

Screen Space Fluid
Rendering for Games

Simon Green, NVIDIA

Overview

 Introduction
 Fluid Simulation for Games
 Screen Space Fluid Rendering
 Demo

Introduction

 DirectX 11 and DirectCompute enable
physics effects to be computed and
rendered directly on the GPU

 DirectCompute allows flexible general
purpose computation on the GPU
 sorting, searching
 spatial data structures

 DirectX 11 has good interoperability
between Compute shaders and graphics
 can render results efficiently

Fluid Simulation for
Games
 Fluids are well suited to GPU

 data parallel

 Many different techniques
 Eulerian (grid-based)
 Lagrangian (particle-based)
 Heightfield

 Each has its own strengths and
weaknesses

 To achieve realistic results, games need
to combine techniques

Particle Based Fluid
Simulation
 Smoothed particle hydrodynamics

(SPH)
 Good for spray, splashes
 Easy to integrate into games

 no fixed domain
 particles simple to collide with scene

 Simulation can be provided by
 Physics middleware (e.g. Bullet,

Havok, PhysX)
 or custom DirectCompute or CPU code

Fluid Rendering

 Rendering particle-based fluids is
difficult
 Simulation doesn’t naturally generate

a surface (no grid, no level set)
 Just get particle positions and density

 Traditionally, rendering done using
marching cubes
 Generate density field from particles
 Extract polygon mesh isosurface
 Can be done on GPU, but very

expensive

Screen Space Fluid
Rendering
 Inspired by “Screen Space

Meshes” paper (Müller et al)
 See: van der Laan et al “Screen

space fluid rendering with
curvature flow”, I3D 2009

 Operates entirely in screen-space
 No meshes

 Only generates surface closest to
camera

Screen Space Fluid
Rendering
camera

particles

surface

Screen Space Fluid
Rendering - Overview
 Generate depth image of particles

 Render as spherical point sprites
 Smooth depth image

 Gaussian bilateral blur
 Calculate surface normals and

position from depth
 Shade surface

 Write depth to merge with scene

Screen Space Fluid
Rendering

Depth
Image

Thickness
Image

Background
Image

Depth
Smoothing

Particles

Smoothed
Depth
Image

Surface
Shader

Scene

Final
Shaded
Image

Rendering Particle
Spheres
 Render as point sprites (quads)
 Calculate quad size in vertex

shader (constant in world-space)
 Calculate sphere normal and depth

in pixel shader
 Discard pixels outside circle
 Not strictly correct (perspective

projection of a sphere can be an
ellipsoid)
 But works fine in practice

PSOutput particleSpherePS(
float2 texCoord : TEXCOORD0,
float3 eyeSpacePos : TEXCOORD1,
float sphereRadius : TEXCOORD2,
float4 color : COLOR0)

{
PSOutput OUT;

// calculate eye-space sphere normal from texture coordinates
float3 N;
N.xy = texCoord*2.0-1.0;
float r2 = dot(N.xy, N.xy);
if (r2 > 1.0) discard; // kill pixels outside circle
N.z = -sqrt(1.0 - r2);

// calculate depth
float4 pixelPos = float4(eyeSpacePos + N*sphereRadius, 1.0);
float4 clipSpacePos = mul(pixelPos, ProjectionMatrix);
OUT.fragDepth = clipSpacePos.z / clipSpacePos.w;

float diffuse = max(0.0, dot(N, lightDir));
OUT.fragColor = diffuse * color;

return OUT;
}

Rendering Particle
Spheres 0

1

1

r

Point Sprite Spheres

Sphere Depth

Calculating Normals

 Store eye-space sphere depth to
floating point render target

 Can calculate eye-space position
from UV coordinates and depth

 Use partial differences of depth to
calculate normal
 Look at neighbouring pixels

 Have to be careful at edges
 Normal may not be well-defined
 At edges, use difference in opposite

direction (hack!)

Calculating Normals
(code)

// read eye-space depth from texture
float depth = tex2D(depthTex, texCoord).x;
if (depth > maxDepth) {

discard;
return;

}

// calculate eye-space position from depth
float3 posEye = uvToEye(texCoord, depth);

// calculate differences
float3 ddx = getEyePos(depthTex, texCoord + float2(texelSize, 0)) - posEye;
float3 ddx2 = posEye - getEyePos(depthTex, texCoord + vec2(-texelSize, 0));
if (abs(ddx.z) > abs(ddx2.z)) {

ddx = ddx2;
}

float3 ddy = getEyePos(depthTex, texCoord[0] + vec2(0, texelSize)) - posEye;
float3 ddy2 = surfacePosEye - getEyePos(depthTex, texCoord + vec2(0, -texelSize));
if (abs(ddy2.z) < abs(ddy.z)) {

ddy = ddy2;
}

// calculate normal
vec3 n = cross(ddx, ddy);
n = normalize(n);

ddx

ddy n

Sphere Normals Calculated From Depth

Smoothing

 By blurring the depth image, we
can smooth the surface

 Use Gaussian blur
 Needs to be view-invariant

 Constant width in world space
 -> Variable in screen-space space

 Calculate filter width in shader
 Clamped to maximum radius in screen

space (e.g. 50 pixels) for performance

Sphere Depth

Naively Smoothed Depth

Calculated Normal

Diffuse Shaded Surface

Bilateral Filter

 Problem: we want to preserve the
silhouette edges in depth image
 So particles don’t get blended into

background surfaces
 Solution: Bilateral Filter

 Edge-preserving smoothing filter
 Called “Surface Blur” in Photoshop
 Regular Gaussian filter is based only

on only distance in image domain
 Bilateral filter also looks at difference

in range (image values)
 Two sets of weights

Bilateral Filter Code
float depth = tex2D(depthSampler, texcoord).x;

float sum = 0;
float wsum = 0;
for(float x=-filterRadius; x<=filterRadius; x+=1.0) {

float sample = tex2D(depthSampler, texcoord + x*blurDir).x;

// spatial domain
float r = x * blurScale;
float w = exp(-r*r);

// range domain
float r2 = (sample - depth) * blurDepthFalloff;
float g = exp(-r2*r2);

sum += sample * w * g;
wsum += w * g;

}

if (wsum > 0.0) {
sum /= wsum;

}
return sum;

Note – not optimized!

Sphere Depth

Bilateral Filtered Depth

Diffuse Shaded Surface

Bilateral Filter

 Bilateral filter is not strictly
separable
 Can’t separate into X and Y blur

passes
 Non-separable 2D filter is very

expensive
 But we can get away with

separating, with some artifacts
 Artifacts not very visible once other

shading added

Diffuse Shaded Surface
Using Separated Bilateral Filter

Surface Shading

 Why not just blur normals?
 We also calculate eye-space

surface position from the
smoothed depth
 Important for accurate specular

reflections
 Once we have a per-pixel surface

normal and position, can shade as
usual

Diffuse Shading – dot(N, L)

Wrapped Diffuse Shading – dot(N,L)*0.5+0.5

Specular (Blinn-Phong)

Fresnel
 Surfaces are more reflective at

glancing angles
 Schlick's approximation

 θ is incident angle
 cos(θ) =dot(N, V)

 R0 is the reflectance at normal
incidence

 Can vary exponent for visual effect

Fresnel Approximation

Cubemap Reflection

Cubemap Reflection * Fresnel

Final Opaque Surface with Reflections

Thickness Shading

 Fluids are often transparent
 Screen-space surface rendering

only generates surface nearest
camera
 Looks strange with transparency
 Can’t see surfaces behind front

 Solution – shade fluid as semi-
opaque using thickness through
volume to attenuate color

Generating Thickness

 Render particles using additive
blending (no depth test)
 Store in off-screen render target
 Render smooth Gaussian splats
 or just discs, and then blur

 Only needs to be approximate
 Very fill-rate intensive

 Can render at lower resolution

Volume Thickness

Volumetric Absorption

d

I=exp(-kd)

I=1

 Beer's Law
 Light decays exponentially with distance
 Use different constant k for each color

channel

Color due to Absorption

Background Image Refracted in 2D
tex2D(bgSampler, texcoord+N.xy*thickness)

Transparency (based on thickness)

Final Shaded Translucent Surface

Shadows

 Since fluid is translucent, we
expect it to cast coloured shadows

 Solution - render fluid surface
again (using same technique), but
from light’s point of view

 Generate depth (shadow) map and
color map (thickness)

 Project onto receivers (surface and
ground plane)

Surface Without Shadows

No Shadows

Surface Without Shadows

Shadow Map

With Shadows

Problems

 Only generates surface closest to
camera
 Hidden somewhat by thickness

shading
 Could be correctly rendered using

ray tracing
 Multiple refractions, reflections

 Possible to ray trace using the
same uniform grid acceleration
structure used for simulation
 But still quite slow today

Artifact – can’t see further surfaces through volume

Caustics

 Refractive caustics are generated
when light shines through a
transparent and refractive material

 Light is focused into distinctive
patterns

Caustics

Image by Rob Ireton

Caustics Algorithm

 We use a simple image-space
technique
 Similar to Wyman et al (see refs.)

 For each point in light view,
calculate ray refracted through
surface from light
 uses surface position and normal

 Intersect ray with ground plane
 Render point splats (“photons”)

with additive blending

Caustics Diagram

surface

receiver

light
image plane

Without Caustics

With Caustics

Caustics

 Note - caustics are only cast on
ground plane, not on fluid surface!

 Can perform multiple times with
different indices of refraction to
simulate refractive dispersion (R,
G, B)

 Quite expensive – requires
rendering e.g. 512*512 = 256K
points

Adding Surface Detail

 Surface can be too smooth
 Doesn’t show flow well

 Solution: add noise
 Render spheres again, using 3D

noise texture in object-space
 Moves with fluid

 Store in noise render target
 Can be used during surface shading to

perturb normal

DEMO

Summary

 Particle-based fluids are practical
for use in games using today’s
hardware

 Rendering particle-based fluids can
be simple and fast

Future Work

 Use Compute Shader for more
efficient bilateral blur
 Similar to diffusion DOF

 Polygon mesh collisions using BVH
 Add spray / foam
 Wet maps
 Direct3D 11 sample to be released

in SDK soon

Questions?

Thanks

 Wladimir J. van der Laan, Rouslan
Dimitrov, Miguel Sainz

References
 Robert Bridson, “Fluid Simulation for Computer

Graphics”, A K Peters, 2008
 M. Müller, S. Schirm, S. Duthaler, ”Screen

Space Meshes”, in Proceedings of ACM
SIGGRAPH / EUROGRAPHICS Symposium on
Computer Animation (SCA), 2007

 CORDS, H., AND STAADT, O. 2008. “Instant
Liquids”. In Poster Proceedings of ACM
Siggraph/Eurographics Symposium on Computer
Animation

 Wladimir J. van der Laan, Simon Green, Miguel
Sainz, “Screen space fluid rendering with
curvature flow”, Proceedings of the 2009
symposium on Interactive 3D graphics and
games

 Chris Wyman and Scott Davis. "Interactive
Image-Space Techniques for Approximating
Caustics." ACM Symposium on Interactive 3D
Graphics and Games, 153-160. (March 2006)

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Introduction
	Fluid Simulation for Games
	Particle Based Fluid Simulation
	Slide Number 7
	Fluid Rendering
	Screen Space Fluid Rendering
	Screen Space Fluid Rendering
	Screen Space Fluid Rendering - Overview
	Screen Space Fluid Rendering
	Rendering Particle Spheres
	Rendering Particle Spheres
	Slide Number 15
	Slide Number 16
	Calculating Normals
	Calculating Normals (code)
	Slide Number 19
	Smoothing
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Bilateral Filter
	Bilateral Filter Code
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Bilateral Filter
	Slide Number 31
	Surface Shading
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Fresnel
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Thickness Shading
	Generating Thickness
	Slide Number 46
	Volumetric Absorption
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Shadows
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Problems
	Slide Number 58
	Caustics
	Caustics
	Caustics Algorithm
	Caustics Diagram
	Without Caustics
	With Caustics
	Caustics
	Adding Surface Detail
	Slide Number 67
	Slide Number 68
	Slide Number 69
	DEMO
	Summary
	Future Work
	Questions?
	Thanks
	References

