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Single-threaded CPU performance is no longer scaling (1) 
Moore’s Law

In 1965, Gordon Moore 
predicted the number of Tr will 
grow at the rate of:
x 2 / year
later revised to
x 2 / 18-months

No prediction of CPU 
performanceMoore, Electronics 38(8) April, 1965
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Single-threaded CPU performance is no longer scaling (2) 
The End of ILP (Instruction Level Parallelism) Scaling

The increase in Tr counts was used to increasing the parallelism of the CPU 
instruction execution (e.g. superscalar, pipeline) and other speed-ups

Bill Dally et al., the Last Classical Computer, ISAT Study, 2001

CPU Performance:  ps/inst

Performance is measured as  
the time required to execute 
one instruction (ps/inst)
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Single-threaded CPU performance is no longer scaling (3) 
Explicit Parallelism is Now Attractive

Bill Dally et al., the Last Classical Computer, ISAT Study, 2001

Explicit Parallelism
Gap is Growing

The increase in Tr counts is used to increasing the number of processors
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CUDA can exploit Performance = Parallelism
Now it is clear that “ Performance = Parallelism”

Then what is required to exploit this Parallelism?
Many efficient processors
A programming system that abstract the parallelism 

“CUDA (Compute Unified Device Architecture”
GPU has hundreds of full-featured processors
Multi-threading architecture use the best of those massive parallel cores
CUDA starts from extension to the familiar C-language,  and now expanded 
to Fortran, OpenCL and direct Compute
CUDA can isolate the programmer from the details of parallel programming
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CUDA GPU Computing Visual Demo 
separate animation tool used

Hierarchical thread 
definition

Scalability to n-SMs Hide memory Latency
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Ease of Programming and Performance Increase
Ease of programming represented as “Development time”
Performance achievement measured in GFLOPS 

Source: Nicolas Pinto, MIT

GPU with CUDA

Cell Processor

CPU & SSE-SIMD

High-level  algorithm 
Development  tool  on CPU
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Evolution of NVIDIA GPU    - Number of Cores
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Gap of GPU-CPU Performance, Mem-BW is growing

8x double precision
ECC

L1, L2 Caches

1 TF Single Precision
4GB Memory

NVIDIA GPU
X86 CPU

1000

100
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Key Milestone in GPU Computing ‘Fermi’

Improved peak performance

Improved throughput efficiency 

Broader applicability

Full integration within modern 
software development 
environment
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SM Multiprocessor Architecture
Register FileRegister File

SchedulerScheduler

DispatchDispatch

SchedulerScheduler

DispatchDispatch

Load/Store Units x 16
Special Func Units x 4

Interconnect NetworkInterconnect Network

64K Configurable64K Configurable 
Cache/Shared Cache/Shared MemMem

Uniform CacheUniform Cache
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CoreCore
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CoreCore
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Instruction CacheInstruction Cache

32 CUDA cores per SM (512 total)

8x peak FP64 performance
50% of peak FP32 performance

Dual Thread Scheduler

64 KB of RAM for shared memory 
and  L1 cache (configurable)

FP32FP32 FP64FP64 INTINT SFUSFU LD/STLD/ST
Ops / clkOps / clk 3232 1616 3232 44 1616
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IEEE 754-2008 Floating Point

IEEE 754-2008 results
64-bit double precision
32-bit single precision
full-speed denormal operands & results
NaNs, +/- Infinity

IEEE 754-2008 rounding
nearest even, zero, +inf, -inf

IEEE 754-2008 Fused Multiply-Add (FMA)
D = A*B + C;  
No loss of precision
IEEE divide & sqrt use FMA
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Cached Memory Hierarchy

Configurable L1 cache per SM
16KB L1$ / 48KB Shared Memory
48KB L1$ / 16KB Shared Memory

Shared 768KB L2 cache
Motivation:

Caching captures locality, amplifies 
bandwidth
Caching more effective than Shared 
Memory RAM for irregular or 
unpredictable access

Ray tracing, sparse matrix multiply, 
physics kernels …

Caching helps latency sensitive cases
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Larger, Faster Memory Interface

GDDR5 memory interface
2x improvement in peak speed over GDDR3

Up to 1 Terabyte of memory attached to GPU
Operate on large data sets
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Unified Load/Store Addressing
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ECC Memory Protection

All major internal memories protected by ECC
Register file
L1 cache
L2 cache

External DRAM protected by ECC

ECC is a must have for many computing applications
Clear customer feedback
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GigaThreadTM Hardware Thread Scheduler

Hierarchically manages tens of thousands of simultaneously active threads

10x faster context switching on Fermi

Overlapping kernel execution

HTS
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Overlapping Kernel Execution

Serial Kernel ExecutionSerial Kernel Execution Parallel Kernel ExecutionParallel Kernel Execution
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GigaThread Streaming Data Transfer Engine

Dual DMA engines

Simultaneous CPU GPU
and GPU CPU data transfer

Fully overlapped with CPU/GPU processing

SDT

SDT

Kernel 0
Kernel 1

Kernel 2
Kernel 3

CPUCPU

CPUCPU

CPUCPU

CPUCPU

SDT0

SDT0
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GPUGPU

GPUGPU
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SDT1

SDT1

SDT1

SDT1
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G80 GT200 Fermi

Transistors 681 million 1.4 billion 3.0 billion

CUDA Cores 128 240 512

Double Precision Floating Point - 30 FMA ops/clock 256 FMA ops/clock

Single Precision Floating Point 128 MAD ops/clock 240 MAD ops/clock 512 FMA ops/clock

Special Function Units (per SM) 2 2 4

Warp schedulers (per SM) 1 1 2

Shared Memory (per SM) 16 KB 16 KB Configurable 48/16 KB

L1 Cache (per SM) - - Configurable 16/48 KB

L2 Cache - - 768 KB

ECC Memory Support - - Yes

Concurrent Kernels - - Up to 16

Load/Store Address Width 32-bit 32-bit 64-bit
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GPU Computing ApplicationsGPU Computing Applications

CUDA Parallel Computing Architecture

NVIDIA GPUNVIDIA GPU
with the CUDA Parallel Computing Architecturewith the CUDA Parallel Computing Architecture

CC OpenCLOpenCLtmtm Direct Direct 
ComputeCompute FortranFortran Java and Java and 

PythonPython

OpenCL is trademark of Apple Inc. used under license to the Khronos Group Inc. 

C++C++
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CUDA C 3.0

Unified addressing for C and C++ pointers
Global, shared, local addresses
Enables 3rd party GPU callable libraries, dynamic linking
One 40-bit address space for load/store instructions

Compiling for native 64-bit addressing

IEEE 754-2008 single & double precision
C99 math.h support
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NVIDIA Integrated Development Environment 
Code-named ‘Nexus’

Industry’s 1st IDE for massively parallel applications

Accelerate development of CPU + GPU 
co-processing applications

Complete Visual Studio-integrated development environment
C, C++, OpenCL, & DirectCompute platforms
DirectX and OpenGL graphics APIs
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Fermi Summary

Third generation CUDA architecture

Improved peak performance

Improved throughput efficiency

Broader applicability

Full integration within modern development environment 
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Future: ExaScale Computing
ExaScale (10^18) is the next milestone following 

PetaScale (10^15) computing

DARPA, HP, France and others are planning for 

ExaScale computing facilities. 

DARPA report (28th Sept., 2008) described four 

major challenges (Power consumption, memory, 

Concurrency/Locality, Resiliency)

DARPA reports that the number one issue is 

Power. Extrapolation of Power indicates over 

100MW for Exaflop. Available at
www.darpa.mil/personnel/docs/ExaScale_Study_Initial.pdf
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A Possible  NVIDIA ExaScale Machine in 2017 
by Bill Dally: Chief Scientist & Sr. VP of Research, NVIDIA 
A projection based on Moore’s Law and does not represent a committed roadmap

GPU Node (GPU + CPU + memory + supply)  ~300W
2,400 throughput-cores (7,200FPUs), 16 CPUs – single chip
40TFLOPS (SP), 13TFLOPS (DP)

Node Memory
128GB DRAM, 2TB/s bandwidth
512GB Phase-change Flash for checkpoint and scratch

Cabinet ~100kW
384-Nodes 15.7PFLOPS (SP), 50TB DRAM
Dragonfly network – 1TB/sec node bandwidth

System  ~ 10MW
128 cabinets – 2 ExaFLOPS (SP), 6.8PB DRAM
Dragonfly network with active optical links
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Conclusion

Performance of Single-threaded processor is saturating

Performance = Parallelism 

NVIDIA are committed to offer massive parallel GPUs for now and 

beyond

CUDA GPU computing abstracts parallel programming

‘Fermi’ is the key milestone in GPU Computing
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Thank you for your attention
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