seams d) computing normal in DS will force people to use very fine tessellation, otherwise quality will be low

 Various tessellation schemes differ at
 Number of vertices in the patch primitive
 Control points computations (in Hull

Shader)
 Pass through or higher order parametric

patch
 Surface evaluation (in Domain Shader)

 Barycentric interpolation or higher order
parametric patch

Tessellation Schemes

Presenter
Presentation Notes
There exist more than one tessellation scheme that fit well with Direct3d11 tessellation pipeline. Although all these schemes follow the same pipeline, they might differ at three places.
First stage in the hull shader. The simplest scheme doesn’t require to generate control points. In this case, the vertices in the patch primitive are passed through the hull shader. In other cases, the control points for a higer order parametric patch needs to be computed. There are three possible parametric domains: isoline, quad, or a triangle domain. Surface is evaluated in the domain shader using the output from the hull shader. If the hull shader takes pass through approach, the vertices of surfaces are generated by linearly interpolating input vertices. In a higher order patch cases, surface is evaluated based on the degree and type of the patch.

Patch Construction
Schemes

Tessellation Schemes

 Choose appropriate schemes for your art
assets
 Tradeoff between performance and visual quality

 Linear interpolation
 for rendering pebble roads, brick walls, terrain, …

 Local construction schemes
 PN , Phong Tessellation

 Approximating Catmull-Clark Schemes

Presenter
Presentation Notes
-So, Be aware of exiting tessellation schemes, understand their strength and pick one that is most suitable to your art assets and what you want to achieve in your games. Usually the choice is depends on the tradeoff between performance and visual quality. It depends on your existing art assest: what are their mesh connection type, what level of resolution of these meshes are?
There are three categories: linear interpolation, including bilinear, barycentric interpolation.
Linear interpolation is the simplest one, it’s good for rendering terrain, pebble roads, brick walls…
For character tessellation, higher order patch based tessellation schemes are desired. This is because characters are naturally rounded and best represented by smooth higher order surfaces. The suitable tessellation schemes for characters include local construction and approximating CC subdivision surfaces schemes.

Patch Construction
Schemes

Local Construction Schemes

 PN , Phong Tessellation
 Can be applied to tri/quad meshes
 Pros:

 Fits well with production pipeline
 Simple, fast

 less ALU ops
 3 or 4 vertices in a patch primitive

 Cons:
 lower quality surfaces
 No support in sculpting tools for Displacement Maps

creation

Presenter
Presentation Notes
Local construction schemes can be easily integrated into Direct3D 11 GPU pipeline. A patch can be entirely constructed based on the vertices positions and normals of an input face. PN and Phong tessellation fall into this category. They can be applied to both triangle and quad meshes, or even a mixed combination of two.
Generally speaking, each face and corresponds to one parametric patch representation.
we can convert each face to a surface patch by computing the control points of the patches in parallel.
Its major strength include it is easy to implement. Each patch primitive contains either 3 or 4 vertices for a patch as the neighborhood information is not required. Therefore, the control point computation is very local, just a function of these 3 or 4 vertices of a face. As a result, there are very few ALU operations in the hull shader. It’s very simple, it fits well with production pipeline.
On the other hand, because the patch is constructed locally, there are not enough degree of freedoms during patch construction to make sure the tangent continuity across adjacent patches. The surface quality is lower than CC subdivision surfaces. In addition, for existing DCC tools, like Maya and zbrush, they don’t support displacement map generation based on these schemes. If you use existing tools to generate displacement maps for local construction schemes, you end up producing a unexpected displaced mesh after applying displacement map in the domain shader.

Patch Construction
Schemes

PN Schemes

One input triangle

Geometry
patch

Normal
patch

 “Curved PN Triangles”, by Alex Vlachos, Jörg
Peters, Chas Boyd, and Jason Mitchell, I3D 2001.

 “PN Quads”, by Jörg Peters, 2008.
http://www.cise.ufl.edu/submit/files/file_020f70fe71888f602530143e2e326be2.pdf

 The same formulae except for computing interior control
points

Presenter
Presentation Notes
PN scheme is mostly known in its triangle case. It is also called N-patches, provide a simple tessellation scheme for triangular meshes. This interpolation
scheme replaces input flat triangles with triangular cubic B´ezier patches and quadratic
normal variation. It can be easily integrated into Direct3D 11 GPU pipeline. To implement PN
Triangles, compute 10 geometry and 6 normal control points
for each input triangle. Geometry patch defines the actual geometry of the final surfaces and the normal patch defines the shading for rendering.
This scheme can be extended to a quad case. The corner and edge control points are computed in the exactly same way as in its triangle counterpart. The only difference is the part of computing face control points. The detailed equation is explained in the paper.
PN triangles combined with PN quads are flexible for handling arbitrary input control meshes.

http://www.cise.ufl.edu/submit/files/file_020f70fe71888f602530143e2e326be2.pdf�

Patch Construction
Schemes

Phong Tessellation

 Simpler than PN Triangles
 uses quadratic geometry patch and phong

shading
 Can not handle inflection points

 Needs a relatively dense mesh to start
with

 Siggraph 2008 Asia paper, by Tamy
Boubekeur and Marc Alexa

http://perso.telecom-paristech.fr/~boubek/papers/PhongTessellation/

Presenter
Presentation Notes
Phong tessellation is even simpler than PN triangles because it lowers one degree for both geometry patch and normal patch. In other words, it uses a quadratic geometry patch and linear phong shading. The price it pays for simplicity is that an inflection point only the surface can not be correctly represented as there are not enough degree of freedom to capture the curvature sign change within a patch. This would be a noticiable visual artifact. In order to minimize the artifacts, the base input mesh needs to be prepocessed. It needs to be subdivided where each face is small enough for not containing any inflection points. As a result, the input mesh has to be relatively dense, which imposes the memory bandwidth requirement of the memory bus between CPU and GPU.

Patch Construction
Schemes

Phong Tessellation

Screenshot from Metro 2033

Presenter
Presentation Notes
Phong tesellation can be used in today’s game engine without large changes in existing rendering pipeline. It has been successfully applied in upcoming Metro2033 title for tessellation of characters, monsters, and objects. Here is monster tessellated with phong tessellation, and displacement added

Patch Construction
Schemes

Approximating Catmull-Clark
Subdivision Surfaces Schemes

 Provides movie-quality surfaces
 Catmull-Clark subdivision surfaces are extensively

used in movie production and modeling & sculpting
tools

 Suitable for quadrilateral meshes with few
triangles in it

 Approximation rather than interpolation
 Requires the mesh info of a facet and its1-ring

neighborhood

Presenter
Presentation Notes
Catmull-Clark subdivision algorithm has become part of standard modeling packages. Although PN triangles is a simple scheme, it cannot generate competitive, high quality surface shape. Also it is not designed to approximate CC subdivision. Due to exact evaluation of Catmull-Clark subdivision surfaces is inefficient on the GPU, few patch-based schemes that approximates CC subdivision were proposed last year.
This scheme is Suitable for meshes with majority quads in it. We know that Quads modeling are more naturally and eaisly modeling approach as the surface has 2 orthogonal curvature directions.

It is worth mentioning that ACC schemes is approximating rather than interpolating. It is both a strength and a weakness – they behave much more naturally under animation, but artists have less control in creating the desired shape.
The ACC schemes generate smooth surfaces that approximate CC subdivision surfaces very well, but each control point is computed based on not only the vertices in the face but also the vertices in its 1-ring neighborhood.

Patch Construction
Schemes

Approximating Catmull-Clark
Subdivision Surfaces (ACC)

 Approximating Catmull-Clark Subdivision Surface
with Bicubic Patches” by Charles Loop and Scott
Schaefer, ACM Transactions on Graphics, Vol. 27 No. 1
Article 8 March 2008.
http://research.microsoft.com/en-us/um/people/cloop/msrtr-2007-44.pdf

 “Approximating Subdivision Surface with Gregory
Patches for hardware Tessellation” by Charles Loop,
Scott Schaefer, Tianyun Ni, Ignacio Castano, Siggraph
Asia 2009.
http://research.microsoft.com/en-us/um/people/cloop/sga09.pdf
 Extends previous work to a more general mesh that contain

quads, triangles and meshes with boundary.
 Reduces number of control points for faster surface construction

and evaluation.

Presenter
Presentation Notes
The first paper on ACC scheme came out in 2008. The general idea is that
Each extraordinary quad is converted to a geometry patch and a pair of tangent patches. The geometry patch is a simple bicubic B´ezier patch. The tangent patches derived directly from it can not produce well-defined normals along the edge emitting from any vertex that does not have 4 neighbors. In order to achieve smooth shading in these areas, both the corner
vectors and tangent vectors need to be adjusted to satisfy smoothness constraints.

Last year, the work is extended to triangles cases as well. It imposes less constriant on the input mesh, also improves the performance by reducing the number of control points needed for each patch.

 Regular quads
 Irregular quads
 Triangles
 Boundary

Approximating Catmull-Clark
Subdivision Surfaces Using
Gregory Patches

 Flexible ACC scheme for general input mesh

Presenter
Presentation Notes
The extended scheme is flexible and allows input control mesh to be general, allowing for meshes that contain
regular regions, extraordinary quadrilateral and triangular faces, as
well as meshes with boundary.
Regular quads means a quad where each vertex has 4 neighbors. Otherwise, it’s treated as an irregular quad. The quad merge to triangles at corners for places like eyes. Triangles are treated slight differently. The meshes are not always closed. For the control points along the boudaries, they need to be derived by a different rule.
Gregory ACC scheme provide the treatment for all cases.

Approximating Catmull-Clark
Subdivision Surfaces Using
Gregory Patches

 Convert each face of an input
mesh to a gregory patch
 Regular quad  Bicubic Bézier
 patch
 Irregular quad  Tensor-product

gregory patch
 Triangle  Triangular gregory patch

Bicubic Bezier patch Tensor-product
gregory patch

Triangular
gregory patch

 Regular quads
 Irregular quads
 Triangles

Presenter
Presentation Notes
The idea is each face in the base mesh corresponds to one parametric patch representation and together they form a smooth surface.
Specifically, a regular quad is converted to a bicubic beizier patch, an irregular quad
We can convert each face to a surface patch by computing the control points of the patches in parallel in the hull shader.

Control Point Computation

 HS input: a patch
primitive (a facet and
its neighborhood)

 Each control point is a
weighted sum of
positions of all vertices
in a patch primitive:
Pj = ∑(Wij * Vi)
the set of weights defined in
a stencil rule Corner

Edge
Face (Interior)

Presenter
Presentation Notes
The control point computation of an ACC scheme is a little complicated. So I’ll talk about this in more depth.
The input to the hs is a patch primitive.

Patch Construction
Schemes

Tessellation Schemes
Comparison

 Tradeoff
between
quality and
speed

 PN
 Easier to

implement
 Faster

 ACC
 Better

visual
quality

Presenter
Presentation Notes
To choose local construction scheme, or an ACC scheme is your choice. It’s the tradeoff between quality and performance speed.
Generally speaking, PN scheme is faster, and easier to implement while ACC produces movie-quality surfaces.
For the same set of input base meshes, especially in the closeup head model, ACC scheme produces smooth surfaces that is really close to a true CC subdivision surfaces. PN scheme generates noticeablely inferior surface quality. My suggestion is to choose ACC scheme, when many areas of the final surface requires to be smooth. On the other hand, if the base mesh is already dense, and the surface will be displaced in the end anyway, then you can choose either PN or Phong tessellation as they are much simpler and surface visual artifacts won’t be that noticeable in this case. Select a tessellation scheme wisely for your existing art assets and specific needs.

Patch Construction
Schemes

Optimization Tips

 Separate regular patches and irregular
patches
 Up to three draw calls
 Each draw call is for one patch type (regular patch,

irregular patch, and a triangular patch)

 For environmental objects (such as trees and
rocks)
 Pack control points into a vertex buffer
 HS pass these control points down to DS as

attributes

Presenter
Presentation Notes
Three sets of index buffers, hull shaders and domain shaders
It is much better to fetch them in HS, and pass them down to DS as attributes. That way all of DS threads will just read them off from a common location in L1, which is an order of magnitude faster. A even better approach perhaps is just have a pass-through HS which cache the control points in a vertex buffer rather than a texture. Remember, texture is a shared resource, and pixel shader also needs it.

Patch Construction
Schemes

Optimization Tips

 Precompute weights
 Simplify control points

computation in the hull
shader

 Preprocess to find out the
number of vertices whose
weights are non-zeroes

Corner
Edge
Face (Interior)

Presenter
Presentation Notes
Three sets of index buffers, hull shaders and domain shaders
It is much better to fetch them in HS, and pass them down to DS as attributes. That way all of DS threads will just read them off from a common location in L1, which is an order of magnitude faster. A even better approach perhaps is just have a pass-through HS which cache the control points in a vertex buffer rather than a texture. Remember, texture is a shared resource, and pixel shader also needs it.

Patch Construction
Schemes

Water-tight Control Point
Computation

 Cracks may occur due to floating
point precision issue
 a+b+c != c+b+a

 Corner and edge control points
need to be evaluated “consistently”

 Sum terms must be added in the
same order

Presenter
Presentation Notes
Even with correct implementation, we may see small holes in final meshes or shading discountinuties. This is caused by limited floating point precision. Due to
the floating point precision issue in the hardware, addition is not always commutative as it should
be. Since each parametric patch is independently constructed by a facet and its 1-ring neighborhood in parallel.
Due to independent parallelism of patch construction and surface evaluation, the tessellation is subject to round off error and cracking along the boundary of
two adjacent patches.

The problems come from computing corner points and edge points because they are shared by multiple patches. For a closed
surface, a corner point is computed n times given it is surrounded by n faces. If the computation result differs among adjacent patches, the cracks occur on the final surface. The similar
problem applies to edge points as each edge point is computed twice by adjacent patches. The
solution is to ensure the consistent ordering of summation. If two adjacent patches are of the same type, the shared control points are computed using the same
Set of weights. However, we need to be careful if their patch types are different. For all the schemes introduced
Here the edge points and corner points are always evaluated using the same rules
regardless of patch type. Only the face/interior points differ. Since only corner and edge points are
possibly shared, control points evaluation from different patch types do not affect water-tightness.

Hull Shader

[domain("quad")]
[partitioning("fractional_even")]
[outputtopology("triangle_cw")]
[outputcontrolpoints(20)]
[patchconstantfunc("SubDToGregoryConstantsHS")]
CONTROL_POINT SubDToGregoryHS(InputPatch<VS_CONTROL_POINT_OUTPUT,

primitive_size> p,
uint cpid : SV_OutputControlPointID,
uint pid : SV_PrimitiveID)

{
CONTROL_POINT output;

/* compute control point per thread here */

return output;

}

Domain Shader

Hull Shader

Tessellator

Parametric domain

Patch Primitive

Control points

Number of control points per patch

Presenter
Presentation Notes
One invocation per patch

Parallelized explicitly

To have a better idea on how a control point is computed, let’s take a look at this HLSL code snippet in hull shader.

The input of the hull shader is a patch primitive p, and two system generated valued: the control point id and the patch primitive id. The output is a control point per thread.
First, we get Patch connectivity id and vertex count in this patch primitive.
Given a list of the vertices in the 1-ring, we fetch the necessary set
of weights from the stencil texture using the connectivity id, vertex id, control point id, and input patch id. Each control point is computed independently per thread. To guarantee consistent evaluation of the weighted sum of input vertices, a global ordering of the vertex is also required. This approach maps well to the SIMD nature of Direct3D GPU pipeline. To optimize the overall performance, we could
reduce the number of texture fetches since only a subset of the vertices in the 1-ring actually involve in the patch construction. A boolean stencil mask is precomputed to indicate which vertex has zero contribution and therefore to avoid the corresponding texture fetches. The size of stencil texture relates to the complexity of connectivity, and the connectivity can be simplified by restricting the
maximum valence as well as the number of triangles in the control cage.

Hull Shader
[domain("quad")]
[partitioning("fractional_even")]
[outputtopology("triangle_cw")]
[outputcontrolpoints(20)]
[patchconstantfunc("SubDToGregoryConstantsHS")]
CONTROL_POINT SubDToGregoryHS(
InputPatch<VS_CONTROL_POINT_OUTPUT,

primitive_size> p,
uint cpid : SV_OutputControlPointID,
uint pid : SV_PrimitiveID)

{
CONTROL_POINT output;

uint num = Index.Load(int3(pid, 1, 0));

for (int i = 0; i < num; i++)
{

}

return output;
}

the number of vertices in the patch primitive

Presenter
Presentation Notes
One invocation per patch

Parallelized explicitly

Hull Shader
[domain("quad")]
[partitioning("fractional_even")]
[outputtopology("triangle_cw")]
[outputcontrolpoints(20)]
[patchconstantfunc("SubDToGregoryConstantsHS")]
CONTROL_POINT SubDToGregoryHS(
InputPatch<VS_CONTROL_POINT_OUTPUT,

primitive_size> p,
uint cpid : SV_OutputControlPointID,
uint pid : SV_PrimitiveID)

{
CONTROL_POINT output;

uint topo = Index.Load(int3(pid, 0, 0));
uint num = Index.Load(int3(pid, 1, 0));

output.pos = float3(0, 0, 0);
for (int i = 0; i < num; i++)
{

uint idx = Index.Load(int3(pid, 6+i, 0));
output.pos += p[i].pos * weightsForGregoryPatches.Load(int3(cpid,

topo*primitive_size+idx, 0));
}

return output;
}

connectivity type ID for the patch primitive

for consistent computation

Presenter
Presentation Notes
One invocation per patch
Parallelized explicitly
Stencil (topology connection type, the size of patch primitive, and control point id, local id of the current vertex in the patch primitive)

Hull Shader
(regular case)

……
[outputcontrolpoints(16)]
BEZIER_CONTROL_POINT SubDToBezierHS(InputPatch<VS_CONTROL_POINT_OUTPUT, 16> p,

uint cpid : SV_OutputControlPointID,
uint pid : SV_PrimitiveID)

{
BEZIER_CONTROL_POINT output;

output.pos = float3(0, 0, 0);

[unroll]
for (int i = 0; i < 16; i++)
{

output.pos += p[i].pos * weightsForRegularPatches [16*i+cpid];
}

return output;
}

 More common and much simpler
 Separate from irregular cases

Presenter
Presentation Notes
Since there’s only one possible connection type for a regular patch. Namely, each vertex of a quad has 4 neighbors. The size of stencil is a lot smaller than the stencils for irregular cases.
Its size is always 16*16 float. And can be put into constant buffer for efficiency. No textures, or other buffers needed.

Watertight Displacement

 Problem: Due to bilinear discontinuities
 Varying floating point precision on different

regions of the texture map
 Seamless parameterization removes bilinear

artifacts, but does not solve floating point
precision issues

 Solution:
 Define patch ownership of the texture

coordiantes

Water-tight Displacement

Presenter
Presentation Notes
Displacement Mapping is a technique for adding geometric details to the mesh with a height map.
It samples displacement value from a height map, and then changes the geometry
by moving vertices along their normal directions according to the displacement value.

Two places can go wrong to achieve watertight displacement. First, sample the displacement value at shared points. Second, the normal computation at each shared point needs to reach the same value. Otherwise, discontinuities might appear in the highly-detailed shapes as
the tessellated vertex is displaced to a slightly different position because of inconsistent normal fields.

Watertight Displacement

 Cross product of a pair of tangnet,
bitangent vectors

 All three vectors should be co-planar
 Problem: cross(tanU,tanV)
≠cross(tanV, tanU)

 Discontinuities occur at shared corners
and edges

 Define corner and edge ownership

Water-tight Normal

Presenter
Presentation Notes
Displacement Mapping is a technique for adding geometric details to the mesh with a height map.
It samples displacement value from a height map, and then changes the geometry
by moving vertices along their normal directions according to the displacement value.

Two places can go wrong to achieve watertight displacement. First, sample the displacement value at shared points. Second, the normal computation at each shared point needs to reach the same value. Otherwise, discontinuities might appear in the highly-detailed shapes as
the tessellated vertex is displaced to a slightly different position because of inconsistent normal fields.

Patch Construction
Schemes

 Add creases and corners to
smooth surfaces
 Tag the edges that generates

creases
 Modified stencil rules

for those tagged edges

Creases and Corners

Patch Construction
Schemes

Creases and Corners
References

 “Scalar Tagged PN Triangles”,
T. Boubekeur, P. Reuter, C. Schlick
http://iparla.labri.fr/publications/2005/BRS05b/STPN.pdf

 “PhongTessellation”,
T. Boubekeur, P. Reuter, C. Schlick
http://iparla.labri.fr/publications/2005/BRS05b/STPN.pdf

 “Real-Time Creased Approximate
Subdivision Surfaces”,
D. Kovacs, J. Mitchell, S. Drone, D. Zorin
http://mrl.nyu.edu/~dzorin/papers/kovacs2009rcs.pdf

Simple Tessellation

 Linear interpolation of input
mesh

 Terrain rendering,
Environmental objects,…
 Pass through in HS
 Barycentric (or bilinear)

interpolation in DS

Hair Tessellation

Input

Output

Simulated
guide hair

Patch
primitive

HS

Calculate
LODs

TE

Generate
topology

DS

Calculate
vertex
attributes

GS

Expand
lines to
quads

PS

Shade

Patch of Simulated
Guide Hair

Patch Construction
Schemes

Summary

 Direct3D11 Tessellation enriches visual
detail with flexible LOD control

 Choose a tessellation scheme that fits
your needs

 Implement it efficiently
 It’s time to bring games to the next level

Presenter
Presentation Notes
Bring games to the next level

Patch Construction
Schemes

Thanks

 Q & A

Presenter
Presentation Notes
Bring games to the next level

	Enrich Visual Details Using Direct3D 11 Tessellation
	Direct3D 11 Tessellation: More Detail, Less Storage
	Tessellation on Characters
	Tessellation on Environmental Objects
	Tessellation in other areas…
	Slide Number 6
	Slide Number 7
	Content Creation Pipeline
	Direct3D11 Tessellation Pipeline
	Direct3D11 Tessellation Pipeline
	Slide Number 11
	Tessellation Patterns
	Direct3D11 Tessellation Pipeline
	Slide Number 14
	Tessellation Schemes
	Local Construction Schemes
	PN Schemes
	Phong Tessellation
	Phong Tessellation
	Approximating Catmull-Clark Subdivision Surfaces Schemes
	Approximating Catmull-Clark Subdivision Surfaces (ACC)
	Slide Number 22
	Slide Number 23
	Control Point Computation
	Tessellation Schemes Comparison
	Optimization Tips
	Optimization Tips
	Water-tight Control Point Computation
	 Hull Shader
	 Hull Shader
	 Hull Shader
	Hull Shader �(regular case)
	Water-tight Displacement
	Water-tight Normal
	Slide Number 35
	Creases and Corners References
	Simple Tessellation
	Hair Tessellation
	Summary
	Thanks

