

Advanced Techniques in Real-time Hair

Rendering and Simulation

SIGGRAPH 2010 Course Notes

Lecturers:

Cem Yuksel

Texas A&M University

Cyber Radiance

Sarah Tariq

NVIDIA

The latest version of the course notes can be found at

http://www.cemyuksel.com/?x=RealtimeHairCourseNotesSiggraph2010

http://www.sarahtariq.com/HairCourseNotes_SIGGRAPH2010.pdf

Abstract

Hair rendering and simulation have always been challenging tasks, especially in real-time. Due to their

high computational demands, they have been vastly omitted in real-time applications and studied by a

relatively small group of graphics researchers and programmers. With recent advancements in both

graphics hardware and software methods, real-time hair rendering and simulation are now possible with

reasonable performance and quality. However, achieving acceptable levels of performance and quality

requires specific expertise and experience in real-time hair rendering. The aim of this course is to bring

the accumulated knowledge in research and technology demos to real world software such as video

games and other commercial or research oriented real-time applications. We begin with explaining the

fundamental techniques for real-time hair rendering and then present alternative approaches along

with tips and tricks to achieve better performance and/or quality. We also provide an overview of

various hair simulation techniques and present implementation details of the most efficient techniques

suitable for real-time applications. Moreover, we provide example source codes as a part of our lecture

notes.

Latest Version of the Course Notes

The latest version of the course notes can be found at

http://www.cemyuksel.com/?x=RealtimeHairCourseNotesSiggraph2010

http://www.sarahtariq.com/HairCourseNotes_SIGGRAPH2010.pdf

Lecturers

Cem Yuksel

Texas A&M University

Cyber Radiance

Cem Yuksel is the founder of Cyber Radiance LLC and is receiving his Ph.D. from Texas A&M University in

2010. He designed and programmed Hair Farm, a leading hair software plugin for 3ds Max, used by

various production studios and individual artists. His published research work on hair includes hair

modeling with hair meshes, curve formulations, real-time hair shadows, real-time computation of

multiple scattering in hair, and efficient global illumination techniques for hair. His other published

graphics research includes methods like mesh colors for efficiently storing color data on arbitrary

meshes and wave particles for real-time water simulation.

cem@cemyuksel.com

www.cemyuksel.com

www.cyberradiance.com

Sarah Tariq

NVIDIA

Sarah Tariq is a software engineer on NVIDIA's Developer Technology team, where she works primarily

on implementing new rendering and simulation techniques that exploit the latest graphics hardware,

and helping game developers to incorporate these techniques. During her time at NVIDIA she has been

involved in the development of several game titles for the PC, including Hellgate: London, Supreme

Commander and Dark Void, and has helped optimize several other titles. She has presented talks at

various conferences, including SIGGRAPH and GDC. Before joining NVIDIA, Sarah pursued graduate

studies at Georgia Tech, where she worked on research projects including subsurface reflectance

capture of skin.

stariq@nvidia.com

www.sarahtariq.com

www.nvidia.com

Course Overview

8:30 am Introduction and Fundamentals of CG Hair [Yuksel]

8:40 am Data Management and Rendering Pipeline [Yuksel and Tariq]

 - Overview

 - Rendering Hair as Poly Lines

 - Rendering Hair as Camera Facing Polygons

 - Managing Dynamic Hair Data

 - Efficiently Sending Data to GPU

 - Generating Hair on the GPU

9:15 am Transparency and Antialiasing [Yuksel and Tariq]

 - Transparency and Blending

 - Depth Sorting for Blending

 - Avoiding Sorting

 - Antialiasing

 - Best Practices for Better Performance and Quality

9:30 am Hair Shading [Yuksel]

 - Kajiya-Kay Shading Model for Hair

 - Physically Based Hair Shading

 - Improving Shading Performance on the GPU

10:10 am Q & A [Yuksel and Tariq]

10:15 am Break

10:30 am Hair Shadows [Yuksel and Tariq]

 - Shadow Maps

 - Transparent Shadow Mapping for Hair

 - Shadow Filtering

 - Simplified Shadow Maps for High Performance

11:05 am Multiple Scattering in Hair [Yuksel]

 - Introduction to Multiple Scattering

 - Dual Scattering Approximation

 - Implementation Notes

11:25 am Hair Dynamics for Real-time Applications [Yuksel and Tariq]

 - Overview of Hair Simulation Techniques

 - Fast Simulation of Hair on the GPU

 - Handling Hair-Hair Interaction

 - Efficient Collision Detection and Handling for Hair

 - Simulating Hair with Hair Meshes

12:10 pm Conclusion / Q & A [Yuksel and Tariq]

Introduction and Fundamentals of CG Hair

Hair is known to be an extremely important visual component of virtual characters. However, hair

rendering has been avoided or substituted by extremely simplified and often highly unrealistic polygonal

approximation in most real-time graphics applications. With the advancement of the graphics hardware,

we believe that the time has come to handle hair rendering properly in real-time graphics applications.

In this course, we overview crucial components of hair rendering and simulation for real-time

applications and discuss how high performance results can be achieved with high quality images.

Human hair, especially when it is long, often forms an extremely complicated geometric structure. A

person can have over 100 thousand hair strands and each them is an extremely thin fiber and can form

rather complicated shapes. Therefore, a full hair model of a person presents various challenges in

efficiently handling this complicated structure, in terms of rendering and simulation, as well as

modeling.

The geometric complexity of hair also makes it difficult to realistically render it as a large surface, just

like any other object. While such approaches are commonly used in practice, it is very difficult, if

possible at all, to get realistic results with surface approximations of hair for most hair models. In this

course, we do not talk about "fake" hair rendering approaches like these, but concentrate on properly

rendering hair similar to the approaches used in offline hair rendering. We also explain how hair can be

rendered efficiently to serve the needs of a real-time application.

In computer graphics a hair strand is often represented by a curve with some thickness. This

representation ignores the details of the tubular shape of hair fibers, which is often unimportant,

because, in most cases, the projected thickness of a hair strand is less than the size of a pixel on the

screen. With this representation, a hair model in computer graphics is essentially a collection of curves.

Due to the large number of hair strands in a general hair model, it is often undesirable to explicitly

model each and every hair strand. Therefore, most hair modeling techniques provide some form of

modeling only a portion of all hair strands (key hairs) and populating the rest of the hair model based on

the explicitly modeled ones. There are two main approaches for generating hair strands from the

modeled subset.

Single Strand Interpolation creates hair strands around each explicitly modeled curve based on the

shape of the curve. Wisps and generalized cylinder based techniques use this approach for generating a

complete hair model.

Multi Strand Interpolation creates hair strands in-between a number of explicitly modeled curves by

interpolating their shapes.

A recent approach for modeling and representing hair is the hair mesh structure, which permits

modeling of hair similar to polygonal modeling. A hair mesh is essentially a volumetric structure and the

hair strands are generated inside this volume following the shape and topology of the hair mesh.

1

2

3

4

5

The other option instead of rendering hair directly as lines is to expand the line segments into
camera facing quads. That is, for each line segment, expand it into two triangles facing the camera facing quads. That is, for each line segment, expand it into two triangles facing the
camera.

This expansion is pretty easy to do in the Geometry shader. We specify the input primitive for
the geometry shader to be a line (two vertices), from these we can figure out the tangent,
and taking the cross product of that with the eye vector gives us the two axis to expand the
quad:

//creating the four

Float3 Tangent = normalize(vertex[1].Position –
vertex[0].Position);

Float3 sideVec = normalize(cross(eyeVec, tangent));

float4x3 pos;

float3 width0 = sideVec * 0.5 * width * vertex[0].width;

float3 width1 = sideVec * 0.5 * width * vertex[1].width;

pos[0] = vertex[0].Position - width0;

pos[1] = vertex[0].Position + width0;

pos[2] = vertex[1].Position - width1;

pos[3] = vertex[1].Position + width1;

6

Rendering hair as triangle strips has a number of advantages. The hair strips can have

a real world thickness, and this thickness can vary both amongst strands and along a real world thickness, and this thickness can vary both amongst strands and along

the length of a given strand. This allows us to have different levels of detail in

different parts of the head, for example the hair near the front of the face can be

thinner (with more strands) and the hair near the center of the head (these are

strands that will probably get occluded by other strands on top) can be thicker (to

better occlude the scalp). Changing the thickness of the hair along its length allows us

to taper it towards the bottom, which is important for a realistic look. Finally, we

don’t have to worry about changing the line width as the hair moves closer or further

from the camera.

Rendering triangles can be costly however, both because of the additional amount of

geometry that we have to either pass to or create on the GPU and because of the

more costly rasterization.

7

8

Many of the methods used in literature and in practice simulate hair interactions on

only a subset of the hair, which are called guide strands, and then render a larger only a subset of the hair, which are called guide strands, and then render a larger

number of hair strands either by interpolating between the guide strands or by

clumping rendered hair to guide strands.

9

10

11

12

13

14

15

diagrams

16

Indexing into the attribute buffers

Need additional buffers that map the instanceID of the rendered hair strand to Need additional buffers that map the instanceID of the rendered hair strand to

the correct offset in the attribute buffers

Variable density of hair across the head also has to be considered in this

indexing

Makes efficiently changing the amount of hair rendered (for example for LOD)

hard

17

18

19

We have talked about how to efficiently send all the hair vertices to be rendered on

the GPU. However, given the large amount of data that we are trying to render, it is the GPU. However, given the large amount of data that we are trying to render, it is

actually more efficient to generate this data directly on the GPU. The newest

generation of GPUs introduce functionality to create large amounts of data directly

on the hardware; the tessellation engine. In this section we are going to be talking

about how to use the tessellation engine to easily and efficiently create hair strands

for rendering.

Note that GPUs have had functionality for creating data, the Geometry Shader, for

some amount of time. However, the Geometry shader is meant for only small

amounts of data expansion, for example for expanding a line into a quad. It is not

meant for, and is certainly not efficient at creating the amounts of geometry that we

would like to create for all the hair strands.

20

There are a number of reasons why the tessellation engine is useful for creating hair

for rendering. The most important advantage is that it is faster to create data using for rendering. The most important advantage is that it is faster to create data using

the tessellation engine than it is to create data on the CPU and then upload it to the

GPU, or even to render “dummy vertices” on the GPU and then evaluate them in the

vertex shader as we were discussing in the previous section. It is also easier to create

hair using the Tessellation engine than using the dummy vertex method. Using the

Tessellation engine we can have very fine grained and continuous control over the

level of detail.

21

The tessellation engine has three stages, two of them are programmable (the hull and domain shader) and one of The tessellation engine has three stages, two of them are programmable (the hull and domain shader) and one of
the is fixed function (the tessellator).

The Hull Shader is the first new stage and it comes after the vertex shader. The Hull shader takes as input a
“patch” - an input primitive which is a collection of vertices with no implied topology. In this stage we can
compute any per patch attributes, transform the input control points to a different basis, and compute
tessellation factors. Tessellation factors are floating point values which tell the hardware how many new vertices
you would like to create for each patch, and are necessary outputs of the Hull Shader.

The next stage is the Tessellator, which is fixed function. The tessellator only takes as input the tessellation factors
(specified by the Hull Shader) and the tessellation domain (which can be quads, triangles or isolines) and it creates
a semi-regular tessellation pattern for each patch. Note that the tessellator does not actually create any vertex
data – this data has to be calculated by the programmer in the Domain Shader.

The Domain shader is the last stage in the tessellation engine, and it is at this point that we actually create the
vertex data for the tessellated surface. The Domain shader is run once for each final vertex. In this stage we get as
input the parametric uvw coordinates of the surface, along with any control point data passed from the Hull
shader. Using these inputs we can calculate the attributes of the final vertex.

To render hair we are going to be using the Isoline tessellation Domain. In this mode

the hardware tessellator creates a number of iso lines (connected line segments) with

a multiple line segments per line. Both the number of isolines and the number of

segments per isoline can be specified by the programmer in the Hull Shader. The

actual positions and attributes of each tessellated vertex are evaluated using the

Domain Shader. The output from the Tessellation engine is a set of line segments

which can be rendered directly as lines, or they can be rendered as triangles by

expanding them to camera facing quads using the geometry shader.

23

This is an overview of a pass to create and render data using the tessellation engine This is an overview of a pass to create and render data using the tessellation engine

and the clump based interpolation method. Our input is a patch, which is a section of

a guide strand. The hull shader computes the tessellation factors for this patch, which

are the number of iso lines that we would like, and the number of line segments per

isoline. This data is passed to the tessellator. The Hull shader also calculates any per

patch data which might be needed by the Domain Shader. The Tessellator generates

the topology requested by the Hull shader. Finally the Domain Shader is invoked once

per final tessellated vertex. It is passed the parametric uv coordinates for the vertex,

and all the data output from the Hull Shader.

24

The input to our rendering pass is a set of guide strands that have been simulated and

tessellated (to make them smooth). The reason we choose to tessellate the strands

first is that we are going to be using these tessellated strands for creating both types

of final interpolated strands - computing this tessellated data once and reusing it for

both types of interpolation saves time.

The data that we have for each vertex includes its position, tangent, length (specified

as distance from the root in world space units) and local coordinate frames. This data

is stored on the GPU as buffers using structure of arrays format (we have separate

buffers for position, tangent etc).

25

Since we are going to be binding our data as texture buffers which can be sampled in

the Hull or Domain shader we don’t need to bind any data to the input assembler as the Hull or Domain shader we don’t need to bind any data to the input assembler as

vertex buffers (or for that matter index buffers or input layout):

unsigned int stride = 0;

unsigned int offset = 0;

ID3D11Buffer* buffer[] = { NULL };

pd3dContext->IASetVertexBuffers(0, 1, buffer, &stride, &offset);

pd3dContext->IASetInputLayout(NULL);

In addition, we set the primitive topology to be a patch with a single control point.

After this we call just call draw, with the total number of guide strands as input. We

might have to call this draw call more than one time depending on how many isolines

and line segments we want per patch (covered in the next slide).

26

Dividing input guide strands into patches:

Ideally we would like to specify a patch to be one complete guide hair (and the

tessellation engine would then create the specified number of final hair for this

patch). However, there is a hardware limit of maximum 64 isolines per patch and

maximum 64 segments per isoline, so if we want to create more than 64 segments

per isoline or more than 64 isolines per guide strand we have to partition the guide

strand into multiple patches.

For each patch that we render the hardware will create a specified number of output

isolines. In this example the number of isolines created for a patch is based on two

things – the floating point LOD specified globably (calculated based on the distance of

the head to the camera) and the local density of hair that an artist has created. This

local density is provided as a texture that is mapped to the scalp. Each guide strand

has texture coordinates that can be used to lookup the local density.

27

The Hull Shader is split into two parts, the main
shader which operates once on each input control
point, and the patch constant function which is
invoked once per patch. In our implementation we
are loading control point data for a patch from a
buffer, so the input to the hull shader is a dummy
patch consisting of a single control point. Since we
have only one input control point we are using the
patch constant function for all of the computation and
our main shader is null.

This listing shows the Patch Constant Shader, which calculates the tessellation factors and other data for each
patch.

Output.Edges is the tessellation factors, its semantic is SV_TessFactor. Edges[0] is the amount of iso lines that we
would like created for this patch, and Edges[1] is the amount of segments that we would like in each line. As we
mentioned before, the number of isolines per patch and the number of segments per isoline cannot exceed 64, so
the calculation of both Edges[0] and Edges[1] has to take this into account.

28

29

The Domain Shader is invoked for each final vertex that is created. As input to the The Domain Shader is invoked for each final vertex that is created. As input to the

domain shader we get the patch constant data and the per patch control point data

that we had output in the Hull shader. We also get as input a number of system

generated values, including SV_DomainLocation which gives the parametric uv

coordinates of the current vertex in the tessellated patch. We also get the id of the

patch that we are operating on (SV_PrimitiveID). Using these values we can figure out

which vertex and which strand we are operating on. These indices can then be used

to look up the guide strand attributes and also the random offsets that we are going

to use to offset this generated strand from the input guide strand.

30

31

32

Being able to dynamically reduce the complexity of the rendered hair (and thus

increase the performance) is very important for real time applications. The level of

detail for hair can be based on the distance of the hair/head from the camera, the

importance of the character, the probable occlusion of the patch or any other factor.

Using the tessellation engine we can change the LOD per patch by changing the

number iso-lines or the number of segments per line.

In the images on the right we are showing the same hair style under two levels of

detail. At the top we have the hair rendered at full LOD, and at the bottom we have

scaled down the rendering and increased performance by 2x. In this case we are

creating and rendering less hair strands, although we are making the strands a bit

wider so that there is no visible reduction in the density of hair. At the bottom right

we show what that lower level of detail would look like if you zoomed in.

33

Instead of linearly decreasing the amount of hair strands as LOD decreases we can Instead of linearly decreasing the amount of hair strands as LOD decreases we can

also have an artist create density and thickness maps for different discrete LODs, and

then blend between them to determine the amount of hair and its thickness for a

particular LOD. This way we can use the computational resources available (the

limited number of hair that we can create) in the region where the artists feel they

will have the highest impact.

34

35

An important part of creating realistic hair is having randomness between hair

strands. Without this we get a look that is too smooth and synthetic, as shown in the strands. Without this we get a look that is too smooth and synthetic, as shown in the

top figure. Adding randomness to strands gives a more natural look (bottom). Since

our model for rendering hair is based on interpolating many children hair from a

small set of guide hair, we need to introduce this randomness at the interpolated hair

level. The method we outline here is similar to that presented by [Choe and Ko 2005].

We pre-compute a small set of smooth random deviations and apply these to the

interpolation coordinates of the interpolated hair. (Without loss of generality) the

slide above shows how deviations are applied for clump based hair.

Creating Deviations

We create two types of deviations for the hair. The first, applied to a large number of

the hair strands, is small deviations near the tips. In our images we have applied this

deviation to 30% of the hair strands. The second, applied to only a small percent of

the hair strands (for example 10%), is deviation all along the strands. This second type

of deviation is what you see highlighted in the red box.

36

37

38

39

40

41

42

Tae-Yong Kim, “Algorithms for Hardware Accelerated Hair Rendering” Game Tech

20032003

43

44

45

46

47

48

Satish, Harris and Garland. “Designing Efficient Sorting Algorithms for Manycore

GPUs”GPUs”

Sintorn, Assarson, Olsson and Billeter. “Radix sort of line primitives in CUDA for real-

time Self-Shadowing and Transparency of Hair”

49

50

Stochastic Transparency, Eric Enderton, Erik Sintorn, Peter Shirley, David Luebke. I3D

2010 2010

51

52

53

54

High Quality Antialiasing. Tristan Lorach, 2007.

http://developer.download.nvidia.com/SDK/10.5/opengl/src/FroggyAA/doc/FroggyAhttp://developer.download.nvidia.com/SDK/10.5/opengl/src/FroggyAA/doc/FroggyA

A.pdf

55

Note that with MSAA edges of polygons are antialiased but interiors of polygons are

not.not.

Nick Thibieroz, Deferred Shading with Multisampling Anti-Aliasing in DirectX10.

ShaderX7

56

57

58

59

Volume Rendering Techniques, Milan Ikits, Joe Kniss, Aaron Lefohn, Charles Hansen.

Chapter 39, section 39.5.1, GPU Gems: Programming Techniques, Tips, and Tricks for Chapter 39, section 39.5.1, GPU Gems: Programming Techniques, Tips, and Tricks for

Real-Time Graphics(2004).

60

This technique allows us to accumulate the shadowing from the light at the same

time at that we are alpha blending the slices time at that we are alpha blending the slices

61

Since hair strands are very thin, when shading hair we assume that the projected

thickness of a hair strand on the screen is smaller than the size of a pixel. With this thickness of a hair strand on the screen is smaller than the size of a pixel. With this

assumption, we ignore the shading variations along the thickness of a hair strand and

compute the shading function for the whole thickness of the hair strand. Therefore,

we cannot use the surface normal of a hair strand fiber for shading hair with this

assumption. Instead, we use the tangent direction of the hair strand and consider the

hair strand as a thin tube that is aligned with this direction.

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

Bounces between

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

Iteratively satisfy distance constraints between Iteratively satisfy distance constraints between
vertices

To satisfy one distance constraint we need to modify
positions of the two vertices it connects

To satisfy many springs in parallel we partition VB into
disjoint sets of vertices by using two index buffers

IndexBuffer 1: (0,1) (2,3) (4,5) ….
IndexBuffer 2: (0,0) (1,2) (3,4) ….

One iteration consists of two passes;
first satisfying spring conditions between pairs of
vertices given by IndexBuffer 1
then the same for IndexBuffer2

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

As discussed previously, there are different methods available for interpolating hair

each with its own advantages. Interpolated hairs can be created along the length of a each with its own advantages. Interpolated hairs can be created along the length of a

single guide hair (clump based interpolation), or they can be created by combining

multiple guide hair (for example barycentric interpolation between three guide hair).

The advantage of using the latter approach is that it provides a good coverage of the

scalp and hair volume with relatively few hairs. Unfortunately, one of the drawbacks

of this approach is that it is likely to produce interpolated hairs that penetrate the

body or other collision objects. This is demonstrated in the top figure, where

interpolated strands are going through the collision obstacles of the head and body.

In this section we describe a method for efficiently detecting and avoiding cases

where multi-guide hair interpolation leads to hair penetration into objects.

136

As we see in Figure(a) the guide hairs avoid the collision obstacle since they are

explicitly simulated. The interpolated hairs however are only produced using the explicitly simulated. The interpolated hairs however are only produced using the

positions of the guide hair and have no physical simulation.

In Figure(b) we see the results of interpolation using only a single guide hair to create

a given interpolated hair. The interpolated hairs penetrate the collision object slightly,

but largely follow their guide hair.

In Figure(c) however we see much worse penetration of interpolated hair even

though the guide hairs are not penetrating the object. This is because the

interpolated hairs are created by averaging the positions of many guide hair and this

process gives us no guarantees that the interpolated positions will not go straight

through the collision object (for example the head).

137

In order to avoid these collisions we first detect the vertices where collisions occur

and then switch those vertices to a more conservative interpolation approach, like and then switch those vertices to a more conservative interpolation approach, like

the single strand interpolation.

It is important to note that it is not sufficient to address only those vertices in the

interpolated hair strands that actually undergo a penetration; altering their positions

necessitates that we alter the positions of all vertices beneath them (and some above

them) as well.

This is demonstrated in figures above. If, as in figure(b), we only change the

interpolation method of those vertices directly undergoing a collision the remaining

hair strand below the modified vertices looks un-natural in its original position.

Instead, we need to modify the interpolation mode of all vertices that are undergoing

a collision or are below such vertices, as in Figure(c).

138

In order to identify hair vertices that are below other object-penetrating vertices we

do a pre-pass. In this pre-pass we render all the interpolated hair to a texture; all do a pre-pass. In this pre-pass we render all the interpolated hair to a texture; all

vertices of an interpolated hair strand are rendered to the same pixel. For each hair

vertex we output its ID (number of vertices that separate the current vertex from the

hair root) if that vertex collides with a collision object. Otherwise we output a large

constant.

This rendering pass is performed with minimum blending. The result of the pass is a

texture that encodes for each interpolated hair strand whether any of its vertices

intersect a collision object, and if they do, what is the first vertex that does so.

We can then use this texture to switch the interpolation mode of any vertex of an

intersecting hair strand below the first intersecting vertex, as in the figure on the left.

139

In the Figures above we can see the result of this step visualized on the hair. Here we

render each vertex as red if its ID is greater than or equal to the minimum ID that we render each vertex as red if its ID is greater than or equal to the minimum ID that we

wrote out in the pre-pass.

We can then use our pre-calcuated collision texture to correctly switch the

interpolation mode of interpolated hair when we are creating them. In the shader

where we calculate the interpolated hair position we read the texture to determine if

the current vertex is above or below the first intersecting vertex of the strand.

If the current vertex is below the first intersecting vertex we use the single strand

interpolation method to calculate its position. We also employ a blending zone of

several vertices above the first intersecting vertex to slowly blend between the two

interpolation modes hence avoiding a sharp transition

140

To appear in the ACM SIGGRAPH conference proceedings

Hair Meshes

Cem Yuksel∗

Cyber Radiance

Scott Schaefer†

Texas A&M University

John Keyser‡

Texas A&M University

Figure 1: An example hair mesh model and the final hair model generated using this hair mesh and procedural styling operations.

Abstract

Despite the visual importance of hair and the attention paid to hair
modeling in the graphics research, modeling realistic hair still re-
mains a very challenging task that can be performed by very few
artists. In this paper we present hair meshes, a new method for
modeling hair that aims to bring hair modeling as close as possible
to modeling polygonal surfaces. This new approach provides artists
with direct control of the overall shape of the hair, giving them the
ability to model the exact hair shape they desire. We use the hair
mesh structure for modeling the hair volume with topological con-
straints that allow us to automatically and uniquely trace the path of
individual hair strands through this volume. We also define a set of
topological operations for creating hair meshes that maintain these
constraints. Furthermore, we provide a method for hiding the vol-
umetric structure of the hair mesh from the end user, thus allowing
artists to concentrate on manipulating the outer surface of the hair
as a polygonal surface. We explain and show examples of how hair
meshes can be used to generate individual hair strands for a wide
variety of realistic hair styles.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Curve, surface, solid, and object
representations;

Keywords: Hair modeling, hair mesh, volume modeling

∗e-mail: cem@cemyuksel.com
†e-mail: schaefer@cse.tamu.edu
‡e-mail: keyser@cse.tamu.edu

1 Introduction

Hair is an extremely important visual component of virtual char-
acters. Therefore, it is crucial to equip artists with powerful tools
that can help them sculpt the exact hair model they desire. Unfor-
tunately, realistic hair models may require hundreds of thousands
of hair strands, formed into exceptionally complicated geometric
structures. The characteristics of individual hairs, the styling prod-
ucts applied to hairs, and the physical forces affecting the hairs all
impact the overall look. Hence, a hair modeling tool should be pow-
erful enough to handle a wide range of hair styles, simple enough
that the tremendous complexity of the model is hidden from the
user, and controllable such that artists can easily express their de-
sired outcome.

Despite a considerable amount of research and a variety of imple-
mentations over the past two decades, hair modeling still remains
an open challenge; there is no solution that is widely accepted in the
graphics industry. To reduce the complexity of hair modeling, al-
most all existing approaches generate fine details of the hair model
through procedural techniques. These procedural tools relieve the
burden of dealing with every individual hair strand, allowing artists
to concentrate on the overall look of the hair model. Thus, the main
modeling effort on the part of the artist is in defining the global
shape of the hair.

Even though hair is made up of many thin strands, we often inter-
pret hair models as a surface. Therefore, the shape of this outer
surface is important when modeling a particular hair style. Existing
hair modeling approaches either define the shape of the hair model
indirectly through various parameters or concentrate on the shapes
of individual hair strands or bundles. In either case, the outer sur-
face of the hair model is not explicitly defined. For this reason many
skilled artists first model the outer surface with standard surface
modeling tools and then use this surface as a guide while modeling
hairs, attempting to place hairs in positions that will match that sur-
face. This indirect control can be rather time consuming, especially
when an artist desires to change the shape of the hair surface later.

In this paper we present a new alternative, hair meshes, that aims
to bring hair modeling as close as possible to modeling polygonal
meshes. Figure 1 shows an example hair mesh and the hair model

1

To appear in the ACM SIGGRAPH conference proceedings

created using this hair mesh. A hair mesh represents the entire vol-
ume of hair with topological constraints that allow us to easily trace
the path of hairs from the scalp through the volume. The user has
the ability to explicitly control the topological connections within
the hair mesh, thus allowing creation of a wide range of possible
hair models. A user will typically only interact with the external
surface of the mesh volume, using this surface to explicitly con-
trol the shape of the hair. Internal vertices of the mesh volume are
automatically placed based on the external surface. Since internal
vertices do not need to be manipulated directly, artists who are al-
ready skilled at polygonal surface modeling can easily model hair
with the flexibility and direct control of polygonal structures.

2 Related Work

There is a large body of previous research on virtual hair. In this
section we briefly overview most related methods. We recommend
the reader refer to Ward et al. [2007a] for a recent, extensive survey
of hair methods in Computer Graphics.

The high geometric complexity of hair and the wide variety of real-
world hair styles make hair modeling a challenging task. Therefore,
most hair modeling techniques are based on controlling collections
of hair strands at once. Perhaps the simplest approach to hair mod-
eling is representing hairs as parametric surfaces (e.g. NURBS)
called strips [Koh and Huang 2001; Liang and Huang 2003; No-
ble and Tang 2004]. Using texture mapping with alpha channels,
these surfaces look like a flat group of hair strands. Even though
these techniques can be improved by adding thickness to this sur-
face [Kim and Neumann 2000], they are very limited in terms of the
models these methods can represent and are not suitable for realistic
hair modeling.

A common hair modeling technique is to use wisps or generalized
cylinders to control mostly cylindrical bundles of hairs with 3D
curves [Chen et al. 1999; Yang et al. 2000; Xu and Yang 2001].
While these approaches are especially good at modeling hair styles
with well defined clusters, it is often difficult and time consuming
to shape a collection of wisp curves. Even making simple changes
to an existing hair model can be exhausting depending on the num-
ber of curves to be edited. Multi-resolution approaches [Kim and
Neumann 2002; Wang and Yang 2004] can improve the modeling
process, yet this improvement depends on the complexity of the hair
style and how close the desired hairstyle is to the types supported
in the system.

Researchers have also tried using different physically-based tech-
niques to shape hair strands. Anjyo et al. [1992] simulated the
effect of gravity to find the rest poses of hair strands. Hadap and
Magnenat-Thalmann [2000] modeled hairs as streamlines from a
fluid dynamics simulation around the head. Yu [2001] used 3D vec-
tor fields to shape hairs by placing vector field primitives, and Choe
and Ko [2005] applied vector fields with constraints to shape wisps.
While various hair types can be modeled with these approaches, just
like other simulation methods, they can be difficult to control in a
precise manner.

Capturing a hair model from images [Kong et al. 1997; Grabli et al.
2002; Paris et al. 2004; Wei et al. 2005] is another alternative used
to automate the virtual hair modeling process. Even though the
recent methods [Paris et al. 2008] are very promising in terms of
the visual realism of the results, these methods do not incorporate
any artistic control.

Sketch based interfaces are also used for modeling hair [Malik
2005], both for cartoon hairstyles [Mao et al. 2005] and more real-
istic models [Wither et al. 2007]. Recently, Fu et al. [Fu et al. 2007]
proposed a sketch based interface to build a vector field, which is

(a) Hair Mesh (b) Generated Hairs (c) Styled Hairs

Figure 2: (a) 2D representation of a hair mesh, (b) hairs generated
from this hair mesh, and (c) hairs after procedural styling opera-
tions. The green lines correspond to faces of the root layer, the tip
layer is colored purple. Blue hair mesh vertices are external, and
red are internal.

then used to generate individual hair strands. While these tech-
niques are practical for quickly generating a hairstyle, they are very
difficult to control for achieving a desired outcome precisely.

Other hair modeling approaches include explicitly modeling indi-
vidual hair strands [Daldegan et al. 1993; Lee and Ko 2001] or a
number of guide hairs [Alter 2004]. An interesting recent approach
aims to simulate a real-world hair dressing session using haptic
controls and physically-based simulation [Ward et al. 2007b]. Re-
cently, Wang et al. [2009] proposed a method for generating a new
hair model based on a given hair model.

3 Hair Mesh Modeling

In our approach, hair modeling begins by defining the outer surface
of the hair model. This outer surface is used to create a meshed
volume, the hair mesh (see Figure 2a). The hair mesh structure is
then used to generate individual hair strands (Figure 2b). As in most
existing techniques, fine details of the hair strands are subsequently
defined through procedural styling operations (Figure 2c), which
we will discuss at the end of this section.

3.1 The Hair Mesh Structure

A hair mesh is a 3D mesh describing the volume of space enclosing
the hair. It consists of layers of polygonal meshes, which typically
contain quadrilateral or triangular faces, but we place no restrictions
on the types of polygons used. Let F k be a set of faces for layer k.
We refer to the faces in F 0 as the root layer of the hair mesh (high-
lighted green in Figure 2a) and the polygons in this layer exactly
match the scalp model. This is the surface we will grow hairs from
and each face in F 0 will correspond to a bundle of hairs.

To create a path for each hair, we place a number of additional lay-
ers on top of the root layer, such that each face F k

j at layer k has a

one-to-one correspondence to a face F k+1

j at the next layer. Con-

necting the two corresponding faces F k
j and F k+1

j , we form a prism
such that these faces are the two base faces of the prism. We refer to
the collection of such prisms starting at F 0

j and connecting to faces

F k
j (where k ≥ 0) as a bundle, Fj . If for any face F k

j the corre-

sponding face F k+1

j of the next layer does not exist, hair strands of
this bundle terminate at layer k. We refer to the termination layer of
bundle Fj as nj and call the surface composed of all of the F

nj

j the

2

To appear in the ACM SIGGRAPH conference proceedings

Figure 3: A hair knot model and its hair mesh. The explicit control of the hair shape provided by hair meshes makes modeling such hairstyles
as easy as modeling any other surface.

tip layer, which is highlighted in purple in Figure 2a. Even though
there is a one-to-one mapping between faces at different layers, the
faces adjacent to a given face may change from one level to the next
(e.g. the mesh can split, separating bundles as in Figure 2a).

Given this correspondence between layers, we can create a path for
each hair from the root layer. For each point on the root layer, we
compute the barycentric coordinates of that point with respect to the
face F 0

j containing it using mean value coordinates [Floater 2003].
We then trace the path of a hair growing from that point through the
volume by applying these barycentric weights at every correspond-
ing face in the bundle up to the tip layer. Finally, we connect these
points together using C1 Catmull-Rom splines [1974] to generate
the final hair.

In the simplest case, all layers of a hair mesh have exactly the same
topology. However, as illustrated earlier, this is not a requirement.
The mesh is valid as long as each face has a corresponding face on
all subsequent layers. Therefore, a vertex can be connected to one
vertex (if the topology is locally the same) or to multiple vertices
(if the topology changes) on a neighboring layer.

To keep the hair mesh structure simple, we permit only a one-to-
many mapping of vertices from one layer to the next layer (note:
faces are always a one-to-one mapping), though a many-to-many
mapping of vertices can potentially generate a valid hair mesh. This
simple restriction ensures many useful properties, such as edges of
faces at one layer cannot collapse at the next layer, two faces at
any layer can be neighbors (i.e. share a vertex) only if they are
neighbors at the root layer, and the genus of the root layer is the
same as that of the set of bundles.

3.2 Topological Operations

Users must be given controls that provide a wide variety of mod-
eling operations, but at the same time these modeling operations
must preserve the topological constraints on the mesh. The input to
our system is a polygonal object that we would like to grow hairs
on. This object forms the root layer F 0 of our hair mesh. In the
beginning (when the hair mesh has no layers), the root and the tip
layers coincide (i.e. nj = 0 ∀j).

A user interacting with the mesh will typically model the hair by
“growing” the layers out from the root layer, specifying geometric
and topological changes in each layer. To perform this modeling,
the following operations are supported for creating and modifying
the hair meshes:

Face Extrude: This is our primary operation to create new layers.
Face extrusions are only permitted from the current tip layer faces,
as the extrusions of side faces would not generate valid hair meshes.

For each face F
nj

j to be extruded, a new face F
nj+1

j is created,
thereby generating a new prism in the hair mesh. This is typically

the very first operation we use to extend the root layer.

Face Delete: This operation deletes the face at the tip layer of a
bundle, thereby removing the last prism. When the root and the tip
layers coincide (nj = 0), a face delete operation is equivalent to
deleting a particular face from the root (and thus no hairs will be
created for that region).

Layer Insert: We use this operation to create new layers in be-
tween two intermediate layers. Though layer insert could be defined
as a local operation, to enforce one-to-many mapping of vertices we
perform the same operation on all faces that are topologically con-
nected in the layer at which the operation is applied. The new layer
is inserted before the layer that is selected.

Layer Remove: Similar to layer insertion, layer removal affects all
the topologically connected faces of a layer. When the layer to be
removed is the tip layer, this operation is identical to face delete(s).
The root layer cannot be removed as it would mean deleting the
root object.

Edge and Vertex Separate: Vertices and edges shared by more
than one face in a single layer can be topologically separated. This
topological separation creates multiple edges/vertices that are topo-
logically separated but are geometrically coincident. Subsequent
modeling operations may move these points geometrically. If the
separated vertex or edge is not at the tip layer, all corresponding
vertices or edges above this layer are also separated to ensure one-
to-many mapping of vertices.

Edge and Vertex Weld: The weld operation is the inverse of a
separate operation, and topologically joins the vertices or edges at
the same layer. To respect one-to-many mapping of vertices, this
operation can only weld vertices that correspond to the same vertex
at the root layer. Furthermore, all corresponding vertices below this
layer are also welded.

Face and Edge Divide and Subdivision: Splitting and subdivision
of faces can be easily defined over the hair mesh. This includes
standard approaches such as Catmull-Clark or Loop subdivision.
Any subdivision operation applied to a face must be propagated
throughout the entire bundle for that face. In addition, since subdi-
vision may modify adjacent faces, all bundles adjacent to that bun-
dle in the root layer may also be affected. Note that subdivision is
supported only on the layers of the hair mesh, not on the quadrilat-
eral faces that form the sides of the prisms in the hair mesh surface
(layer insertion provides a similar effect, there).

3.3 Geometrical Operations

The vertices of the hair mesh are described as either external ver-
tices, which lie on the outer surface of the mesh, or internal vertices.
This classification is illustrated in Figure 2a, where external vertices
are drawn in blue, and internal vertices in red. Note that several

3

To appear in the ACM SIGGRAPH conference proceedings

Figure 4: A simple hair bun modeled using hair meshes.

topological operations can generate new vertices (both external and
internal), or convert vertices between external and internal vertices.

In general, the user can explicitly position all these vertices. How-
ever, a large number of internal vertices may be generated during
construction of the hair mesh. Since the number of external vertices
is proportional to surface area and the interior to volume, the num-
ber of internal vertices may dominate the total number of vertices in
complex hair models. These vertices are necessary to determine the
path of a hair and provide adjacency information for hair bundles.
However, these internal vertices are problematic for the user be-
cause they lie inside the enclosed volume of the hair mesh, making
them hard to see, especially when the hair mesh is visualized as a
surface. Therefore, we provide the option to hide these internal ver-
tices and instead place them automatically based on the positions of
the external vertices.

Internal vertex placement is a part of the modeling process and is
executed every time the user moves or creates a group of external
vertices. Some of these operations (moving external vertices) can
affect a large number of internal vertices. For this reason, it is crit-
ical that the internal vertex placement algorithm be performed very
quickly, so as not to interrupt the modeling process.

While many techniques may be used to place internal vertices, we
choose a simple constrained quadratic minimization. We will define
an error metric in terms of the positions of all mesh vertices, fix
the external vertices, and solve for the positions of internal vertices
that minimize this metric. Our choice of error metric is motivated
by physical properties of hair. Namely, hair strands should have
a similar shape as nearby hair strands (later we will apply styling
operations to differentiate nearby hairs as explained in Section 3.4).

For each extruded prism between faces F k
j and F k+1

j , we can ap-
proximate the hair direction locally using the edges of the prism in
the extrusion direction. Let V k

j,i be the ith vertex of the face F k
j .

Then, an edge of the prism is given by the vertices V k
j,i and V k+1

j,i ,

and the hair direction locally along the edge is V k+1

j,i − V k
j,i. We

want to minimize the difference in the local hair direction between
adjacent edges along the extrusion direction of the prism.

If we sum over all of the quad faces that form the sides of the prisms
in the volume, the resulting minimization is of the form

min
∑

j

nj
∑

k=1

∑

i

∥

∥(V k+1

j,i − V
k

j,i) − (V k+1

j,i+1 − V
k

j,i+1)
∥

∥

2
,

subject to the constraint that the external vertices (or any others the
user wishes to fix) remain unchanged. We can easily minimize this
quadratic, which has a unique minimum, using Conjugate Gradi-
ents [Shewchuk 1994]. Since we use the current positions of the
internal vertices as a starting point for this minimization, Conjugate
Gradients typically converges to a solution in only a few iterations
and is quite fast. The red vertices in Figure 2a show the result of a
2D version of this optimization with the blue, external vertices as
constraints.

Figure 5: A futuristic hair bun model and its hair mesh.

3.4 Hair Styling

Hair mesh modeling can be thought of as an initial stage of model-
ing hair. The hair mesh defines the overall shape of the hair model
and the hair strands we generate conform to that model. However,
realistic hair is not always straight and many existing hair modeling
techniques can be applied to the hair strands to improve the real-
ism of the hair or reproduce specific hair styles. In our system, all
hair modeling operations applied to the hair strands after they are
generated from the hair mesh are called styling operations.

Procedural hair styling forms one group of such operations. These
operations typically deform the hair by moving the vertices of the
hair strands using a combination of procedural noise and trigono-
metric functions with various parameters. The functions can be
directly computed using the 3D position of each hair strand vertex.
However, this makes the hair style, which is applied using these
procedural operations, very sensitive to the initial 3D positions of
hair strand vertices. As a result, even minor modifications to the
hair mesh may significantly alter the shapes of some hair strands.
To avoid this undesired behavior, one can define these procedural
operations in the canonical space of a hair strand as in [Yu 2001]
or using the barycentric embedding of a hair strand within the hair
mesh. In our system we use the later approach.

In addition to procedural operations, we can easily combine our hair
modeling system with some previous hair modeling techniques that
use wisps. We achieve this by generating wisp curves from the hair
mesh similar to generating hair strand curves. In this case, indi-
vidual hair strands are not directly generated from the hair mesh,
but the wisp curves along with a number of parameters are used to
populate final hair strands. Note that wisp curves themselves can
go through procedural styling operations or explicit user modifica-
tions before generating the hair strands. Similarly, we can combine
our hair mesh modeling approach with multiresolution hair mod-
eling [Kim and Neumann 2002] by generating first level general-
ized cylinders using the hair mesh. Higher level generalized cylin-
ders and finally individual hair strands are then generated from the
first level generalized cylinders as described in [Kim and Neumann
2002]. This approach replaces the most laborious stage of multires-
olution hair modeling (as stated by Kim and Neumann [2002]) with
hair mesh modeling.

4 Results and Discussion

To demonstrate the capabilities of our hair mesh modeling approach
we present various hair models produced using our system. Fig-
ure 1 shows a typical hair model with its hair mesh. While similar
hair models can be prepared with many previous techniques, the
main advantage of the hair mesh is the ability to control the hair
shape by directly manipulating the outer surface.

4

To appear in the ACM SIGGRAPH conference proceedings

Figure 6: A complicated hair bun model and its hair mesh.

Figures 3, 4, and 5 show different hair models with buns and knots.
Such models are very difficult to prepare with most previous tech-
niques, but with hair meshes, modeling these hairstyles are no more
difficult than modeling the outer surface using any standard polyg-
onal modeling tool. Figure 6 shows a more complicated bun model.
Notice the fine detail of the bun and the explicit control of the hair
shape and direction available to the artist.

Depending on the complexity of the desired hair model, modeling
using hair meshes can take as short a time as a couple of minutes.
For example, the simple hair model shown in Figure 7 can be pre-
pared in a couple of minutes. While preparing a more complicated
hair model can take significantly longer, the explicit control pro-
vided by hair meshes makes it easy to edit the model and produce
the desired variation.

Figure 7: A simple hair model prepared within a couple of minutes.

Even though hair meshes are designed to model hair by letting the
user specify only the outer surface of the hair, they are also useful
when an artist desires to control the hair shape within the hair vol-
ume. Figure 8 shows such a complicated hair mesh model where
the artist explicitly shapes each hair bundle.

Figure 9 shows an example of combining hair mesh modeling with
wisp based hair modeling. Here the hair mesh in Figure 1 is used to
generate 200 wisp curves, instead of individual hair strands. Final
hair strands are then generated from these wisp curves as in Choe
and Ko [2005].

One useful property of our hair mesh modeling approach is the
complete separation of large and small scale details. While large
scale details that define the global shape of the hair model are con-
trolled using the hair mesh, fine details are introduced during the
styling process. Therefore, the same hair mesh can be used to gen-
erate different types of hair styles as shown in Figure 10. This tech-
nique can also be used for introducing significant style variations
within a hair model by generating one set of hair strands from a
hair mesh and applying one style, then using the same hair mesh
to generate another set of hair strands with a different style ap-
plied. By generating multiple sets of hairs with this procedure, style

Figure 8: A complicated hair mesh model and the hair generated
from this hair mesh.

variations of a hair model can be easily represented. The union of
these sets form the final hair model, and the global shape of the hair
model is explicitly controlled by a single hair mesh. This feature
is especially useful when modeling realistic hairs with rich varia-
tions such as frizzy hair and fly-aways. Figure 11 shows such an
example. Note that in many previous hair modeling techniques, in-
troducing these frizzy strands can be difficult or even impossible.

We designed the hair mesh modeling approach such that styling op-
erations are reserved for small scale details only and larger details
are explicitly modeled using the hair mesh. However, in our system
there is no restriction on the user side to forbid using styling op-
erations for large variations as well. When the style variations are
exaggerated, the perceived surface of hair formed by the final hair
strands can deviate from the surface defined by the hair mesh. This
deviation is especially undesirable when the hair mesh is used for
explicitly avoiding intersections of hairs with surrounding objects.
Note that undesired intersections can also be automatically avoided
at the hair strand level using the technique described by Kim and
Neumann [2002].

Hair mesh modeling merely provides a high level structure to eas-
ily define the global shape of a hair model. Unfortunately, it is not
possible to claim for any hair modeling technique that it can pro-
duce hair models that cannot be modeled using previous techniques,
since theoretically speaking all hair models can be produced by ex-

Figure 9: (Left) wisp curves generated from a hair mesh, (middle)
wisp curves after styling operations, and (right) final hair strands
generated from these wisp curves.

5

To appear in the ACM SIGGRAPH conference proceedings

Figure 10: A complicated hair mesh model and two different
hairstyles generated from the same hair mesh via different styling
operations.

plicitly modeling the hair strands. Moreover, the real power of hair
meshes is not the fact that various different hair models can be pre-
pared with this approach, either. Most existing techniques permit
a wide variety of hair styles to be generated. However, the lack of
explicit control over the global hair shape makes the existing tech-
niques difficult, if not impossible, to use to achieve the exact hair
model one aims for. On the other hand, hair meshes convert the
volumetric hair modeling problem to a surface modeling problem.
This significantly reduces the high complexity of volume model-
ing and brings hair modeling closer to standard polygonal surface
modeling. As a result, hair meshes offer a familiar interface to ex-
perienced modelers and make it very easy for them to sculpt the
exact hair models they desire.

We have also tried using hair meshes for simulating hair. We fol-
low an approach similar to that introduced by Chang et al. [2002].
Instead of picking representative hair strands (i.e. guide hairs), we
form an articulated rigid body chain directly from the edges of the
hair mesh that connect the vertices of one layer F k to the next layer
F k+1. Figure 12 shows example frames captured from our hair
mesh simulation system. We observed that physical simulations
using hair meshes can produce seemingly natural hair-hair interac-
tions with high performance. The hair mesh in Figure 12 includes
30 rigid body links and 120 chains, and the simulation runs at 92
fps on a 2.14 GHz Intel Core 2 Duo processor with a single thread
(note that such a simulation can be trivially multi-threaded).

5 Conclusions and Future Directions

We have introduced hair meshes for modeling hair using polygonal
surface tools. Our technique allows an artist to create complex hair
styles easily by providing explicit control over the overall shape
of the hair surface. By automatically placing internal vertices, the

Figure 11: Frizzy strands generated directly from the hair mesh as
an additional hair group on top of the hairs from Figure 9. The
close-up view on the right shows the effect of frizzy strands.

artist can concentrate on the outer surface shape of the hair, which
significantly simplifies the hair modeling process without limiting
direct control over the hair model shape.

We believe there are more applications of hair meshes than just
modeling. An example of using hair meshes for hair simulation
is presented in the previous section. Furthermore, real-time render-
ing of deforming hair such as the animation produced by our hair
simulation can be accelerated using hair meshes. Since the hair is
completely determined by the geometry of the hair mesh, the hair
geometry can be synthesized on the GPU simply by sending the
deformed positions of the hair mesh vertices, thereby significantly
saving graphics bus bandwidth. Hair meshes may also be used to
approximate shadow and ambient occlusion computations.

Acknowledgements

We would like to thank Lee Perry-Smith (www.ir-ltd.net) for pro-
viding the models and producing most of the hairstyles in this paper.
This work was supported in part by NSF grant CCF-07024099.

References

ALTER, J. S., 2004. Hair generation and other natural phenomena
with surface derived control volumes in computer graphics and
animation. U.S. Patent 6720962.

ANJYO, K., USAMI, Y., AND KURIHARA, T. 1992. A sim-
ple method for extracting the natural beauty of hair. In SIG-
GRAPH ’92: Proceedings of the 19th annual conference on
Computer graphics and interactive techniques, ACM, New York,
NY, USA, 111–120.

CATMULL, E., AND ROM, R. J. 1974. A class of local interpo-
lating splines. In Computer Aided Geometric Design, Academic
Press, Orlando, FL, USA, 317–326.

CHANG, J. T., JIN, J., AND YU, Y. 2002. A practical model
for hair mutual interactions. In SCA ’02: Proceedings of the
2002 ACM SIGGRAPH/Eurographics Symposium on Computer
Animation, ACM, New York, NY, USA, 73–80.

CHEN, L.-H., SAEYOR, S., DOHI, H., AND ISHIZUKA, M. 1999.
A system of 3d hair style synthesis based on the wisp model. The
Visual Computer 15, 4, 159–170.

6

To appear in the ACM SIGGRAPH conference proceedings

Figure 12: Sample frames captured from our real-time hair mesh simulation system. The last frame shows the structure of the simulated hair
mesh, which has 150 vertices in 5 layers. The simulation runs at 92 fps on a 2.14 GHz Intel Core 2 Duo processor with a single thread.

CHOE, B., AND KO, H.-S. 2005. A statistical wisp model and
pseudophysical approaches for interactive hairstyle generation.
IEEE Transactions on Visualization and Computer Graphics 11,
2, 160–170.

DALDEGAN, A., THALMANN, N. M., KURIHARA, T., AND

THALMANN, D. 1993. An integrated system for modeling,
animating and rendering hair. In Eurographics ’93, Blackwell
Publishers, Oxford, UK, R. J. Hubbold and R. Juan, Eds., Euro-
graphics, 211–221.

FLOATER, M. S. 2003. Mean value coordinates. Computer Aided
Geometric Design 20, 1, 19–27.

FU, H., WEI, Y., TAI, C.-L., AND QUAN, L. 2007. Sketching
hairstyles. In SBIM ’07: Proceedings of the 4th Eurographics
Workshop on Sketch Based Interfaces and Modeling, ACM, New
York, NY, USA, 31–36.

GRABLI, S., SILLION, F., MARSCHNER, S. R., AND LENGYEL,
J. E. 2002. Image-based hair capture by inverse lighting. In
Proc. Graphics Interface, 51–58.

HADAP, S., AND MAGNENAT-THALMANN, N. 2000. Interactive
hair styler based on fluid flow. In Eurographics Workshop on
Computer Animation and Simulation 2000, Springer, 87–99.

KIM, T.-Y., AND NEUMANN, U. 2000. A thin shell volume for
modeling human hair. In CA ’00: Proceedings of the Computer
Animation, IEEE Computer Society, Washington, DC, USA,
104.

KIM, T.-Y., AND NEUMANN, U. 2002. Interactive multiresolu-
tion hair modeling and editing. ACM Transactions on Graphics
(Proc. of SIGGRAPH 2002) 21, 3, 620–629.

KOH, C. K., AND HUANG, Z. 2001. A simple physics model to
animate human hair modeled in 2d strips in real time. In Pro-
ceedings of the Eurographic workshop on Computer animation
and simulation, Springer-Verlag New York, Inc., New York, NY,
USA, 127–138.

KONG, W., TAKAHASHI, H., AND NAKAJIMA, M. 1997. Gener-
ation of 3d hair model from multiple pictures. In Proceedings of
Multimedia Modeling, 183–196.

LEE, D. W., AND KO, H. S. 2001. Natural hairstyle modeling and
animation. Graphical Models 63, 2, 67–85.

LIANG, W., AND HUANG, Z. 2003. An enhanced framework for
real-time hair animation. In PG ’03: Proceedings of the 11th Pa-
cific Conference on Computer Graphics and Applications, IEEE
Computer Society, Washington, DC, USA, 467.

MALIK, S. 2005. A sketching interface for modeling and editing
hairstyles. In SBIM ’05: Proceedings of the 2nd Eurographics
Workshop on Sketch Based Interfaces and Modeling, 185–194.

MAO, X., ISOBE, S., ANJYO, K., AND IMAMIYA, A. 2005.
Sketchy hairstyles. In CGI ’05: Proceedings of the Computer
Graphics International 2005, IEEE Computer Society, Washing-
ton, DC, USA, 142–147.

NOBLE, P., AND TANG, W. 2004. Modelling and animating
cartoon hair with nurbs surfaces. In CGI ’04: Proceedings of
the Computer Graphics International, IEEE Computer Society,
Washington, DC, USA, 60–67.

PARIS, S., HECTOR M. BRICE N., AND SILLION, F. X. 2004.
Capture of hair geometry from multiple images. ACM Transac-
tions on Graphics (Proc. of SIGGRAPH 2004) 23, 3, 712–719.

PARIS, S., CHANG, W., KOZHUSHNYAN, O. I., JAROSZ, W.,
MATUSIK, W., ZWICKER, M., AND DURAND, F. 2008.
Hair photobooth: geometric and photometric acquisition of real
hairstyles. ACM Transactions on Graphics (Proc. of SIGGRAPH
2008) 27, 3, Article 30.

SHEWCHUK, J. R. 1994. An introduction to the conjugate gradient
method without the agonizing pain. Tech. rep., Pittsburgh, PA,
USA.

WANG, T., AND YANG, X. D. 2004. Hair design based on the hi-
erarchical cluster hair model. Geometric modeling: techniques,
applications, systems and tools, 330–359.

WANG, L., YU, Y., ZHOU, K., AND GUO, B. 2009. Example-
based hair geometry synthesis. ACM Transactions on Graphics
(Proc. of SIGGRAPH 2009) 28, 3, Article 56.

WARD, K., BERTAILS, F., KIM, T.-Y., MARSCHNER, S. R.,
CANI, M.-P., AND LIN, M. C. 2007. A survey on hair model-
ing: Styling, simulation, and rendering. IEEE Transactions on
Visualization and Computer Graphics 13, 2, 213–234.

WARD, K., GALOPPO, N., AND LIN, M. 2007. Interactive virtual
hair salon. Presence: Teleoperators and Virtual Environments
16, 3, 237–251.

WEI, Y., OFEK, E., QUAN, L., AND SHUM, H.-Y. 2005. Mod-
eling hair from multiple views. ACM Transactions on Graphics
(Proc. of SIGGRAPH 2005) 24, 3, 816–820.

WITHER, J., BERTAILS, F., AND CANI, M.-P. 2007. Realistic hair
from a sketch. In International Conference on Shape Modeling
and Applications, IEEE, Lyon, France, IEEE, 33–42.

XU, Z., AND YANG, X. D. 2001. V-hairstudio: An interactive tool
for hair design. IEEE Computer Graphics and Applications 21,
3, 36–43.

YANG, X. D., XU, Z., WANG, T., AND YANG, J. 2000. The
cluster hair model. Graphical Models 62, 2, 85–103.

YU, Y. 2001. Modeling realistic virtual hairstyles. In PG ’01:
Proc. of the 9th Pacific Conference on Comp. Graphics and Ap-
plications, IEEE Computer Society, Washington, DC, USA, 295.

7

EUROGRAPHICS 2008 / G. Drettakis and R. Scopigno
(Guest Editors)

Volume 27 (2008), Number 2

Deep Opacity Maps

Cem Yuksel1 and John Keyser2

Department of Computer Science, Texas A&M University
1cem@cemyuksel.com 2keyser@cs.tamu.edu

No shadows Opacity Shadow Maps Opacity Shadow Maps Density Clustering Deep Opacity Maps

– 16 layers 128 layers 4 layers 3 layers

(154 fps) (81 fps) (2.3 fps) (73 fps) (114 fps)

Figure 1: Layering artifacts of Opacity Shadow Maps are visible even with 128 layers, while Density Clustering has artifacts

due to inaccuracies. Deep Opacity Maps with only 3 layers can generate an artifact free image with the highest frame rate.

Abstract

We present a new method for rapidly computing shadows from semi-transparent objects like hair. Our deep opacity

maps method extends the concept of opacity shadow maps by using a depth map to obtain a per pixel distribution

of opacity layers. This approach eliminates the layering artifacts of opacity shadow maps and requires far fewer

layers to achieve high quality shadow computation. Furthermore, it is faster than the density clustering technique,

and produces less noise with comparable shadow quality. We provide qualitative comparisons to these previous

methods and give performance results. Our algorithm is easy to implement, faster, and more memory efficient,

enabling us to generate high quality hair shadows in real-time using graphics hardware on a standard PC.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Color, shading, shadow-
ing, and texture

Keywords: shadow maps, semi-transparent shadows, hair shadows, real-time shadows, GPU algorithms

1. Introduction

Self-shadowing is an essential visual element for rendering
semi-transparent objects like hair, fur, smoke, and clouds.
However, handling the transparency component is either in-
efficient or not possible for simple shadowing techniques.
Various algorithms have been proposed to address this issue
both for offline rendering [LV00,AL04] and interactive/real-
time rendering [KN01,MKBvR04]. In this paper we present

the deep opacity maps method, which allows real-time hair
rendering with dynamic lighting and semi-transparent shad-
ows. This new method is faster than the previous ones and
produces artifact free shadows (Figure 1). Even though we
focus on hair shadows, our method is applicable to other
semi-transparent objects.

The deep opacity maps method combines shadow map-
ping [Wil78] and opacity shadow maps [KN01] to give a

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.
Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and
350 Main Street, Malden, MA 02148, USA.

Cem Yuksel & John Keyser / Deep Opacity Maps

better distribution of opacity layers. We first render the hair
geometry as opaque primitives from the light’s view, record-
ing the depth values on a shadow map. Next we render an
opacity map from the light’s view similar to opacity shadow
maps. The novelty of our algorithm lies in the way that the
opacity layers are distributed using the depth map to cre-
ate opacity layers that vary in depth from the light source
on a per-pixel basis. Unlike previous interactive/real-time
transparent shadowing techniques [KN01, MKBvR04], this
new layer distribution guarantees that the direct illumina-
tion coming from the light source without being shadowed
is captured correctly. This property of deep opacity maps
eliminates the layering artifacts that are apparent in opac-
ity shadow maps. Moreover, far fewer layers are necessary
to generate high quality shadows.

The layering artifacts of the previous methods are es-
pecially significant in animated sequences or straight hair
models. Figure 1 shows a comparison of our deep opacity
maps algorithm to the previous methods. Layering artifacts
in opacity shadow maps [KN01] are significant when 16 lay-
ers are used, and even with 128 layers, diagonal dark stripes
are still visible on the left side of the hair model. Density
clustering [MKBvR04] produces a good approximation to
the overall shadows, but still suffers from visible artifacts
around the specular region. However, our deep opacity maps
method can produce an artifact-free image with fewer layers
and it is significantly faster.

The next section describes the previous methods. The de-
tails of our deep opacity maps algorithm are explained in
Section 3. We present the results of our method in Section 4,
and we discuss the advantages and limitations in Section 5
before concluding in Section 6.

2. Related Work

Most shadow computation techniques developed for hair
are based on Shadow Maps [Wil78]. In the first pass of
shadow mapping, shadow casting objects are rendered from
the light’s point of view and depth values are stored in a
depth map. While rendering the scene from the camera view
in the second pass, to check if a point is in shadow, one first
finds the corresponding pixel of the shadow map, and com-
pares the depth of the point to the value in the depth map.
The result of this comparison is a binary decision, so shadow
maps cannot be used for transparent shadows.

Deep Shadow Maps [LV00] is a high quality method for
offline rendering. Each pixel of a deep shadow map stores
a 1D approximate transmittance function along the corre-
sponding light direction. To compute the transmittance func-
tion, semi-transparent objects are rendered from the light’s
point of view and a list of fragments is stored for each pixel.
The transmittance function defined by these fragments is
then compressed into a piecewise linear function of approx-
imate transmittance. The value of the transmittance function

starts decreasing after the depth value of the first fragment
in the corresponding light direction. The shadow value at
any point is found similar to shadow maps, but this time the
depth value is used to compute the transmittance function at
the corresponding pixel of the deep shadow map, which is
then converted to a shadow value.

The Alias-free Shadow Maps [AL04] method is an-
other offline technique that can generate high quality semi-
transparent shadows. In this method, rasterization of the final
image takes place before the shadow map generation to find
the 3D positions corresponding to every pixel in the final
image. Then, shadows at these points are computed from the
light’s point of view, handling one occluding piece of geom-
etry at a time.

Opacity Shadow Maps [KN01] is essentially a simpler
version of deep shadow maps that is designed for interac-
tive hair rendering. It first computes a number of planes that
slice the hair volume into layers (Figure 2a). These planes
are perpendicular to the light direction and are identified by
their distances from the light source (i.e. depth value). The
opacity map is then computed by rendering the hair structure
from the light’s view. A separate rendering pass is performed
for each slice by clipping the hair geometry against the sep-
arating planes. The hair density for each pixel of the opac-
ity map is computed using additional blending on graphics
hardware. The slices are rendered in order starting from the
slice nearest to the light source, and the value of the previous
slice is accumulated to the next one. Once all the layers are
rendered, this opacity map can be used to find the transmit-
tance from the occlusion value at any point using linear in-
terpolation of the occlusion values at the neighboring slices.
Depending on the number of layers used, the quality of opac-
ity shadow maps can be much lower than deep shadow maps,
since the interpolation of the opacities between layers gen-
erates layering artifacts on the hair. These artifacts remain
visible unless a large number of layers are used.

Mertens et. al. proposed the Density Clustering approach
[MKBvR04] to adjust the sizes and the positions of opacity
layers separately for each pixel of the shadow map. It uses
k-means clustering to compute the centers of the opacity lay-
ers. Then, each hair fragment is assigned to the opacity layer
with the nearest center, and the standard deviation of the
opacity layer times

√
3 is used as the size of the layer. Once

the opacity layers are positioned, the hair geometry is ren-
dered once again from the light’s point of view and the opac-
ity value of each layer is recorded. In general, density clus-
tering generates better opacity layer distributions than opac-
ity shadow maps, but it also introduces other complications
and limitations. Density clustering’s major limitation is that
it cannot be extended to have a high number of layers due
to the way that the layering is computed, and it is only suit-
able for a small number of clusters (the original paper [MK-
BvR04] suggests 4 clusters). Moreover, k-means clustering
is an iterative method and each iteration requires a separate

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

Cem Yuksel & John Keyser / Deep Opacity Maps

(a) Opacity Shadow Maps (b) Deep Opacity Maps

Figure 2: Opacity shadow maps use regularly spaced planar

layers. Our deep opacity maps use fewer layers, conforming

to the shape of the hair model.

pass that renders the whole hair geometry. The efficiency of
the clustering depends on the initial choice of the opacity
layer centers. Even if only a single pass of k-means clus-
tering is performed, the density clustering method requires
4 passes to generate the shadow map. Finally, like opacity
shadow maps, density clustering cannot guarantee that un-
shadowed direct illumination is captured correctly since the
first opacity layer can begin before the first hair fragment.

The deep opacity maps method presented in this paper
has advantages over these prior methods. It guarantees that
the direct illumination of the surface hairs is calculated cor-
rectly. Unlike opacity shadow maps, opacity interpolation
occurs within the hair volume, thus hiding possible layer-
ing artifacts. Unlike density clustering, deep opacity maps
can easily use arbitrary numbers of layers (though usually 3
layers are sufficient). Comparing to both density clustering
and opacity shadow maps, deep opacity maps achieve sig-
nificantly higher frame rates for comparable quality.

Other previous methods include extensions of opacity
shadow maps [KHS04], voxel based shadows [BMC05,
ED06, GMT05], precomputed approaches [XLJP06], and
physically based offline methods [ZSW04, MM06]. For a
more complete presentation of the previous methods please
refer to Ward et al. [WBK∗07].

3. Deep Opacity Maps Algorithm

Our algorithm uses two passes to prepare the deep opacity
map, and the final image is rendered in an additional pass,
using this map to compute shadows.

The first step prepares the separators between the opac-
ity layers. We render a depth map of the hair as seen from
the light source. This gives us, for each pixel of the depth
map, the depth z0 at which the hair geometry begins. Starting
from this depth value, we divide the hair volume within the
pixel into K layers such that each layer lies from z0 + dk−1
to z0 +dk where d0 = 0, dk−1 < dk and 1 ≤ k ≤ K. Note that
the spacing dk − dk−1 (layer size) does not have to be con-
stant. Even though we use the same dk values for each pixel,

z0 varies by pixel, so the separators between the layers take
the shape of the hair structure (Figure 2). Note that the light
source in this setup can be a point or a directional light.

The second step renders the opacity map using the depth
map computed in the previous step. This requires render-
ing the hair only once and all computation occurs within the
fragment shader. As each hair is rendered, we read the value
of z0 from the depth map and find the depth values of the
layers on the fly. We assign the opacity contribution of the
fragment to the layer that the fragment falls in and to all the
other layers behind it. The total opacity of a layer at a pixel
is the sum of all contributing fragments.

We represent the opacity map by associating each color
channel with a different layer, and accumulate the opaci-
ties using additive blending on the graphics hardware. We
reserve one color channel for the depth value, so that it is
stored in the same texture with opacities. Therefore, using a
single color value with four channels, we can represent three
opacity layers. By enabling multiple draw buffers we can
output multiple colors per pixel to represent more than three
layers (n draw buffers allow 4n− 1 layers). Obviously, us-
ing more than three layers will also require multiple texture
lookups during final rendering.

One disadvantage of using a small number of layers with
deep opacity maps is that it can be more difficult to ensure all
points in the hair volume are assigned to a layer. In particu-
lar, points beyond the end of the last layer z0 +dk do not cor-
respond to any layer (shaded region in Figure 2b). We have
a few options: ignore these points (thus, they will not cast
shadows), include these points in the last layer (thus, they
cast shadows on themselves), or ensure that the last layer lies
beyond the hair volume by either increasing the layer sizes
or the number of layers. While the last option might seem
“ideal,” it can lead to unnecessary extra layers that add little
visual benefit at more computational cost, since the light in-
tensity beyond a certain point in the hair volume is expected
to vanish. We found that the second option, mapping these
points onto the last layer, usually gave reasonable results.

Note that our algorithm uses the depth map only for com-
puting the starting points of layers, not for a binary decision
of in or out of shadow. Thus, unlike standard shadow map-
ping, deep opacity maps do not require high precision depth
maps. For the scenes in our experiments, we found that us-
ing an 8-bit depth map visually performs the same as a 16-bit
floating point depth map.

4. Results

To demonstrate the effectiveness of our approach we com-
pare the results of our deep opacity maps algorithm to op-
timized implementations of opacity shadow maps and den-
sity clustering. We extended the implementation of opacity
shadow maps with up to 16 layers to simultaneously gener-
ate the opacity layers in a single pass by using multiple draw

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

Cem Yuksel & John Keyser / Deep Opacity Maps

No shadows Opacity Shadow Maps Opacity Shadow Maps Density Clustering Deep Opacity Maps

– 8 layers 256 layers 4 layers 3 layers

(140 fps) (88 fps) (0.6 fps) (47 fps) (74 fps)

Figure 3: Dark hair model with over one million line segments. The Opacity Shadow Maps method requires many layers to

eliminate layering artifacts, Density Clustering approximates the shadows with some noise, while the Deep Opacity Maps

method generates an artifact free image with higher frame rate.

Opacity Shadow Maps - 256 layers

Density Clustering - 4 layers

Deep Opacity Maps - 3 layers

Figure 4: Enlarged images from Figure 3 comparison.

buffers, as opposed to the multi-pass implementation pro-
posed in the original method [KN01]. We also introduced an
additional pre-computation pass to density clustering, which
computes the layer limits before the final image rendering,
and achieved higher performance by optimizing the shadow
lookup. All images presented in this paper were captured
from our real-time hair rendering system using a standard
PC with a 2.13GHz Core2 Duo processor and GeForce 8800
graphics card.

We used line drawing for rendering the hair models, and
the Kajiya-Kay shading model [KK89] because of its sim-
plicity. Antialiasing in the final image was handled on the
graphics hardware using multi-sampling. We did not use an-
tialiasing when generating opacity maps. To achieve a fake
transparency effect in the final image we divided the set of
hair strands into three disjoint subsets. Each one of these
subsets is rendered separately with no transparency on a sep-

arate image. The resulting images are then blended to pro-
duce the final frame.

Figure 1 shows a straight hair model with 150 thousand
line segments. The opacity shadow maps method with 16
layers produces severe artifacts of diagonal dark stripes that
correspond to the beginning of each opacity layer. Though
significantly reduced, these artifacts are still visible even
when the number of layers is increased to 128. Density clus-
tering, on the other hand, produces a good approximation
to the overall illumination using 4 layers, however it suf-
fers from a different kind of layering artifact visible around
the specular region due to its inaccuracy. Our deep opacity
maps technique produces an artifact free image with plau-
sible shadow estimate using only 3 layers, and it is signifi-
cantly faster than the other methods.

Figures 3 and 5 show two different complex hair styles
with over one million and 1.5 million line segments respec-
tively. On both of these models, the opacity shadow maps
method with 8 layers produces dark stripes as interpola-
tion artifacts between layers. When 256 layers are used with
opacity shadow maps, layering artifacts visually disappear
and the resulting shadows approach the correct values, but
rendering one frame takes about two seconds. On the other
hand, density clustering manages to produce a close approx-
imation using only 4 layers. However, the inaccuracies of
density clustering produce some noise in the illumination
that are clearly visible in the enlarged images (Figures 4 and
6) and animated sequences. The deep opacity maps method
manages to create an artifact free image with smooth illumi-
nation changes over the hair surface with significantly higher
frame rates and less memory consumption.

Figure 7 demonstrates that deep opacity maps can be used
in conjunction with traditional shadow maps. In this image
of a hairy teapot, the shadow map handles the opaque shad-
ows due to the teapot and the deep opacity map handles
semi-transparent shadows due to the hair strands. Both the
hair model and the teapot cast shadows onto each other as
well as on the ground plane.

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

Cem Yuksel & John Keyser / Deep Opacity Maps

No shadows Opacity Shadow Maps Opacity Shadow Maps Density Clustering Deep Opacity Maps

– 8 layers 256 layers 4 layers 3 layers

(104 fps) (65 fps) (0.5 fps) (37 fps) (50 fps)

Figure 5: Curly hair model with over 1.5 million line segments. Layering artifacts of Opacity Shadow Maps with 8 layers are

apparent on the top of the hair model. They disappear with 256 layers with low frame rates. Density Clustering generates a

noisy approximation, while the Deep Opacity Maps method generates an artifact free image with higher frame rate.

Opacity Shadow Maps - 256 layers

Density Clustering - 4 layers

Deep Opacity Maps - 3 layers

Figure 6: Enlarged images from Figure 5 comparison.

Figure 8 shows clustered strands rendered using deep
opacity maps. In Figure 8a, 3 layers are not enough to cover
the whole illuminated volume, and dark regions in appear
where the strands beyond the last layer cast shadows onto
themselves. By increasing the number of layers, as in Fig-
ure 8b, incorrect self-shadowing can be eliminated. This can
also be achieved by increasing the layer sizes as in Figure 8c;
however, this also reduces the shadow accuracy. As can be
seen from these images, deep opacity maps can generate
high quality shadows with non-uniform hair models.

5. Discussion

The main advantage of our method is that by shaping the
opacity layers, we capture direct illumination correctly while
eliminating visual layering artifacts by moving interpolation
between layers to within the hair volume. This lets us hide

Figure 7: A hairy teapot rendered using deep opacity maps

with traditional shadow maps for opaque shadows.

possible inaccuracies while also allowing high quality re-
sults with fewer layers. Unlike density clustering, which tries
to approximate the whole transmittance function, we con-
centrate the accuracy on the beginning of the transmittance
decay (where the shadow begins). By doing so, we aim to
be more accurate around the illuminated surface of the hair
volume—the part of the hair that is most likely to appear in
the final image and where inaccuracies would be most no-
ticeable.

Since we require very few layers, all information can be
stored in a small number of textures (a single texture for 3
layers). This makes our algorithm memory efficient and also
reduces the load on the fragment shader.

The extreme simplicity of our approach allows us to pre-
pare the opacity map with only 2 render passes, and only one
of these passes uses blending. Opacity shadow maps of just
a few layers can be generated in only a single pass, however
visual plausibility requires many more layers.

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

Cem Yuksel & John Keyser / Deep Opacity Maps

(a) 3 layers (b) 7 layers (c) 3 (larger) layers

Figure 8: Clustered strands with deep opacity maps using different number of layers and different layer sizes.

For the examples in this paper we used linearly increas-
ing layer sizes with deep opacity maps. This choice of layer
distribution provides high accuracy around bright regions
where the transmittance begins to decay, while keeping other
layers large enough to cover the illuminated part of the hair
volume with a few number of layers. Varying layer sizes can
also be used for opacity shadow maps, but this would not
provide any visual enhancement, since there is no heuristic
that can reduce the layering artifacts by changing layer sizes
without increasing the number of layers.

In our implementation we observed minor flickering due
to aliased line drawing we used while rendering depth and
opacity maps. Applying a smoothing filter to the depth and
opacity maps reduced this problem, but did not completely
remove it. In our experiments we found that using multi-
sampling for shadow computations, a standard technique
used for smoothing shadow maps, produced better results
with additional computation cost.

6. Conclusion

We have introduced the deep opacity maps method, which
uses a depth map to achieve per-pixel layering of the opacity
map for real-time computation of semi-transparent shadows.
We compared both quality and performance of our method
to the previous real-time/interactive semi-transparent shad-
owing techniques. Our results show that deep opacity maps
are fast and can generate high quality shadows with minimal
memory consumption. Our algorithm does not have any re-
strictions on the hair model or hair data structure. Since it
does not need any pre-computation, it can be used when ren-
dering animated dynamic hair or any other semi-transparent
object that can be represented by simple primitives.

References

[AL04] AILA T., LAINE S.: Alias-free shadow maps. In
Eurographics Symp. on Rendering (2004), pp. 161–166.

[BMC05] BERTAILS F., MÉNIER C., CANI M.-P.: A
practical self-shadowing algorithm for interactive hair an-
imation. In Proc. Graphics Interface (2005), pp. 71–78.

[ED06] EISEMANN E., DÉCORET X.: Fast scene vox-
elization and applications. In Symposium on Interactive

3D Graphics and Games (2006), pp. 71–78.

[GMT05] GUPTA R., MAGNENAT-THALMANN N.:
Scattering-based interactive hair rendering. In Comp.

Aided Design and Comp. Graphics (2005), pp. 489–496.

[KHS04] KOSTER M., HABER J., SEIDEL H.-P.: Real-
time rendering of human hair using programmable graph-
ics hardware. In Proceedings of the Computer Graphics

International (CGI’04) (2004), pp. 248–256.

[KK89] KAJIYA J. T., KAY T. L.: Rendering fur with
three dimensional textures. In Proceedings of SIGGRAPH

1989 (1989), pp. 271–280.

[KN01] KIM T.-Y., NEUMANN U.: Opacity shadow
maps. In 12th Eurographics Workshop on Rendering

Techniques (2001), pp. 177–182.

[LV00] LOKOVIC T., VEACH E.: Deep shadow maps. In
Proceedings of SIGGRAPH 2000 (2000), pp. 385–392.

[MKBvR04] MERTENS T., KAUTZ J., BEKAERT P., VAN

REETH F.: A self-shadow algorithm for dynamic hair us-
ing clustered densities. In Proceedings of Eurographics

Symposium on Rendering 2004 (2004), pp. 173–178.

[MM06] MOON J. T., MARSCHNER S. R.: Simulat-
ing multiple scattering in hair using a photon mapping
approach. In Proceedings of SIGGRAPH 2006 (2006),
pp. 1067–1074.

[WBK∗07] WARD K., BERTAILS F., KIM T.-Y.,
MARSCHNER S. R., CANI M.-P., LIN M.: A survey on
hair modeling: Styling, simulation, and rendering. IEEE

TVCG 13, 2 (Mar-Apr 2007), 213–34.

[Wil78] WILLIAMS L.: Casting curved shadows on
curved surfaces. In SIGGRAPH ’78 (1978), pp. 270–274.

[XLJP06] XU S., LAU F. C., JIANG H., PAN Y.: A novel
method for fast and high-quality rendering of hair. In
Proc. EGSR’06 (2006), pp. 331–341.

[ZSW04] ZINKE A., SOBOTTKA G., WEBER A.: Photo-
realistic rendering of blond hair. In Vision, Modeling, and

Visualization 2004 (2004), pp. 191–198.

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.

Dual Scattering Approximation for Fast Multiple Scattering in Hair

Arno Zinke∗

Institut für Informatik II

Universität Bonn

Cem Yuksel†

Dept. of Computer Science

Texas A&M University

Andreas Weber‡

Institut für Informatik II

Universität Bonn

John Keyser§

Dept. of Computer Science

Texas A&M University

Path tracing (7.8 hours) Offline dual scattering (5.2 minutes) Real-time dual scattering (14 fps)

Using only single scattering (20 fps) Single scattering + diffuse (20 fps) Kajiya-Kay shading model (20 fps)

Figure 1: Comparison of our method to path tracing and existing hair shading methods with deep opacity maps. Our dual scattering
approximations (offline ray shooting and real-time GPU-based implementations) achieve close results to the path tracing reference without
any parameter adjustment and with significantly improved rendering times. Using single scattering only fails to produce the correct hair
color. Adding an ad-hoc diffuse component or Kajiya-Kay shading model also fails to achieve the same realism, even after hand tweaking the
diffuse color and shadow opacity to match the reference. The hair model has 50K strands and 1.4M line segments.

Abstract

When rendering light colored hair, multiple fiber scattering is essen-
tial for the right perception of the overall hair color. In this context,
we present a novel technique to efficiently approximate multiple
fiber scattering for a full head of human hair or a similar fiber based
geometry. In contrast to previous ad-hoc approaches, our method
relies on the physically accurate concept of the Bidirectional Scat-

∗e-mail: zinke@cs.uni-bonn.de.de
†e-mail: cem@cemyuksel.com
‡e-mail: weber@cs.uni-bonn.de.de
§e-mail: keyser@cs.tamu.edu

tering Distribution Functions and gives physically plausible results
with no need for parameter tweaking. We show that complex scat-
tering effects can be approximated very well by using aggressive
simplifications based on this theoretical model. When compared
to unbiased Monte-Carlo path tracing, our approximations preserve
photo-realism in most settings but with rendering times at least two-
orders of magnitude lower. Time and space complexity are much
lower compared to photon mapping-based techniques and we can
even achieve realistic results in real-time on a standard PC with
consumer graphics hardware.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture

Keywords: Hair rendering, multiple scattering, GPU algorithms

1 Introduction

Accounting for multiple scattering is a key factor in the realistic
rendering of human hair. Particularly in dense, light-colored hair,
multiple scattering provides a critical component of the hair color,
similar to the effect seen in subsurface scattering of translucent
materials. Unfortunately, the high geometric complexity of hair

models coupled with the complexity of the light interaction in hair
volumes makes computing this multiple scattering effect difficult.
Even for the simplest case of computing illumination due to a sin-
gle point light source, contributions of several different light paths
need to be determined to achieve reasonable visual accuracy.

Recently, two different photon mapping based methods have been
proposed to accelerate the multiple scattering computation in hair.
Even though these methods present a significant speed improve-
ment as compared to brute force path tracing, they still require
hours to compute a single frame and a large amount of memory to
store the photon map. On the other hand, in real-time graphics the
multiple scattering property of hair is overly simplified and treated
as transparent shadows (completely ignoring the effect of the circu-
lar shape of hair fibers) coupled with an ad-hoc diffuse component.
This extreme simplification prevents the use of physically based
hair shaders, and gives hair a dull appearance. Furthermore, rigor-
ous parameter tweaking is necessary to achieve acceptable results,
the realism of which is always questionable.

In this paper, we introduce the concept of dual scattering, which
splits the multiple scattering computation into two components:
global multiple scattering and local multiple scattering. The global
multiple scattering component aims to compute the light traveling
through the hair volume and reaching the neighborhood of the point
of interest, while local multiple scattering accounts for the scatter-
ing events within this neighborhood. Exploiting physically based
scattering properties of real hair fibers, we introduce several theo-
retical simplifications for computing both of these components; this
permits extremely efficient multiple scattering computations with
minimal accuracy compromise. As a result of our aggressive theo-
retical simplifications, the implementation of global multiple scat-
tering becomes very similar to standard semi-transparent hair shad-
owing techniques, while local multiple scattering is modeled as a
material property derived from hair fiber properties.

The top row of Figure 1 compares different implementations of our
dual scattering method to path tracing. The path tracing image takes
7.8 hours to compute, while by using dual scattering we can reduce
this time to 5.2 minutes in our offline implementation or even 14
frames per second with our GPU implementation. The precompu-
tation time required for all dual scattering implementations is only
a few seconds. As can be seen from these images, we can main-
tain visual accuracy with significant improvement in computation
time. Just as important, all calculations are based on computable
or measurable values, so there is no unintuitive parameter tweaking
(such as smoothing radius) that existed in previous physically based
techniques.

The bottom row of Figure 1 shows the results of single scattering
only and existing hair shading methods with semi-transparent shad-
ows using deep opacity maps. Even after rigorous parameter tweak-
ing of ad-hoc diffuse color used by the shaders and the opacity value
used for the shadow computation, the results still differ significantly
from the path tracing reference. This is mainly because several im-
portant multiple scattering effects like directionality, color shifts,
and successive blurring cannot be modeled by these oversimplified
formulations. Therefore, the realism that we achieve using our dual
scattering approximation goes beyond existing real-time hair ren-
dering methods. Note that dual scattering is not an ad-hoc addition
for enhancing real-time hair rendering; it is a physically-based sim-
ulation, the simplicity of which permits real-time implementation.

In the next section we provide a brief summary of the previous work
and the terminology we use throughout the paper. The theory of
dual scattering is introduced in Section 3. We present the details of
our different implementations in Section 4 and our results in Sec-
tion 5. Finally, we conclude with a short discussion in Section 6.

2 Background

There is a large body of work on hair modeling and rendering in
computer graphics. In this section we only review the techniques
that are most relevant to our approach and we concentrate on phys-
ically based methods. For a more comprehensive overview of hair
rendering please refer to the recent survey paper of Ward et al.
[2007].

2.1 Prior Work

Marschner et al. [2003] presented the seminal work in the
physically-based rendering of human hair. Their paper developed a
far-field scattering model for hair based on measurements of actual
hair. They modeled hair fibers as dielectric cylinders with colored
interiors, and their model was able to account for important single
scattering effects, such as multiple highlights, and deliver realistic
results for dark colored hair.

Further work showed that multiple fiber scattering is essential for
correct perception of hair color, particularly for light colored hair.
New models [Zinke et al. 2004; Moon and Marschner 2006; Zinke
and Weber 2007] were developed to generalize the approach of
Marschner et al. [2003] to account for these multiple scattering ef-
fects.

In order to solve this more general illumination problem, meth-
ods such as path tracing can be used, though this often leads to
prohibitive running times. Both Moon and Marschner [2006] and
Zinke and Weber [2006] use photon mapping approaches to esti-
mate the multiple scattering. Although both methods can produce
accurate results similar to path tracing in many situations, they are
computationally costly and require high resolution (memory con-
suming) photon maps. These methods cannot be made interactive.
Yuksel et al. [2007] have also proposed an alternative projection-
based method for rendering global illumination for fibers. How-
ever, this approach makes several simplifications, e.g. neglecting
inter-reflections, that reduce accuracy.

A number of other techniques have addressed some aspects of mul-
tiple scattering effects for hair volumes, especially in the context of
self-shadowing for interactive hair rendering [Lokovic and Veach
2000; Kim and Neumann 2001; Mertens et al. 2004; Bertails et al.
2005; Xu et al. 2006; Hadwiger et al. 2006; Yuksel and Keyser
2008]. However, the main drawback of most of these methods is
that they use ad-hoc simplifications and non-physical parameters,
which cannot be derived from physical hair fiber properties. While
plausible images can be produced by these methods in some situa-
tions, parameters need to be repeatedly tweaked to be appropriate
for a particular scene and lighting condition. An exception is the
work of Gupta and Magnenat-Thalmann [2005], which provides a
more complex scattering-based approach. However, their approach
is purely density-based and uses an ad-hoc volumetric scattering
function without any physical basis. Therefore it cannot capture
important phenomena such as directionality of multiple scattering,
successive blurring, or subtle color shifting effects.

For simulating volumetric light transport, cheap analytical multiple
scattering models have been presented [Kniss et al. 2003; Premoze
et al. 2004]. By taking into account optical properties of a partici-
pating media Premoze et al. [2004] use practical approximations to
efficiently compute important features of multiply scattered light,
such as spatial and angular spread of an incident beam. The ra-
diative transfer is computed based on only a few prototypic path
samples. However, even though this work is related in spirit to our
approach, it has not yet been demonstrated to work with spatially
varying and highly anisotropic scattering of hair fibers.

Figure 2: Definition of angles and directions

2.2 Terminology and Notation

The discussion in this paper includes numerous symbols and terms
that might not be familiar to readers. We follow the terminology
and notation used by Marschner et al. [2003] and Zinke and We-
ber [2007]. While we would refer the reader to those sources for
more complete descriptions, we give a brief review and overview
of terminology here.

Referring to Figure 2, consider the tangent to the hair fiber (i.e. a
vector running down the central fiber axis), u. The normal plane is
the plane perpendicular to u. Directions within this normal plane
are referred to as azimuthal angles, and are expressed with the sym-
bol φ. An angle formed with respect to the normal plane is called
the longitudinal inclination, and is expressed with the symbol θ.
For a point on the fiber, a direction is expressed by the symbol ω.
Thus, any direction ωa is equivalently expressed by the longitudinal
inclination θa and the azimuthal angle φa.

The amount of incoming light from one given direction, ωi, scat-
tered in another given outgoing direction, ωo, is expressed by a
Bidirectional Scattering Distribution Function. For a hair fiber,
Zinke and Weber [2007] defined a very general Bidirectional Fiber
Scattering Distribution Function that incorporated fiber geometry in
addition to incident and output angles. By assuming the viewer and
light source are sufficiently far from the hair fiber, one can ignore
the hair geometry and local (near-field) variations in geometry, re-
sulting in a simplified Bidirectional Curves Scattering Distribution
Function (BCSDF), fs(ωi, ωo). The scattering function defined by
Marschner et al. [2003] is one possible BCSDF.

A hair fiber is generally thought of as a cylinder, and as light hits
these cylinder boundaries, it can either be transmitted (T) or re-
flected (R). Thus, TT refers to the light passing into then out of
the fiber in a generally forward direction, while R and TRT refer
to backward reflections, either before (R) or after (TRT) passing
through the fiber. Computing a BCSDF generally involves comput-
ing these three components, and more complex interactions (e.g.
TRRT) are ignored.

We follow both Marschner et al. [2003] and Zinke and We-
ber [2007] in using a formulation for the BCSDF as a product of a
longitudinal function, Mt, and an azimuthal function, Nt for each
of the three reflection types t ∈ (R, TT, TRT). M is modeled
as a normalized Gaussian function g(αt, (βt)

2) with mean αt and
standard deviation βt specified according to measured properties
of hairs. N is precomputed in a 2D table of difference angles
θ = (θo − θi)/2 and φ = φo − φi. See Marschner et al.’s pa-
per [2003] for more details on these computations. Note that in
this paper, g(a, b) refers to a unit area Gaussian function defined in
variable a with a zero mean and variance b.

3 Dual Scattering

In this section we present the theoretical foundations of the dual
scattering approximation. We simplify the computation of the com-
plicated physical multiple scattering phenomena using properties of
real human hair fibers and realistic human hair models. As a result

of these simplifications, we achieve a physically-based formulation
for multiple scattering, which can be implemented in a very similar
way to standard hair shadowing techniques.

Similar to Moon and Marschner [2006], in our rendering system we
use one dimensional fibers, disregarding the illumination variation
across the width of a hair strand. In this form, the general rendering
equation for outgoing radiance Lo towards a direction ωo at a point
x can be written as

Lo(x, ωo) =

∫

Ω

Li(x, ωi) fs(ωi, ωo) cos θi dωi , (1)

where Li(x, ωi) is the incident radiance from direction ωi,
fs(ωi, ωo) is the BCSDF of a hair fiber, and Ω is the set of all di-
rections over the sphere. The incident radiance function Li(x, ωi)
includes all light paths scattered inside the hair volume such that

Li(x, ωi) =

∫

Ω

Ld(ωd) Ψ(x, ωd, ωi) dωd , (2)

where Ld(ωd) is the incoming radiance from outside the hair
volume from direction ωd (assuming distant illumination), and
Ψ(x, ωd, ωi) is the multiple scattering function denoting the frac-
tion of light entering the hair volume from direction ωd that is scat-
tered inside the hair volume and finally arriving at point x from
direction ωi.

The main concept behind the dual scattering method is to approxi-
mate the multiple scattering function as a combination of two com-
ponents: global multiple scattering and local multiple scattering.
The global multiple scattering function ΨG is used to compute the
irradiance arriving at the neighborhood of a point x inside the hair
volume, and the local multiple scattering function ΨL approximates
the multiple scattering of this irradiance within the local neighbor-
hood of x (Figure 3). Therefore, the multiple scattering function
becomes the sum of global multiple scattering and global multiple
scattering that goes through further local multiple scattering

Ψ(x, ωd, ωi) = ΨG(x, ωd, ωi)
(

1 + ΨL(x, ωd, ωi)
)

. (3)

For the sake of simplicity we explain our dual scattering method
assuming that the subject hair model is illuminated by a single di-
rectional light source. At the end of this section we explain how
this approach can be extended for other light source types, multiple
light sources, image based lighting, and global illumination.

3.1 Global Multiple Scattering

Global multiple scattering is especially important for light col-
ored hair types as they permit outside illumination to penetrate

Figure 3: Based on intersections (red dots) along the shadow path
(dashed line), the multiple scattering distributions ΨL and ΨG and
the resulting outgoing radiance Lo are locally estimated.

deeper into the hair volume. According to the measurements of
Marschner et al. [2003], light scattering from human hair fibers is
strongly anisotropic in the longitudinal direction, while it is much
less anisotropic in the azimuthal direction. Because of this rather
wide azimuthal scattering property of human hair, the computation
of global multiple scattering should handle several different rather
complicated light paths. On the other hand, the energy of light ar-
riving at a point does not depend on the actual path, but the qual-
ity of the scattering events along the path. Assuming statistically
independent scattering events, all other geometrical properties of
the cluster (such as the distance between fibers) can be neglected.
Moreover, a realistic human hair model presents strong local sim-
ilarity in the orientation of neighboring hair fibers, therefore the
probabilities of different light paths exhibit this similarity.

Based on these observations, in our dual scattering method we sim-
plify the computation of global multiple scattering by exploring the
light scattering properties along only a single light path, namely
the shadow path (in the direction ωd), and use the information we
gather for approximating the contributions of other possible paths
(Figure 3). Along the shadow path, we classify all possible scat-
tering directions of a scattering event into two groups: Forward
Scattering and Backward Scattering, which correspond to all direc-
tions in the front and back half of the scattering cone relative to the
original light source.

Note that the strong TT component of hair fiber scattering is in-
cluded in the front half-cone. Therefore, for light colored hair mod-
els forward scattering is significantly stronger than backward scat-
tering. Furthermore, light paths that go through a backward scat-
tering before reaching the neighborhood of point x scatter away
from this point, and they need another backward scattering to re-
verse their direction. As a result, for light colored hair types only
a very small portion of global multiple scattering includes back-
ward scattering. In our formulation we disregard these double (or
more) backward scattered paths, approximating the global multiple
scattering by only front scattered radiance. (Note that backward
scattered paths are ignored only for the global multiple scattering
computation and they will be included in local multiple scattering).
As a result, we approximate the global multiple scattering as

ΨG(x, ωd, ωi) ≈ Tf (x, ωd) Sf (x, ωd, ωi) , (4)

where Tf (x, ωd) is the total transmittance and Sf (x, ωd, ωi) ac-
counts for the spread of global multiple scattering into different di-
rections. Therefore, to compute the global multiple scattering we
need to evaluate these two functions.

3.1.1 Forward Scattering Transmittance

The transmittance function Tf (x, ωd) gives the total attenuation of
a front scattered light path arriving at the point x. Therefore, the
transmittance function depends on the number of scattering events
n along the shadow path and the average attenuation āf (θd) caused
by each forward scattering event as

Tf (x, ωd) = df (x, ωd)

n
∏

k=1

āf

(

θk
d

)

, (5)

where df (x, ωd) is the density factor and θk
d is the longitudinal in-

clination at the kth scattering event. Note that if n = 0, the point x
is illuminated directly and the transmittance function is set to 1. We
use the density factor df (x, ωd) to account for the fact that not all
points x are located inside a dense cluster. Thus, the front scattered
irradiance on x comes from only a subset of all directions as shown
in Figure 4. Although the density factor theoretically depends on
the hair density and the specific location of x, in practice we simply

Figure 4: Cross section of a hair cluster. The fiber at x is not fully
surrounded by other strands, so it can receive multiple scattered
radiance only from the shaded sections. df accounts for fibers in
the orange region, while db accounts for fibers in the blue region.

use a constant value (between 0 and 1) to approximate this factor
based on the overall hair density. In our experiments we found that
for realistic human hair models density factors between 0.6 and 0.8
give realistic results (as compared to a path tracing reference). For
all examples in this paper, the density factor is set to 0.7.

We compute the average attenuation āf (θd) directly from the fiber
scattering function fs as the total radiance on the front hemisphere
due to isotropic irradiance along the specular cone:

āf (θd) =
1

π

∫

Ωf

∫ π
2

− π
2

fs ((θd, φ), ω) cos θd dφ dω, (6)

where Ωf is all directions over the front hemisphere and θd is the
inclination of direct illumination at the scattering event.

3.1.2 Forward Scattering Spread

The spread function Sf (x, ωd, ωi) approximates the final angular
distribution of front scattered light to find the probability of radi-
ance coming to the point x from direction ωi. Because of the wide
azimuthal scattering property of hair fibers, front scattered radiance
quickly becomes almost isotropic in the azimuthal direction after
only a few scattering events. However, in the longitudinal direc-
tion front scattered spread is still rather anisotropic. Therefore, we
represent our spread function using a constant term s̃f for the az-
imuthal spread and a narrow Gaussian distribution function g for
the longitudinal component:

Sf (x, ωd, ωi) =
s̃f (φd, φi)

cos θd

g
(

θd + θi , σ̄2
f (x, ωd)

)

, (7)

where s̃f (φd, φi) is 1/π for forward scattering directions and zero
for backward scattering, and σ̄2

f (x, ωd) is the total variance of for-
ward scattering in the longitudinal directions. Since the BCSDF
of a fiber is represented by a Gaussian distribution (M) in longitu-
dinal directions, we can compute the total variance as the sum of
variances of all scattering events along the shadow path

σ̄2
f (x, ωd) =

n
∑

k=1

β̄2
f

(

θk
d

)

, (8)

where β̄2
f (θk

d) is the average longitudinal forward scattering vari-

ance of the kth scattering event, which is directly taken from the
BCSDF of the hair fiber. Note that for a single directional light
source when n = 0, i.e. when the fiber is being illuminated directly,
the spread function becomes a delta function δ(ωd − ωi).

3.2 Local Multiple Scattering

The local multiple scattering function accounts for the multiple
scattering events within the neighborhood of the point x. Since
light paths that go through only forward scattering are included in

the global multiple scattering function, light paths of the local mul-
tiple scattering function must include at least one backward scatter-
ing. Because of this backward scattering, local multiple scattering
is mostly smooth with subtle changes over the hair volume, yet it
significantly affects the visible hair color especially for light col-
ored hair types.

In our dual scattering method, we combine local multiple scattering
and the BCSDF of the hair fibers, approximating the result with a
density factor db and backscattering function fback as

ΨL(x, ωd, ωi) fs(ωi, ωo) ≈ db(x, ωd) fback(ωi, ωo) . (9)

Similar to forward scattering density factor df , backward scatter-
ing density factor db accounts for the hair density around the point
x, and in practice we approximate it using a constant density term
equal to df , which we set to 0.7. Note that fback is not a function
of x, which means that it is modeled as a material property. We
formulate fback as a product of an average backscattering attenu-
ation function, Āb, and an average spread function, S̄b, estimating
the bidirectional multiple backscattering distribution function of a
hair cluster as

fback(ωi, ωo) =
2

cos θ
Āb(θ) S̄b(ωi, ωo) , (10)

where θ = (θo − θi)/2 is the difference angle of incident and out-
going inclinations and an additional cos θ factor accounts for the
fact that light is roughly scattered to a cone as in [Marschner et al.
2003]. To evaluate the effect of local multiple scattering we need
to compute average backscattering attenuation Āb(θ) and average

backscattering spread S̄b(ωi, ωo). Note that our formulation of ΨG

and ΨLfs have a similar structure; however, these two expressions
are conceptually different: ΨG models an angular radiance distri-
bution whereas fback serves as a curve scattering term (BCSDF).

3.2.1 Average Backscattering Attenuation

The average backscattering attenuation is computed for a point x in-
side a cluster of disciplined hair1. Since realistic hair models have
strong similarity among neighboring hair strands, average attenua-
tion computed for a disciplined hair cluster is a good approximation
to be used in local multiple scattering. Furthermore, we ignore the
slight change in the longitudinal inclination angle due to backward
scattering events assuming that the absolute value of the longitudi-
nal inclination |θ| is the same for all fibers in the cluster.

Local multiple scattering needs to account for the portion of light
paths after they reach the neighborhood of point x. We consider
only paths with an odd number of backward scattering events in
this part of the light path. When there are an even number of back-
ward scattering events in this part of the light path, the path points
away from the light and does not return back to x; thus, such paths
would not contribute to local multiple scattering. Average backscat-
tering attenuation for all light paths that include a single backward
scattering is

Ā1(θ) = āb

∞
∑

i=1

ā2 i
f =

āb ā2
f

1 − ā2
f

, (11)

where āf (θ) is the average forward scattering attenuation, and
āb(θ) is the average backward scattering attenuation. It is com-
puted similar to Equation 6 from fiber BCSDF for isotropic irradi-
ance along the specular cone as

āb(θd) =
1

π

∫

Ωb

∫ π
2

− π
2

fs ((θd, φ), ω) cos θd dφ dω, (12)

1All hair fibers of a disciplined hair cluster share the same tangent

where Ωb is all directions over the back hemisphere. In other words,
we consider all paths for which light forward scatters through i
fibers, then backward scatters once, then again forward scatters all
the way back through the same i fibers. Note that the special case
with no forward scattering (i = 0) is not included here, since it is
handled separately within the single scattering computation.

The average backscattering attenuation for light paths with three
backward scattering is approximated by the analytical solution of
the following triple sum:

Ā3(θ) = ā3
b

∞
∑

i=1

i−1
∑

j=0

∞
∑

k=j+1

ā
2(i−j−1+k)
f =

ā3
b ā2

f
(

1 − ā2
f

)3
. (13)

Here, we consider each possible case where light forward scat-
ters through i fibers, backscatters, forward scatters through j < i
fibers, backscatters, and forward scatters through k > j fibers be-
fore backscattering one last time and forward scattering all the way
back through the i− j−1+k fibers again. Since āb(θ) is small for
human hair fibers, we disregard the paths with more than 3 back-
ward scattering events, approximating the average backscattering
attenuation as the sum of equations 11 and 13

Āb(θ) = Ā1(θ) + Ā3(θ) . (14)

3.2.2 Average Backscattering Spread

Similar to the forward scattering spread function in Equation 7,
we represent backscattering spread as the product of a constant az-
imuthal term s̃b and a Gaussian function for the longitudinal spread
as

S̄b(ωi, ωo) =
s̃b(φi, φo)

cos θ
g
(

θo + θi − ∆̄b(θ) , σ̄2
b (θ)

)

, (15)

where s̃b(φi, φo) is 1/π for backward scattering directions and
zero for forward scattering, ∆̄b(θ) is the average longitudinal shift
caused by the scattering events, and σ̄2

b (θ) is the average longitudi-
nal variance for backscattering.

As in the computation of average backscattering attenuation, we
consider all possible paths with one and three backward scattering
events, and we compute average longitudinal shift using a weighted
average of shifts due to all possible light paths

∆̄b =
āb

Āb

∞
∑

i=1

ā2i
f (2iᾱf + ᾱb) +

ā3
b

Āb

∑

i,j,k

ām
f (3ᾱb + mᾱf) ,

where
∑

i,j,k
denotes

∑∞

i=1

∑i−1

j=0

∑∞

k=j+1
, m is 2(i−j−1+k),

and ᾱf (θ) and ᾱb(θ) are average forward and backward scattering
shifts, taken from the BCSDF of the hair fiber. Similarly, the aver-
age backscattering standard deviation is computed as

σ̄b =
āb

Āb

∞
∑

i=1

ā2i
f

√

2 iβ̄2
f + β̄2

b +
ā3

b

Āb

∑

i,j,k

ām
f

√

3 β̄2
b + mβ̄2

f ,

where β̄2
f (θ) and β̄2

b (θ) are average forward and backward scatter-
ing variances of the hair fiber BCSDF. In these formulations, we
approximate the sum of the Gaussian functions of the individual
scattering spreads by a single Gaussian function with a combined
mean (∆̄b) and standard deviation (σ̄b). This is a good approxi-
mation since for realistic hair BCSDF, longitudinal shifts are small
and individual scattering lobes have a comparable standard devia-
tion. In practice, we use the following analytical approximations2

2These analytical approximations are numerical fits based on a power

series expansion with respect to āb up to an order of three.

to these sums given above:

∆̄b ≈ ᾱb

(

1 −
2ā2

b

(1 − ā2
f)2

)

+ ᾱf

(

2(1 − ā2
f)2 + 4ā2

f ā2
b

(1 − ā2
f)3

)

(16)

σ̄b ≈
(

1 + 0.7ā2
f

)

āb

√

2β̄2
f + β̄2

b + ā3
b

√

2β̄2
f + 3β̄2

b

āb + ā3
b

(

2β̄f + 3β̄b

) . (17)

3.3 General Rendering Equation

The equations we derived up to here assume that the hair model
is illuminated by a single directional light source such that ωd is
constant. However, our formulation can be extended to arbitrary
light sources as long as estimating all global scattering based on the
shadow path is still practicable. We can rewrite the general form of
the rendering equation incorporating the terms for global and local
multiple scattering as

Lo(x, ωo) =

∫

Ω

LG
i (x, ωi) f(ωi, ωo) cos θi dωi , (18)

where

LG
i (x, ωi) =

∫

Ω

Ld(x, ωd) ΨG(x, ωd, ωi) dωd (19)

is the globally multiple scattered light entering the hair volume from
all directions before scattering towards x in direction ωi, and

f(ωi, ωo) = fs(ωi, ωo) + dbfback(ωi, ωo) (20)

is the BCSDF including both single hair fiber scattering and
backscattering from a collection of fibers. Hence, this general ren-
dering equation can handle multiple light sources, general shaped
area lights, image based lighting from all directions, and full global
illumination solution including multiple scattering in hair.

4 Implementation

For an efficient implementation of the dual scattering approxima-
tion we rewrite the general rendering equation, changing the order
of the integrals in equations 18 and 19 as

Lo(x, ωo) =

∫

Ω

Ld(x, ωd) F (x, ωd, ωo) dωd , (21)

where

F (x, ωd, ωo) =

∫

Ω

ΨG(x, ωd, ωi) f(ωi, ωo) cos θi dωi . (22)

Since Ld(x, ωd) is known (incoming radiance), all we need to com-
pute is the function F (x, ωd, ωo) to find the outgoing radiance.
This computation has two main steps: the first step gathers the nec-
essary information to compute the global multiple scattering func-
tion ΨG(x, ωd, ωi) and the second one is the shading step that com-
putes the above integral.

4.1 Computing Global Multiple Scattering

The global multiple scattering function can be computed in many
different ways, with the choice of method determining the speed
and accuracy of the overall implementation. Since global multi-
ple scattering is estimated by analyzing a single prototype light

path (along the shadow path), all implementations of global mul-
tiple scattering are very similar to different semi-transparent hair
shadowing techniques. However, unlike these non-physical shad-
owing approaches that aim to compute a transmittance (or an opac-
ity) function along the shadow path, in our dual scattering method
we compute front scattering transmittance Tf (x, ωd) and front scat-
tering variance σ̄2

f (x, ωd), along with the fraction of direct illu-
mination that reaches the point of interest without being blocked
(shadowed) by other hair strands.

4.1.1 Ray Shooting

Ray shooting is the simplest implementation of the global multi-
ple scattering function. The procedure is very similar to ray traced
shadow computation. To find the forward scattering transmittance
and spread at point x due to illumination from direction ωd, we
shoot a ray from x in the direction ωd. If the ray does not inter-
sect with any hair strands, Tf is taken as 1, σ̄f is set to zero, and
the direct illumination fraction becomes 1. If there is an intersection
with a hair strand, the direct illumination fraction becomes zero and
we update the transmittance and variance values using equations 5
and 8. While computing the transmittance (Equation 5) we use a
one dimensional lookup table for āf (θd), which is precomputed by
numerical integration of Equation 6. The ray shooting method pro-
vides an accurate dual scattering approximation, however multiple
ray samples per pixel are needed to eliminate sampling noise.

4.1.2 Forward Scattering Maps

To accelerate the global multiple scattering computation we imple-
mented a two pass approach. We begin by generating a voxel grid
that encloses the hair geometry. Each voxel in this grid keeps Tf

and σ̄2
f values along with a direct illumination fraction. In the first

pass we trace rays from each light source towards the grid, comput-
ing Tf and σ̄2

f values along the ray. The values of each voxel are
determined by the average of the values along the rays that inter-
sect with the voxel. In the second pass we render the hair geometry
and find the global multiple scattering values using linear interpo-
lation from the voxel grid. In our implementation we also applied
multi-sampling to further smooth the results.

Using forward scattering maps significantly improves the render-
ing time as compared to the ray shooting method. Furthermore,
this voxel grid can keep global multiple scattering information of
multiple light sources within the same data structure; therefore, the
performance gain of forward scattering maps becomes more signif-
icant as the number of light sources increase. On the other hand,
the accuracy and performance of forward scattering maps depend
on the map resolution (i.e. the extent of a voxel). For all examples
presented in this paper the map resolution is 0.5 cm.

4.1.3 GPU Implementation

In our GPU implementation we used a similar approach to forward
scattering maps based on the deep opacity maps method [Yuksel
and Keyser 2008] developed for computing semi-transparent hair
shadows. We chose the deep opacity maps method over other pos-
sible alternatives, since it generates high quality results with mini-
mum computation and memory cost.

Similar to deep opacity maps, in the first pass we render a depth
map from the light’s point of view. This depth map is used in the
second pass to shape the map layers conforming to the shape of
the hair style. Therefore, the hair volume illuminated by the light
source can be accurately sampled using a very small number of
layers. In the third and final pass, we render the final hair image
using the map to find the global multiple scattering values.

Instead of keeping a single opacity value for each map pixel as sug-
gested by the deep opacity maps method, we store 7 values: Tf and
σ̄f values for each RGB color channel and the direct illumination
fraction. Therefore, for every layer we need two textures to store all
7 values. Due to the efficiency of the deep opacity maps approach,
we can achieve high quality results with as few as 4 layers, which
are stored in 8 textures. The latest consumer graphics cards support
generation of all these 8 textures in a single pass using multiple
draw buffers. However, in our (earlier generation) GPU implemen-
tation we output 4 textures per pass and generate our maps using
two passes (one additional pass as compared to the original deep
opacity maps implementation).

4.2 Shading Computation

Once the global multiple scattering information is gathered, the
shading step computes the rest of the integral in Equation 22. This
step is the same for all implementations of dual scattering. We com-
pute Equation 22 differently depending on whether or not the point
x receives illumination directly without being blocked (shadowed)
by other hair strands, which is determined by the direct illumination
fraction value of the global multiple scattering information.

When point x receives illumination directly (i.e. no scattering
events occur along the shadow path) the integral in Equation 22
evaluates to f(ωd, ωo) cos θd. Here f(ωd, ωo) is the sum of the
single scattering component and the average backscattering com-
ponent fback as given in Equation 20. The computation of the sin-
gle scattering component is identical to [Marschner et al. 2003] and
[Zinke et al. 2004], such that the longitudinal scattering function
M , which is modeled as a Gaussian function, is multiplied by a
precomputed azimuthal scattering function N . The backscattering
component fback is computed from Equation 10 using precomputed
tables for Āb(θ), ∆̄b(θ), and σ̄2

b (θ).

When point x is blocked by other hair strands, it receives illumi-
nation via global multiple scattering. In this case the azimuthal
forward scattering spread on x becomes isotropic and the longitu-
dinal forward scattering spread is represented by a narrow Gaussian
function as given in Equation 7. For efficient computation of Equa-
tion 22, instead of using numerical integration techniques, we ap-
proximate the result by combining azimuthal and longitudinal com-
ponents of Sf and f . The combination of longitudinal components
can be easily approximated for narrow Gaussian functions by us-
ing combined variances β2

s and β2
back for fs and fback respectively,

such that

β2
s (x, ωd, ωi) = σ̄2

f (x, ωd) + β2(θ) , and (23)

β2
back(x, ωd, ωi) = σ̄2

f (x, ωd) + σ̄2
b (θ) , (24)

where β2(θ) is the variance of the scattering lobe of the BCSDF3.
In the azimuthal direction, fback is already isotropic; therefore,
isotropic forward scattering does not affect this component. How-
ever, the azimuthal component N of fs changes under isotropic az-
imuthal irradiance. We precompute this component NG and store
it in a 2D table similar to N using numerical integration of

NG(θ, φ) =

∫ π
2

− π
2

s̃f (φ) N(θ, φ′) dφ′ . (25)

Note that this formulation ignores the elipticity of hair fibers. How-
ever, this approximation is still accurate enough even for elliptic
hair fibers, since s̃f = 1/π is isotropic (constant) and NG is aver-
aging fs along the front half cone.

3The BCSDF has three lobes, one for each component: R, TT, and TRT

Table 1: Precomputed tables used for shading

Function Reference Use

Āb(θ) Equation 14 local multiple scattering

∆̄b(θ) Equation 16 local multiple scattering

σ̄2
b (θ) Equation 17 local multiple scattering

NG(θ, φ) Equation 25 BCSDF due to forward scattering

F(Tf , σ̄2

f , directFraction)

// Compute local multiple scattering contribution

fback ← 2 Āb(θ) g(θd + θo − ∆̄b(θ), σ̄2

b (θ) + σ̄2

f)/(π cos2 θ)

// Compute BCSDF of the fiber due to direct illumination

MR,TT,TRT ← g(θ − αR,TT,TRT, β2

R,TT,TRT
)

fdirect

s ←MRNR(θ, φ) + MTTNTT(θ, φ) + MTRTNTRT(θ, φ)

Fdirect ← directFraction
(

fdirect

s + db fback

)

// Compute BCSDF of the fiber due to forward scatterd illumination similarly

MG
R,TT,TRT

← g(θ − αR,TT,TRT, β2

R,TT,TRT
+ σ̄2

f)

fscatter

s ←MG
R

NG
R

(θ, φ) + MG
TT

NG
TT

(θ, φ) + MG
TRT

NG
TRT

(θ, φ)

F scatter ← (Tf − directFraction) df

(

fscatter

s + πdb fback

)

// Combine direct and forward scattered components

return (Fdirect + F scatter) cos θi

Figure 5: Pseudo code of our dual scattering shader. α and β
values are measured hair characteristics (part of the BCSDF) and
computation of M and N is discussed in Section 2.2. Other pre-
computed tables are given in Table 1.

To accelerate most computations we use small precomputed tables
that store complicated hair fiber properties. These tables are listed
in Table 1. The precomputations are simply numerical integrations
of the given equations. In addition to these tables, we use a precom-
puted table for the azimuthal part of single fiber scattering, N(θ, φ),
which can be computed using techniques described in [Marschner
et al. 2003] or [Zinke and Weber 2007].

Figure 5 shows the pseudo code for computing Equation 22 us-
ing this procedure. This pseudo code is a simple extension to the
BCSDF shading computation; therefore, our method can be easily
integrated into existing physically based hair rendering systems.

5 Results

To test the validity of our simplifications, we compared the results
of our dual scattering approximation directly to path tracing. Fig-
ure 6 shows such a comparison for a disciplined cluster of blond
hair, where the single scattering component is excluded to compare
the results of multiple scattering only. As can be seen from these
images, our approximation generates very similar results to path
tracing regardless of the incident light direction. Although there
are subtle differences compared to the results obtained with unbi-
ased path tracing, the general look is very similar and irregularities
that occur in real hairstyles tend to conceal such errors.

The graph in Figure 7 shows the comparison of radiance values in
the middle of the clusters in Figure 6. Here, the average BRDF
of multiple scattered light is shown for longitudinal and azimuthal
sweeps along the cluster for various absorption coefficients. As can
be seen from this graph, the azimuthal component of backward scat-
tering (white region of the left graph) is almost isotropic, while the
longitudinal component resembles a Gaussian distribution as mod-
eled in our formulation. Even though the approximation slightly
overshoots the accurate simulation for very low coefficients, the re-
sults indicate that our approach is a viable approximation for scat-
tering from a cluster.

d
u
al

sc
at

te
ri

n
g

p
at

h
tr

ac
in

g
d
u
al

sc
at

te
ri

n
g

p
at

h
tr

ac
in

g
d
u
al

sc
at

te
ri

n
g

p
at

h
tr

ac
in

g

Figure 6: Comparison (multiple scattering only) of dual scattering
using ray shooting to path tracing for a cube shaped disciplined
hair cluster consisting of 64K hair fibers illuminated by a single
directional light source (light direction is shown on the left).

We also tested the accuracy of our dual scattering method for differ-
ent hair fiber scattering properties. Figure 8 and Figure 9 show that
dual scattering provides a good approximation for various hair col-
ors and longitudinal Gaussian widths (standard deviations). Slight
changes of the optical properties of a fiber (such as absorption) may
have a drastic impact on the overall hair color. As can been in these
figures, our approximation handles such variations correctly.

Despite the common intuition, it is more difficult to perceive er-
rors in complicated models (where detail can hide problems), while
even the slightest errors show up on simple models. We show a
complicated hair model example in Figure 10. Since dual scatter-
ing only exploits local symmetry in the hair model, most of our
assumptions still hold and we can produce a close approximation
to the path tracing reference with significantly improved rendering
times.

Figure 7: The average BRDF (multiple scattering only) at a blond
hair cluster computed for the red, green and blue components of
light blond hair (see Figure 6) using path tracing (solid lines) and
dual scattering approximation (dashed lines). The scene is illumi-
nated by a directional front light source which means that for φ ≈ 0
(white area) the results are dominated by purely local multiple scat-
tering (fback) since no visible fibers are shadowed.

path tracing reference

dual scattering (ray shooting)

Figure 8: Comparison for various hair colors with RGB absorp-
tion coefficients (from left to right) (0.03,0.07,0.15), (0.15,0.2,0.3),
(0.2,0.3,0.5), and (0.3,0.6,1.2).

path tracing reference

dual scattering (ray shooting)

Figure 9: Comparison for varying longitudinal widths βR, βTT ,
and βTRT of the BCSDF (from left to right) (4, 5, 7.5), (8, 10, 15),
(16, 20, 30)

Figure 11 compares the offline implementations of dual scattering
to path tracing and single scattering as well as to photon mapping
(using ray based global illumination [Zinke and Weber 2006]) tech-
niques. As can be seen from these images, while single scattering
produces a dark image that fails to reproduce the correct color of
hair, all other methods produce similar results to path tracing, while
offline implementations of dual scattering significantly improve the
rendering speed.

Figure 12 presents captured frames from our GPU based implemen-
tation of dual scattering, and comparisons to offline dual scattering
(ray shooting) and path tracing. The figure shows three scattering
components (single, global multiple, and local multiple) that pro-
duce the full dual scattering solution when combined. For this hair
style the performance of the GPU implementation of dual scattering
(12 fps) is comparable to the performance of a deep opacity maps
[Yuksel and Keyser 2008] implementation (18 fps). Using extended
multiple draw buffers, the additional pass we use for GPU-based
dual scattering can be eliminated, which would significantly reduce
the performance gap between our method and existing non-physical
real-time solutions.

6 Discussion and Conclusion

Dual scattering offers a physically based simplification to the com-
plicated phenomenon of multiple scattering in hair, exploiting scat-
tering properties of hair fibers (such as narrow scattering along lon-
gitudinal directions and wide scattering along azimuthal directions)
and general characteristics of human hair models (such as local sim-

Single Scattering Only Path Tracing Reference Dual Scattering Dual Scattering Dual Scattering
(offline) (offline) (ray shooting) (forward scattering map) (GPU-based)

3 minutes 22 hours 9.6 minutes 4.6 minutes 5.8 fps

Figure 10: Comparison of our dual scattering approximation method to path tracing (“ground truth”) for a complicated hair style with 50K
strands and 3.4M segments. The hair model is illuminated by two light sources, one of which act as a back light.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 13: The effect of forward and backward scattering density factors df (x, ωd) and db(x, ωd). Values of 0.0 are equivalent to single
scattering only. For most human hair styles values between 0.6 and 0.8 generate close approximations to path tracing.

ilarity of fiber directions). By splitting multiple scattering into a
local and a global part and using different approximations regard-
ing the directionality of scattering from hair fibers, our dual scat-
tering approach is orders of magnitude faster than other accurate
techniques. We justify our simplifications by not only the theory
but also several comparisons to ground truth (path tracing) in both
experimental setups and realistic cases.

It is important to note that all of the computations described rely on
physically-based values. All parameters are either fundamental to
the virtual scene (e.g. directions such as ωi), or are characteristics
of real hair that can be accurately measured and described (e.g. the
α and β values, and the BCSDF description). The only “user ad-
justable” term is the density factor (df and db), but even this has a
physical meaning that limits the range of choices and, in theory, it
could be computed precisely. Figure 13 shows the effect of chang-
ing density parameters.

The multiple scattering computation simplifications introduced in
this paper are based on theoretical approximations rather than ad-
hoc appearance-based formulations. As a result, despite the aggres-
sive simplifications we have made, we obtain close approximations
with no parameter adjustment and much faster computations.

On the other hand, one can come up with special hair models that
would break some of our assumptions. For instance, if the mean
path length is large (as in sparse hairstyles) or if attenuation coef-
ficients are very small, the global structure of a hairstyle tends to
play an important role that biases the results. Furthermore, the as-
sumption that neighboring hair strands exhibit a similar structure
can be violated in chaotic hair models. However, even for compli-
cated cases our results look plausible and close to reference images
with significantly improved computation times.

One limitation of our formulation arises from the fact that we use
the shadow path as a prototype for all significant multiple scattered
paths. Therefore, when there is a strong spatial variation in illumi-
nation, this prototype path assumption may be violated. For exam-

ple, a hard shadow edge falling across the hair creates a sharp il-
lumination change, hence our prototype path approximation would
be less accurate along the shadow boundary.

We believe that separating local and global multiple scattering is a
very general principle that is applicable not only in the realm of hair
rendering, but also for other highly scattering quasi-homogeneous
structures such as snow, clouds or woven textiles.

Acknowledgements

We would like to thank Murat Afsar for the head model, and Anton
Andriyenko for the hair model in Figures 8, 9 and 11. We would
also like to thank the anonymous reviewers for their helpful com-
ments. This work is supported in part by NSF grant CCR-0220047
and Deutsche Forschungsgemeinschaft under grant We1945/3-2.

References

BERTAILS, F., MÉNIER, C., AND CANI, M.-P. 2005. A practi-
cal self-shadowing algorithm for interactive hair animation. In
Graphics Interface, 71–78.

GUPTA, R., AND MAGNENAT-THALMANN, N. 2005. Scattering-
based interactive hair rendering. In Comp. Aided Design and
Comp. Graphics, 489–496.

HADWIGER, M., KRATZ, A., SIGG, C., AND BÜHLER, K. 2006.
Gpu-accelerated deep shadow maps for direct volume rendering.
In Proceedings of Graphics Hardware 2006, 49–52.

KIM, T.-Y., AND NEUMANN, U. 2001. Opacity shadow maps. In
Eurographics Rendering Workshop, 177–182.

KNISS, J., PREMOZE, S., HANSEN, C., SHIRLY, P., AND

MCPHERSON, A. 2003. A model for volume lighting and mod-
eling. IEEE Trans. on Vis. and Comp. Graphics 9, 2, 150–162.

single scattering only

path tracing reference - 17 hours

photon mapping (ray-based global illumination) - 67 minutes

dual scattering (ray shooting) - 15 minutes

dual scattering (forward scattering maps) - 7 minutes

Figure 11: Comparison of a blond hairstyle (87K strands) viewed
from three different perspectives (illuminated by three directional
light sources).

LOKOVIC, T., AND VEACH, E. 2000. Deep shadow maps. In
Proceedings of SIGGRAPH 2000, 385–392.

MARSCHNER, S. R., JENSEN, H. W., CAMMARANO, M., WOR-
LEY, S., AND HANRAHAN, P. 2003. Light scattering from hu-
man hair fibers. ACM Transactions on Graphics 22, 3, 780–791.
SIGGRAPH 2003.

MERTENS, T., KAUTZ, J., BEKAERT, P., AND REETH, F. V. 2004.
A self-shadow algorithm for dynamic hair using density cluster-
ing. In Eurographics Symposium on Rendering, 173–178.

MOON, J. T., AND MARSCHNER, S. R. 2006. Simulating mul-
tiple scattering in hair using a photon mapping approach. ACM
Transactions on Graphics 25, 3, 1067–1074. SIGGRAPH 2006.

PREMOZE, S., ASHIKHMIN, M., RAMAMOORTHI, R., AND NA-
YAR, S. 2004. Practical rendering of multiple scattering effects
in participating media. In Eurographics Symp. on Rendering.

WARD, K., BERTAILS, F., KIM, T.-Y., MARSCHNER, S. R.,
CANI, M.-P., AND LIN, M. 2007. A survey on hair model-

path tracing dual scattering (offline)

dual scattering (real-time) single scattering

global multiple scattering local multiple scattering

Figure 12: Components of dual scattering method captured from
our real-time implementation (12 fps) and comparisons to offline
dual scattering using ray shooting (11.2 minutes) and path tracing
reference (11.8 hours). The hair model has 50K strands and 2.4M
line segments.

ing: Styling, simulation, and rendering. IEEE Transactions on
Visualization and Computer Graphics 13, 2, 213–34.

XU, S., LAU, F. C., JIANG, H., AND PAN, Y. 2006. A novel
method for fast and high-quality rendering of hair. In Proc. of
the 17th Eurographics Symp. on Rendering, 331–341, 440.

YUKSEL, C., AND KEYSER, J. 2008. Deep opacity maps. Com-
puter Graphics Forum (Proc. of EUROGRAPHICS 2008) 27, 2.

YUKSEL, C., AKLEMAN, E., AND KEYSER, J. 2007. Practical
global illumination for hair rendering. In Pacific Graphics 2007,
415–418.

ZINKE, A., AND WEBER, A. 2006. Global illumination for fiber
based geometries. In Electronic proceedings of the Ibero Ameri-
can Symposium on Computer Graphics (SIACG 2006).

ZINKE, A., AND WEBER, A. 2007. Light scattering from fila-
ments. IEEE Trans. on Vis. and Comp. Graphics 13, 2, 342–356.

ZINKE, A., SOBOTTKA, G., AND WEBER, A. 2004. Photo-
realistic rendering of blond hair. In Vision, Modeling, and Vi-
sualization (VMV) 2004, 191–198.

