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Introduction

 DirectX 11 and DirectCompute enable 
physics effects to be computed and 
rendered directly on the GPU

 DirectCompute allows flexible general 
purpose computation on the GPU
 sorting, searching
 spatial data structures

 DirectX 11 has good interoperability 
between Compute shaders and graphics
 can render results efficiently



Fluid Simulation for 
Games
 Fluids are well suited to GPU

 data parallel

 Many different techniques
 Eulerian (grid-based)
 Lagrangian (particle-based)
 Heightfield

 Each has its own strengths and 
weaknesses

 To achieve realistic results, games need 
to combine techniques



Particle Based Fluid 
Simulation
 Smoothed particle hydrodynamics 

(SPH)
 Good for spray, splashes
 Easy to integrate into games

 no fixed domain
 particles simple to collide with scene

 Simulation can be provided by
 Physics middleware (e.g. Bullet, 

Havok, PhysX)
 or custom DirectCompute or CPU code





Fluid Rendering

 Rendering particle-based fluids is 
difficult
 Simulation doesn’t naturally generate 

a surface (no grid, no level set)
 Just get particle positions and density

 Traditionally, rendering done using 
marching cubes
 Generate density field from particles
 Extract polygon mesh isosurface
 Can be done on GPU, but very 

expensive



Screen Space Fluid 
Rendering
 Inspired by “Screen Space 

Meshes” paper (Müller et al)
 See: van der Laan et al “Screen 

space fluid rendering with 
curvature flow”, I3D 2009

 Operates entirely in screen-space
 No meshes

 Only generates surface closest to 
camera
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Screen Space Fluid 
Rendering - Overview
 Generate depth image of particles

 Render as spherical point sprites
 Smooth depth image

 Gaussian bilateral blur
 Calculate surface normals and 

position from depth
 Shade surface

 Write depth to merge with scene
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Rendering Particle 
Spheres
 Render as point sprites (quads)
 Calculate quad size in vertex 

shader (constant in world-space)
 Calculate sphere normal and depth 

in pixel shader
 Discard pixels outside circle
 Not strictly correct (perspective 

projection of a sphere can be an 
ellipsoid)
 But works fine in practice



PSOutput particleSpherePS(
float2 texCoord      : TEXCOORD0,
float3 eyeSpacePos   : TEXCOORD1,
float  sphereRadius  : TEXCOORD2,
float4 color         : COLOR0)

{
PSOutput OUT;

// calculate eye-space sphere normal from texture coordinates
float3 N;
N.xy = texCoord*2.0-1.0;
float r2 = dot(N.xy, N.xy);
if (r2 > 1.0) discard;   // kill pixels outside circle
N.z = -sqrt(1.0 - r2);

// calculate depth
float4 pixelPos = float4(eyeSpacePos + N*sphereRadius, 1.0);
float4 clipSpacePos = mul(pixelPos, ProjectionMatrix);
OUT.fragDepth = clipSpacePos.z / clipSpacePos.w;

float diffuse = max(0.0, dot(N, lightDir));
OUT.fragColor = diffuse * color;

return OUT;
}
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Point Sprite Spheres



Sphere Depth



Calculating Normals

 Store eye-space sphere depth to 
floating point render target

 Can calculate eye-space position 
from UV coordinates and depth

 Use partial differences of depth to 
calculate normal
 Look at neighbouring pixels

 Have to be careful at edges
 Normal may not be well-defined
 At edges, use difference in opposite 

direction (hack!)



Calculating Normals 
(code)

// read eye-space depth from texture
float depth = tex2D(depthTex, texCoord).x;
if (depth > maxDepth) {

discard;
return;

}

// calculate eye-space position from depth
float3 posEye = uvToEye(texCoord, depth);

// calculate differences
float3 ddx = getEyePos(depthTex, texCoord + float2(texelSize, 0)) - posEye;
float3 ddx2 = posEye - getEyePos(depthTex, texCoord + vec2(-texelSize, 0));
if (abs(ddx.z) > abs(ddx2.z)) {

ddx = ddx2;
}

float3 ddy = getEyePos(depthTex, texCoord[0] + vec2(0, texelSize)) - posEye;
float3 ddy2 = surfacePosEye - getEyePos(depthTex, texCoord + vec2(0, -texelSize));
if (abs(ddy2.z) < abs(ddy.z)) {

ddy = ddy2;
}

// calculate normal
vec3 n = cross(ddx, ddy);
n = normalize(n);

ddx

ddy n



Sphere Normals Calculated From Depth



Smoothing

 By blurring the depth image, we 
can smooth the surface

 Use Gaussian blur
 Needs to be view-invariant

 Constant width in world space
 -> Variable in screen-space space

 Calculate filter width in shader
 Clamped to maximum radius in screen 

space (e.g. 50 pixels) for performance



Sphere Depth



Naively Smoothed Depth



Calculated Normal



Diffuse Shaded Surface



Bilateral Filter

 Problem: we want to preserve the 
silhouette edges in depth image
 So particles don’t get blended into 

background surfaces
 Solution: Bilateral Filter

 Edge-preserving smoothing filter
 Called “Surface Blur” in Photoshop
 Regular Gaussian filter is based only 

on only distance in image domain
 Bilateral filter also looks at difference 

in range (image values)
 Two sets of weights



Bilateral Filter Code
float depth = tex2D(depthSampler, texcoord).x;

float sum = 0;
float wsum = 0;
for(float x=-filterRadius; x<=filterRadius; x+=1.0) {

float sample = tex2D(depthSampler, texcoord + x*blurDir).x;

// spatial domain
float r = x * blurScale;
float w = exp(-r*r);

// range domain
float r2 = (sample - depth) * blurDepthFalloff;
float g = exp(-r2*r2);

sum += sample * w * g;
wsum += w * g;

}

if (wsum > 0.0) {
sum /= wsum;

}
return sum;

Note – not optimized!



Sphere Depth



Bilateral Filtered Depth



Diffuse Shaded Surface



Bilateral Filter

 Bilateral filter is not strictly 
separable
 Can’t separate into X and Y blur 

passes
 Non-separable 2D filter is very 

expensive
 But we can get away with 

separating, with some artifacts
 Artifacts not very visible once other 

shading added



Diffuse Shaded Surface
Using Separated Bilateral Filter



Surface Shading

 Why not just blur normals?
 We also calculate eye-space 

surface position from the 
smoothed depth
 Important for accurate specular 

reflections
 Once we have a per-pixel surface 

normal and position, can shade as 
usual









Diffuse Shading – dot(N, L)



Wrapped Diffuse Shading – dot(N,L)*0.5+0.5



Specular (Blinn-Phong)



Fresnel
 Surfaces are more reflective at 

glancing angles
 Schlick's approximation

 θ is incident angle
 cos(θ) =dot(N, V)

 R0 is the reflectance at normal 
incidence

 Can vary exponent for visual effect 



Fresnel Approximation



Cubemap Reflection



Cubemap Reflection * Fresnel



Final Opaque Surface with Reflections



Thickness Shading

 Fluids are often transparent
 Screen-space surface rendering 

only generates surface nearest 
camera
 Looks strange with transparency
 Can’t see surfaces behind front

 Solution – shade fluid as semi-
opaque using thickness through 
volume to attenuate color



Generating Thickness

 Render particles using additive 
blending (no depth test)
 Store in off-screen render target
 Render smooth Gaussian splats
 or just discs, and then blur

 Only needs to be approximate
 Very fill-rate intensive

 Can render at lower resolution



Volume Thickness



Volumetric Absorption

d

I=exp(-kd)

I=1

 Beer's Law
 Light decays exponentially with distance
 Use different constant k for each color 

channel



Color due to Absorption



Background Image Refracted in 2D
tex2D(bgSampler, texcoord+N.xy*thickness)



Transparency (based on thickness)



Final Shaded Translucent Surface



Shadows

 Since fluid is translucent, we 
expect it to cast coloured shadows

 Solution - render fluid surface 
again (using same technique), but 
from light’s point of view

 Generate depth (shadow) map and 
color map (thickness)

 Project onto receivers (surface and 
ground plane)





Surface Without Shadows

No Shadows



Surface Without Shadows

Shadow Map



With Shadows



Problems

 Only generates surface closest to 
camera
 Hidden somewhat by thickness 

shading
 Could be correctly rendered using 

ray tracing
 Multiple refractions, reflections

 Possible to ray trace using the 
same uniform grid acceleration 
structure used for simulation
 But still quite slow today



Artifact – can’t see further surfaces through volume



Caustics

 Refractive caustics are generated 
when light shines through a 
transparent and refractive material

 Light is focused into distinctive 
patterns



Caustics

Image by Rob Ireton



Caustics Algorithm

 We use a simple image-space 
technique
 Similar to Wyman et al (see refs.)

 For each point in light view, 
calculate ray refracted through 
surface from light
 uses surface position and normal

 Intersect ray with ground plane
 Render point splats (“photons”) 

with additive blending



Caustics Diagram
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Without Caustics



With Caustics



Caustics

 Note - caustics are only cast on 
ground plane, not on fluid surface!

 Can perform multiple times with 
different indices of refraction to 
simulate refractive dispersion (R, 
G, B)

 Quite expensive – requires 
rendering e.g. 512*512 = 256K 
points



Adding Surface Detail

 Surface can be too smooth
 Doesn’t show flow well

 Solution: add noise
 Render spheres again, using 3D 

noise texture in object-space
 Moves with fluid

 Store in noise render target
 Can be used during surface shading to 

perturb normal









DEMO



Summary

 Particle-based fluids are practical 
for use in games using today’s 
hardware 

 Rendering particle-based fluids can 
be simple and fast



Future Work

 Use Compute Shader for more 
efficient bilateral blur
 Similar to diffusion DOF

 Polygon mesh collisions using BVH
 Add spray / foam
 Wet maps
 Direct3D 11 sample to be released 

in SDK soon



Questions?



Thanks

 Wladimir J. van der Laan, Rouslan 
Dimitrov, Miguel Sainz
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