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Overall optimization strategies

Maximize parallel execution
Exposing data parallelism in algorithms
Overlap memory access with computation
Keep the hardware busy

Maximize memory bandwidth
Access data efficiently

Maximize instruction throughput
Use as few clock cycles as possible
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The Art of Performance Optimization

Exploiting parallelism
Sending data to the device
CUDA architecture refresher
Execution configuration
Speeding up memory access
Instruction optimization
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Amdahl's Law – Example

S = 

ParallelSerialParallel Serial

P = parallel proportion
N = number of procs

Assume N → infinity
Only ¾ of program can be parallelized
S = 4

The maximum speedup can only be 4x

Unoptimized:

Optimized:
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Theoretical Bandwidth

Memory
clock (Hz)

Memory
interface
(bytes)

DDR

Device Bandwidth of GTX 280

1107 * 106 *  (512 / 8) * 2 / 109 =  141.6 GB/s

Some specs report 132 GB/s 
They use 10243 B/GB conversion rather than 109
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Effective Bandwidth

Effective Bandwidth (GB/s) = 
( ( B

R
 + B

W 
) / 109  ) / time

Example of copying array of N floats

N*sizeof(float) / 109 * 2 / num_seconds = GB/s

Our goal is to make effective bandwidth as close to 
theoretical bandwidth as possible

Array size
 (bytes)

Read and
write
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Host ↔ Device – Overview

NVIDIA GPUs have dedicated memory
nearly 10X the bandwidth of CPU memory, this is a 
tremendous advantage
141 GB/s peak (GTX 280) vs. 6 GB/s peak (PCI-e x16 Gen2)

Developers may be discouraged by the overhead of 
transferring data between Host and Device

Some ways to fix this:
Avoid it...
Make it faster...
Hide it...
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Host ↔ Device – Minimize transfers

Intermediate data structures can be allocated, 
operated on, and deallocated without ever copying 
them to host memory

Sometimes it’s better to recompute than to cache

Even low-parallelism computations can sometimes 
be faster than transferring back and forth

Use graphics interoperability...
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Graphics Interop – Overview

OpenGL buffer objects can be mapped into the 
device's address-space

Direct3D9 Vertex objects can also be mapped (see 
programming guide for details)
Data is accessed like global memory in the kernel
Can remove host ↔ device transfer entirely
Automatic DMA from Tesla to Quadro (currently via host)

Image data can be displayed from PBOs
using glDrawPixels / glTexImage2D

Requires high-speed copy in video memory
See SDK!

postProcessGL
simpleGL...
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Graphics Interop – Details

Register a buffer object with CUDA-C
cudaGLRegisterBufferObject(GLuint buffObj)

Map a registered buffer object to device memory
cudaGLMapBufferObject(void** devPtr,GLuint buffObj)

Returns an address in global memory

Use returned memory address in your kernel
Unmap the buffer object prior to use by OpenGL

cudaGLUnmapBufferObject(GLuint buffObj)

Unregister the buffer object
cudaGLUnregisterBufferObject(GLuint buffObj)

Only needed if the buffer is a render-target

Use the buffer object in your OpenGL code...
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Graphics Interop – Example

// setup code:
cudaGLRegisterBufferObject(pbo);

// CUDA texture generation code:
unsigned char *d_buffer;
cudaGLMapBufferObject((void**)&d_buffer, pbo);
prep_texture_kernel<<<...>>>(d_buffer);
cudaGLUnmapBufferObject(pbo);

// OpenGL rendering code:
glBindBuffer(GL_PIXEL_UNPACK_BUFFER_ARB, pbo);
glBindTexture(GL_TEXTURE_2D, tex);
glTexSubImage2D(GL_TEXTURE_2D,0,0,0,256,256,GL_BGRA,GL_UNSIGNED_BYTE,0);

Dynamic CUDA-generated texture:
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Graphics Interop – Example

// OpenGL rendering code:
// ...

// CUDA post-processing code:

unsigned char *d_buffer;

cudaGLRegisterBufferObject(pbo);

cudaGLMapBufferObject((void**)&d_buffer, pbo);

post_process_kernel<<<...>>>(d_buffer);

cudaGLUnmapBufferObject(pbo);

cudaGLUnRegisterBufferObject(pbo);

Frame Post-processing by CUDA:
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Graphics Interop – VBO example

GLuint vbo_pos;

glGenBuffers(1, vbo_pos);

glBindBuffer(GL_ARRAY_BUFFER, &vbo_pos);

glBufferData(GL_ARRAY_BUFFER, N_POINTS*4*sizeof(float), 0, GL_DYNAMIC_DRAW);

glBindBuffer(GL_ARRAY_BUFFER, 0);
cudaGLRegisterBufferObject(vbo_pos);

// LOOP:

float4 *d_pos;

cudaGLMapBufferObject((void**)&d_pos, vbo_pos);

move_points_kernel<<<N_POINTS/256, 256>>>(d_pos);

cudaGLUnmapBufferObject(vbo_pos);

glBindBuffer(GL_ARRAY_BUFFER, &vbo_pos);

glVertexPointer(4, GL_FLOAT, 0, 0);

glEnableClientState(GL_VERTEX_ARRAY);

glDrawArrays(GL_POINTS, 0, N_POINTS);

glDisableClientState(GL_VERTEX_ARRAY);
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Host ↔ Device – Making it faster!

Group transfers
One large transfer much better than many small ones

Use Page-locked memory...
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Host ↔ Device – Page-locked memory

Prevents OS from paging host memory
Allows PCI-e DMA to run at full speed
≈ 3 GB/s (PCI-e x16 Gen1) or 6 GB/s (PCI-e x16 Gen2)

WARNING:
Allocating too much page-locked 
memory can reduce system performance

CUDA-C:
Instead of malloc(…), use cudaHostAlloc(…)

OpenCL:
Use CL_MEM_ALLOC_HOST_PTR in clCreateBuffer

See SDK!
bandwidthTest
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Host ↔ Device – Performance
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Host ↔ Device – Write-combining

CUDA-C has option of Write-Combining

memory is not snooped which can improve 
performance by up to 40%

WARNING:
Not cached = FAST write, but SLOW host read

cudaHostAlloc((void**)&h_data, 
              num_bytes,
              cudaHostAllocWriteCombined
              );
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Host ↔ Device – Hiding it

Asynchronous API

Data Acquisition example

CUDA Streams

Zero Copy
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Run CUDA
Kernel(s)

Copy Data from 
CPU Memory to
GPU Memory

Copy Data from
GPU memory to

CPU Memory

Typical Approach

PCIe
(5 GB/s)

5–10
GB/s

CPU

GPU

GPU
Memory

CPU
Memory

Chipset

60-80
GB/s
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Synchronous Functions

Standard CUDA C functions are Synchronous
Trade-off between CPU cycles and response speed
cudaDeviceSetFlags(...)

cudaDeviceScheduleSpin, 
cudaDeviceScheduleYield, 
cudaDeviceBlockingSync

Runtime API: Kernel launches are Asynchronous

Synchronous functions block on any prior 
asynchronous kernel launches

Doesn’t return until copy is complete

Returns immediately

Waits for kernel to complete, 
then starts copying. Doesn’t return 
until copy is complete.

cudaMemcpy(…);
kernel<<<grid,block>>>(…);
cudaMemcpy(…);
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Asynchronous API

All memory operations can also be asynchronous, 
and return immediately

Copies & Kernels are queued up in the GPU

Any launch overhead is overlapped
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Asynchronous API – Caveats

Memory must be allocated as page-locked using 
cudaHostAlloc()

Synchronous calls should be done outside critical 
sections ─ some of these are expensive!

Initialization
Memory allocations
Stream / Event creation
Interop resource registration

PINNED memory allows direct 
DMA transfers by the GPU to and 
from system memory. It’s locked 
to a physical address
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Asynchronous API – Example

cudaMemcpyAsync(…);
myKernel<<<grid,block>>>(…);
cudaMemcpyAsync(…);

// cpu does work here...

cudaThreadSynchronize();

More on streams soon, 
for now assume 
stream = 0

Returns immediately

Returns immediately

Returns immediately

Waits for everything on the 
GPU to finish, then returns

cudaMemcpyAsync(void* dst, 
                void* src,
                size_t count,
                enum cudaMemcpyKind kind,
                cudaStream_t stream)      
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Using Events – Example

cudaEvent_t HtoDdone;
cudaEventCreate(&HtoDdone,0);
cudaMemcpyAsync(d_dest,h_source,bytes,cudaMemcpyHostToDevice,0);
cudaEventRecord(HtoDdone);

myKernel<<<grid,block>>>(…);

cudaMemcpyAsync(d_dest,h_source,bytes,cudaMemcpyDeviceToHost,0);

// cpu can do stuff here

cudaEventSynchronize(HtoDdone);

// The first memory copy is done, 
// so the memory at source could be 
// used again by the CPU

cudaThreadSynchronize();

Waits just for everything before 
cudaEventRecord(HtoDdone)
to complete, then returns

Waits for everything on the 
GPU to finish, then returns
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Acquiring Data From an Input Device

CPU

GPU

CPU
Memory

GPU
Memory

Chipset

No Overlap:
Acquire, 
Transfer, 
& Compute frame[i]

Acquire Transfer Compute
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CPU

GPU

GPU
Memory

Chipset

Overlap Acquisition With Transfer

1 2

2-way Overlap:
Acquire frame[i]
Transfer & compute frame[i-1]
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Overlap Acquisition With Transfer

Use 2 pinned CPU buffers, ping-pong between them

int buf = 0;
void* d_framebuf;
void* h_framebuf[2];
// Allocate buffers...

while (!done)
{
  cudaMemcpyAsync(d_framebuf, h_framebuf[(buf+1)%2],size,
                  cudaMemcpyHostToDevice, 0);

  myKernel1<<<...>>>(d_framebuf);
  // … other GPU stuff, all asynchronous

  AcquireFrame(h_framebuf[buf]);
  // … other CPU stuff

  cudaThreadSynchronize();
  buf++; buf%=2;
}
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CUDA Streams

NVIDIA GPUs with Compute 
Capability >= 1.1 have a
dedicated DMA engine
DMA transfers over PCIe can be
concurrent with CUDA kernel 
execution*
Streams allows independent 
concurrent in-order queues of 
execution

cudaStream_t, cudaStreamCreate()

Multiple streams exist within a 
single context, they share 
memory and other resources

Memory Controller

GPU Memory

Copy Compute

*1D Copies only!  cudaMemcpy2DAsync cannot overlap.

GPU
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Stream Parameter

All Async function varieties have a stream parameter

Runtime Kernel Launch
<<<GridSize, BlockSize, SMEM Size, Stream>>>

Copies & Kernel launches with the same stream 
parameter execute in-order
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KERNEL A1

KERNEL A2

KERNEL A3

KERNEL B1

KERNEL A1

KERNEL A2

KERNEL B1

KERNEL A3

COPY A1

COPY B1

COPY B2

COPY A2

COPY B3

COPY B4

COPY A1

COPY A2

COPY B1

COPY B4

COPY B2

COPY B3

CUDA Streams

TASK A TASK B

Copy 
Engine

Compute 
Engine

Independent Tasks:

Scheduling on GPU:

Time
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Avoid Serialization!

• Engine queues are filled in 
the order code is executed

WRONG WAY!

CudaMemcpyAsync(A1…,StreamA); 
 
KernelA1<<<…,StreamA>>>();
KernelA2<<<…,StreamA>>>();
KernelA3<<<…,StreamA>>>();
CudaMemcpyAsync(A2…,StreamA);

CudaMemcpyAsync(B1…,StreamB);
CudaMemcpyAsync(B2…,StreamB);
KernelB1<<<…,StreamB>>>();
CudaMemcpyAsync(B3…,StreamB);
CudaMemcpyAsync(B4…,StreamB);

KERNEL A1

KERNEL A2

KERNEL A3

KERNEL B1

COPY A1

COPY A2

COPY B1

COPY B4

COPY B2

COPY B3

STREAM A

STREAM B

KERNEL A1

COPY A2

Copy Engine Compute 
Engine

COPY A1

KERNEL A2

KERNEL A3

COPY B1

COPY B2

KERNEL B1

COPY B3

COPY B4
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Stream Code Order

KERNEL A1

COPY A1

KERNEL A2

KERNEL A3

COPY B1

COPY B2

KERNEL B1COPY A2

COPY B3

COPY B4

CORRECT WAY!

CudaMemcpyAsync(A1…,StreamA); 
 
KernelA1<<<…,StreamA>>>();
KernelA2<<<…,StreamA>>>();
KernelA3<<<…,StreamA>>>();

CudaMemcpyAsync(B1…,StreamB);
CudaMemcpyAsync(B2…,StreamB);
KernelB1<<<…,StreamB>>>();

CudaMemcpyAsync(A2…,StreamA);

CudaMemcpyAsync(B2…,StreamB);
CudaMemcpyAsync(B2…,StreamB);

Copy Engine Compute 
Engine

KERNEL A1

KERNEL A2

KERNEL A3

KERNEL B1

COPY A1

COPY A2

COPY B1

COPY B4

COPY B2

COPY B3

STREAM A

STREAM B
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CPU

GPUChipset

Revisit Our Data I/O Example

1 2 1 2

3-way Overlap:
Acquire frame[i]
Transfer frame[i-1]
Compute frame[i-2]
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3-Way Overlap

As before, allocate two host buffers
Also allocate two device buffers

int buf = 0; // current buffer
void* h_framebuf[2];
void* d_framebuf[2];
cudaStream_t copyStream; // stream for copy
cudaStream_t compStream; // stream for compute

// Allocate Buffers
cudaHostAlloc(&(h_framebuf[0]),size,0);
cudaHostAlloc(&(h_framebuf[1]),size,0);

cudaMalloc(&(d_framebuf[0]),size,0);
cudaMalloc(&(d_framebuf[1]),size,0);

// Create Streams
cudaStreamCreate(&copyStream,0);
cudaStreamCreate(&compStream,0);
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while (!done)
{
  cudaMemcpyAsync(d_framebuf[buf],
                  h_framebuf[(buf+1)%2],size,
                  cudaMemcpyHostToDevice,
                  copyStream);

  myKernel1<<<grid,block,0,compStream>>>(d_framebuf[(buf+1)%2]);
  myKernel2<<<grid,block,0,compStream>>>(d_framebuf[(buf+1)%2]); 
  // … other GPU stuff, all asynchronous

  AcquireFrame(h_framebuf[buf]);
  // … other CPU stuff

  cudaThreadSynchronize();
  buf++; buf%=2;
}

3-Way Overlap (Cont.)



NVIDIA Confidential

What About Readback?

1 2 3 1 2 3

CPU

GPUChipset

3-way Overlap:
Acquire frame[i]
Transfer frame[i-1]
Readback frame[i-3]
Compute frame[i-2]
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Readback

while (!done)
{
  cudaMemcpyAsync(d_framebuf[buf],h_framebuf[(buf+1)%3],size,
                  cudaMemcpyHostToDevice,copyStream);

  cudaMemcpyAsync(d_framebuf[buf+2],h_framebuf[(buf+2)%3],size,
                  cudaMemcpyDeviceToHost,copyStream);

  kernel1<<<grid,block,0,compStream>>>(d_framebuf[(buf+1)%3]…);
  kernel2<<<grid,block,0,compStream>>>(d_framebuf[(buf+1)%3]…); 
  // … other GPU stuff, all asynchronous

  AcquireFrame(h_framebuf[buf]);
  // … other CPU stuff

  cudaThreadSynchronize();
  buf++; buf%=3;
}
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…

cudaMemcpyAsync(d_framebuf[buf],h_framebuf[(buf+1)%3],size,
                  cudaMemcpyHostToDevice,uploadStream);

cudaMemcpyAsync(d_framebuf[buf+2],h_framebuf[(buf+2)%3],size,
                  cudaMemcpyDeviceToHost,downloadStream);
…

4-Way Overlap?

FUTURE hardware adds a 2nd copy engine!  
Simultaneous upload and downloading
Simply add another stream 

still works with prior hardware, just serialized
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Host Memory Mapping – Zero-Copy

The easy way to achieve copy/compute overlap!
Access host memory directly from device code

Transfers implicitly performed as needed by device code
Introduced in CUDA 2.2
Check canMapHostMemory field of cudaDeviceProp 
variable

All setup is done on host using mapped memory

cudaSetDeviceFlags(cudaDeviceMapHost);
...
cudaHostAlloc((void**)&a_h, nBytes, cudaHostAllocMapped);
cudaHostGetDevicePointer((void**)&a_d, (void *)a_h, 0);
for (i=0; i<N; i++) 
    a_h[i] = i;
increment<<<grid, block>>>(a_d, N);

See SDK
samples!
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Zero Copy guidelines

Easier and faster alternative to using Async API
Data is transferred over the PCIe bus automatically, 
but it’s slow

Use when data is only read/written once
Use for small amounts of data (new variables, CPU/GPU 
communication)
Use when compute/memory ratio is very high and 
occupancy is high, so latency over PCIe is hidden
Coalescing is critically important

Zero copy will be a win for integrated devices
you can check this using the 
integrated property in 
cudaDeviceProp Note: For Ion™ and other Unified 

Memory Architecture (UMA) GPUs 
zero-copy eliminates data transfer 
altogether!



NVIDIA Confidential

GPU Memory architecture

Host memory 
6 GB/s peak (PCIe x16 Gen2)

Global / Local device memory
4GB
high latency, 141 GB/s peak

Constant memory
64 KB read-only
cached

Texture memory
read-only
spatially cached 

Shared memory GLOBAL MEMORY

CONSTANT MEMORY

H
O

S
T

 M
E

M
O

R
Y

LOCAL

thread[0]

REG

SMEM

LOCAL

thread[1]

REG

block[0]

LOCAL

thread[0]

REG

SMEM

LOCAL

thread[1]

REG

block[1]

TEXTURE MEMORY

grid
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Hierarchical thread structure

Individual THREADS operate 
on data elements.

The unit of parallelism.

Negligible cost for creation, 
switching, and overhead.

Threads are grouped into
BLOCKS, which can 
synchronize and cooperate.

A GRID contains multiple 
blocks and covers the entire 
data set.
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Execution Model

Programming 
model:

Hardware:

THREAD Scalar Processor

BLOCK Streaming Multiprocessor

GRID Device

Threads are executed by 
scalar processors

BLOCKS are executed on 
multiprocessors

BLOCKS do not migrate
Several concurrent BLOCKS 
can reside on one SM.

This is limited by SM resources

A kernel is launched as a 
GRID of BLOCKS

Only one kernel can execute 
on a device at one time
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Warps

BLOCK

32 Threads

32 Threads

32 Threads

...

WARPS

→
→
→

BLOCKS divide into groups of 
threads called WARPS

The unit of scheduling
All threads in warp perform 
same instruction (SIMT)
Using many warps can hide 
memory latency
warpSize = 32 threads

warp 8: instruction 11

SM warp scheduler

warp 1: instruction 42

warp 3: instruction 95

warp 8: instruction 12

...

warp 3: instruction 96

time
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Latency hiding – single-threaded

C M C M C M C

C M C M C M C

M

M

Time

Warps

Time

Warps

M

C

= Memory latency

= Computation time

Time saved

The time saved from maths performance increase is 
small because memory latency is the limiting factor

STALL AVAILABLE
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Latency hiding – multi-threaded

C M

C M

C M

Time

Warps

M

C

= Memory latency

= Computation time

We must try to ensure that the processor is always 
doing work

C M

C M

C M

C M

C M

C M

stall
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Latency hiding – multi-threaded

C M

C M

C M

Time

Warps

M

C

= Memory latency

= Computation time

To hide latency we can increase the amount of warps

C M

C M

C M

C M

C M

C M

C M

C M

C M

C M

C M

C M
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Latency hiding – Example

Instructions are executed sequentially, so executing 
other warps is the only way to hide latencies and 
keep the hardware busy

How many warps to hide global memory access?

We need 100 (400/4) arithmetic instructions to hide the 
latency
e.g. Assume the code has 8 instructions (8*4 cycles) for 
each global memory access (~400 cycles)
100 / 8 ≈ 13 warps
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add.f32        $f3, $f1, $f2
add.f32        $f5, $f3, $f4

x = y + 5;
z = x + 3;

ld.shared.f32  $f3, [$r31+0] 
add.f32        $f3, $f3, $f4

s_data[0] += 3;

Read-after-write register dependency
Instruction’s result can be read ~24 cycles later

To completely hide the latency: 
We need at least 6 warps (24 / 4) per multiprocessor

Latency hiding – Example

KERNEL CODE: PTX CODE:
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Occupancy

Occupancy = 
Number of warps running concurrently on a  
multiprocessor divided by hardware-limit of max possible 
number of simultaneous warps

Max warps = 32
(24 on older hardware, CC <= 1.1)

To hide GMEM latency on CC 1.2, we need at least:
13 / 32 = 40% occupancy

To hide register dependency on CC 1.1, we need:
6 / 24 = 18.75% occupancy
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Occupancy – Considerations

Increase occupancy to achieve latency hiding

Occupancy is limited by SM resource usage:

Registers = 64KB = 16384
(32K on older hardware = 8192 registers)

Shared memory = 16KB

Scheduling hardware
max running warps per SM = 32

max blocks per SM = 8
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Occupancy – Register pressure

Increase warps by running more threads per SM
Get as many threads (and blocks) able to run as possible

Limiting Factors:
Number of registers per kernel

64KB per SM, partitioned among concurrent threads

Amount of shared memory
16KB per SM, partitioned among concurrent blocks

kernel parameters go in Shared Memory – consider using constant 
memory instead

R = registers required by kernel

R
max
 = maximum registers per SM (16384)

actual required registers = ceil(R * ceil(BLOCK_SIZE, 32), R
max
 / 32)
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Occupancy – Resource limit example

SM partitions registers and local memory for all 
active blocks:

If every thread uses 10 registers and every block has 256 
threads:

Each block uses 256*10 = 2560 registers. 

8192 / 2560 = 3.2 → 3 blocks

(256*3 = 768) / 32 → 24 warps can run

(24 / 24) →100% occupancy can be achieved

However, if every thread uses 17 registers: 
8192 / (256*17) = 1.9 → 1 block

(256*1 = 256) / 32 → 8 warps can run

So occupancy is reduced to (8 / 24 = ) 33%

But, if block has 128 threads:
since 8192 / (128*17 = 2176) = 3.8 → 3 blocks (of 128 threads)

occupancy can be ((384/32) / 24) → 50%
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Determining resource usage

Compile the kernel with the -cubin flag
Open the .cubin file with a text editor:

Or compile with –ptxas-options=-v

architecture {sm_10}
abiversion {0}
modname {cubin}
code {
  name = MyKernel
  lmem = 0
  smem = 68
  reg = 20
  bar = 0
  bincode {
    0xa0004205 0x04200780 0x40024c09 0x00200780 
    … 

per thread local memory

per thread block shared memory

per thread registers
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PTX – GPU assembly

Compile with –keep or -ptx

Interleaved code: --opencc-options -LIST:source=on

Useful to check
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Minimizing register pressure

To maximize occupancy compiler will minimize 
register usage
Use compiler option: -maxrregcount=<N>

N = desired maximum registers / kernel

WARNING:
At some point, “spilling” into Local memory may occur
LMEM is located in slow device memory
Large arrays & structures are stored in LMEM
Check .cubin file for LMEM usage

By default nvcc forces all device code to be inline
Use __noline__ function qualifier as compiler hint
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Grid Size Heuristics

# of blocks > # of multiprocessors
So all multiprocessors have at least one block to execute

# of blocks / # of multiprocessors > 2
Multiple blocks can run concurrently in a multiprocessor
Blocks that aren’t waiting at a __syncthreads() keep the 
hardware busy

# of blocks > 100 to scale to future devices
Blocks executed in pipeline fashion
1000 blocks per grid will scale across multiple generations
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Block Size Heuristics

More threads per block = fewer registers per thread
Kernel invocations can fail if too many registers are used

Use occupancy heuristic
More threads per block = better memory latency hiding

Choose threads per block as a multiple of warp size
Avoid wasting computation on under-populated warps

Help hardware thread scheduler minimize register bank 
conflicts

Use multiple of 64 threads for best efficiency

Heuristics
Minimum of 64 threads per block (allows 2 warps)
192 or 256 threads is a better choice

Usually still enough registers to compile and invoke successfully
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Occupancy – Conclusions

After some point (e.g. 50%), further increase in 
occupancy won’t lead to performance increase

So occupancy calculation in realistic case is 
complicated, thus…
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CUDA Occupancy Calculator
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Execution Configuration – Summary

Use optimal number of threads per block
More warps per block, deeper pipeline

hides latency, gives better SM occupancy

at least 192 hides read after write dependency

Limited by available resources

Maximize concurrent blocks on SM
Multiple blocks keep SM busy when waiting for 
synchronization
Can be a trade-off for shared memory usage

Less than 8KB shared memory per block allows more than one block 
to run



NVIDIA Confidential

Occupancy != Performance

Increasing occupancy does not necessarily increase 
performance

BUT…

Low-occupancy multiprocessors cannot adequately 
hide latency on memory-bound kernels

It all comes down to arithmetic intensity and available 
parallelism
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Optimize Memory Access – Outline

Optimize Global Memory access

Using Shared Memory

Using Texture & Constant Memory
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Global Memory

Global memory is not cached

Highest latency instructions
400-600 clock cycles
Launching more threads can help hide this latency

Likely to be a bottleneck
Optimizations can greatly increase performance

Important to minimize accesses
Use 64 / 128-bit load/store instructions...
Coalesce global memory accesses...
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Global Memory – Load & store

Variables must have a size of 4, 8, or 16 bytes, and 
must be aligned to a multiple of their size

Use -ptx flag of nvcc to inspect instructions:

ld.global.f32     $f1, [$rd4+0];
st.global.f32     [$rd4+0], $f2;
…
ld.global.v2.f32  {$f3,$f5}, [$rd7+0];
st.global.v2.f32  [$rd7+0], {$f4,$f6};
…
ld.global.v4.f32  {$f7,$f9,$f11,$f13}, [$rd10+0];
st.global.v4.f32  [$rd10+0], {$f8,$f10,$f12,$f14};

4 byte load and store:

8 byte load and store:

16 byte load and store:
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Coalescing (CC <= 1.1)

Coalescing occurs when a half warp (16 threads) 
accesses contiguous region of GMEM

16 data elements loaded in one instruction
int, float: 64 bytes (fastest)

int2, float2: 128 bytes

int4, float4: 256 bytes (2 transactions)

If un-coalesced, hardware issues 16 sequential loads

Global memory can be viewed as composing aligned segments of 16 and 32 words.
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Coalescing in CC 1.0 and 1.1

kth thread in halfwarp must access kth word in  segment
not all threads need to participate
Start address of region must be multiple of region size

Permuted – 16 transactions:

Misaligned – 16 transactions:

……

……

……

Coalesces – 1 transaction: ☻
Halfwarp →
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Coalescing (CC >= 1.2)

Much improved coalescing capabilities in 10-series 
architecture

Hardware combines addresses within a half-warp 
into one or more aligned segments

32, 64, or 128 bytes

All threads with addresses within a segment are 
serviced with a single memory transaction

Regardless of ordering or alignment within the segment
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Coalescing in CC 1.2 & 1.3

Any pattern of access that fits into an aligned 
segment size
# of transactions = # of accessed segments

☻

☻

☻

32-byte segment

64-byte segment

128-byte segment
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Coalescing – Examples

Effective bandwidth of small kernels that copy data
Effects of offset and stride on performance

Two GPUs
GTX 280

Compute Capability 1.3

Peak bandwidth of 141 GB/s

FX 5600
Compute Capability 1.0

Peak bandwidth of 77 GB/s
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Coalescing – Misaligned Accesses

__global__ void offsetCopy(float* out, 
                           float* in,
                           int offset)
{
    int i = threadIdx.x + blockIdx.x * blockDim.x;
    out[i + offset] = in[i + offset];
}

Memory access of halfwarp when offset = 1

GTX-280 (compute capability 1.3) drops by a 
factor of 1.7
 
FX-5600 (compute capability 1.0) drops by a 
factor of 8. This is because 32 bytes 
(minimum transaction size) are fetched for 
each thread, and we only need 4 bytes. 
4 / 32 = 1 / 8 performance
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Coalescing – Strided Accesses

__global__ void strideCopy(float* out, 
                           float* in,
                           int stride)
{
    int i = threadIdx.x + blockIdx.x * blockDim.x;
    out[i * stride] = in[i * stride];
}

Memory access of halfwarp when stride = 2

Large strides often arise in applications. 
However, strides can be avoided using 
shared memory.
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Coalescing structs of size_t ≠ 4,8,16

Use a “Structure of Arrays” (SoA) instead of “Array 
of Structures” (AoS)

If SoA is not viable then...
Force structure alignment 

__align__(X) where X = 4, 8, or 16

Point structure:

AoS:

SoA: x x x x y y y y z z z z

x y z

x y zx y zx y z x y z

Aligned: x y zx y zx y z x y z

struct __align__(16)
{
    float a;
    float b;
    float c;
};

See SDK!
 alignedTypes
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Coalescing – Summary

Coalescing greatly improves throughput
Critical for memory-bound kernels

Reading structs of size other than 4, 8, or 16 bytes 
breaks coalescing

Prefer “Structures of Arrays” over AoS
Pad using: __align__(X)

Strided memory access is inherent in many 
multidimensional problems

Stride is generally large (>> 18)
But strided access to global memory can be avoided using 
SMEM...
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Shared Memory

~Hundred times faster than global memory

Cache data to reduce global memory accesses

Threads can cooperate via shared memory
Use one or more threads to load / compute data shared by 
all threads

Use it to avoid non-coalesced access
Stage loads and stores in shared memory to re-order non-
coalesceable addressing

See SDK!
matrixTranspose
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Memory Bandwidth

Effective bandwidth depends on access patterns
Minimize device memory accesses

Much lower bandwidth than on-chip shared memory

Common CUDA kernel structure:
1. Load data from global memory to shared memory
2. __syncthreads()
3. Process the data in shared memory with many threads
4. __syncthreads() (if needed)
5. Store results from shared memory to global memory 

Notes:
Steps 2 to 4 may be repeated, looped, etc.
Step 4 is not necessary if there is no dependence of 
stored data on other threads
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Caching – MatMult example (C=AxB)

__global__ void simpleMultiply(float* a,
                               float* b,
                               float* c,
                               int N)
{
int col = threadIdx.x+blockIdx.x*blockDim.x;
int row = threadIdx.y+blockIdx.y*blockDim.y;

float sum = 0.f;
for (int i = 0; i < TILE_DIM; i++) 
    sum += a[row*TILE_DIM+i] * b[i*N+col];

c[row*N+col] = sum;
}

Uncached version:

Every thread corresponds to one entry in C.
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Caching – MatMult example (C=AxB)

__global__ void simpleMultiply(float* a,
                               float* b,
                               float* c,
                               int N)
{
int col = threadIdx.x+blockIdx.x*blockDim.x;
int row = threadIdx.y+blockIdx.y*blockDim.y;

float sum = 0.f;
for (int i = 0; i < TILE_DIM; i++) 
    sum += a[row*TILE_DIM+i] * b[i*N+col];

c[row*N+col] = sum;
}

Uncached version:

Every thread corresponds to one entry in C.

Consider a warp:
When calculating a row of C,
lots of repeated access to the same row of A.
Un-coalesced in CC <= 1.1.
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Caching – MatMult example – Results

Optimization NVIDIA GeForce 
GTX 280

NVIDIA Quadro 
FX 5600

No optimization 8.8 GBps 0.62 GBps

Coalesced using 
shared memory to 
store a tile of A

14.3 GBps 7.34 GBps

Using shared 
memory to 
eliminate 
redundant reads of 
a tile of B

29.7 GBps 15.5 GBps
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Caching – MatMult example (C=AxB)

__global__ void coalescedMultiply(float* a,
                                  float* b,
                                  float* c,
                                  int N)
{
__shared__ float aTile[TILE_DIM][TILE_DIM]);
int col = threadIdx.x+blockIdx.x*blockDim.x;
int row = threadIdx.y+blockIdx.y*blockDim.y;

// coalesced load of tile into smem
int x = threadIdx.x;
int y = threadIdx.y;
aTile[y][x] = a[row*TILE_DIM+x];

// no synchronization required

float sum = 0.f;
for (int i = 0; i < TILE_DIM; i++) 
    sum += aTile[y][i] * b[i*N+col];

c[row*N+col] = sum;
}

Cached & coalesced version:
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Caching – MatMult example – Results

Optimization NVIDIA GeForce 
GTX 280

NVIDIA Quadro 
FX 5600

No optimization 8.8 GBps 0.62 GBps

Coalesced using 
shared memory to 
store a tile of A

14.3 GBps 7.34 GBps

Using shared 
memory to 
eliminate 
redundant reads of 
a tile of B

29.7 GBps 15.5 GBps
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Caching – MatMult example (C=AxB)

__global__ void coalescedMultiply(float* a,
                                  float* b,
                                  float* c,
                                  int N)
{
__shared__ float aTile[TILE_DIM][TILE_DIM]);
int col = threadIdx.x+blockIdx.x*blockDim.x;
int row = threadIdx.y+blockIdx.y*blockDim.y;

// coalesced load of tile into smem
int x = threadIdx.x;
int y = threadIdx.y;
aTile[y][x] = a[row*TILE_DIM+x];

// no synchronization required

float sum = 0.f;
for (int i = 0; i < TILE_DIM; i++) 
    sum += aTile[y][i] * b[i*N+col];

c[row*N+col] = sum;
}

Cached & coalesced version:

Consider a warp:
When calculating a row of C, 
the entire tile of B is read
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Caching – MatMult example

__kernel void sharedABMultiply(__global float* a, __global float* b, __global float* 
c, int N)
{
    __shared__ float aTile[TILE_DIM][TILE_DIM]);
    __shared__ float bTile[TILE_DIM][TILE_DIM]);
    int col = threadIdx.x+blockIdx.x*blockDim.x;
    int row = threadIdx.y+blockIdx.y*blockDim.y;
  
    // coalesced load of tile into smem
    int x = threadIdx.x;
    int y = threadIdx.y;
    aTile[y][x] = a[row * TILE_DIM + x];
    bTile[y][x] = b[y * N + col];
    // we need to sync block because we are reading from different columns of bTile
    barrier(CLK_LOCAL_MEM_FENCE);

    float sum = 0.f;
    for (int i = 0; i < TILE_DIM; i++) 
        sum += aTile[y][i] * bTile[i][x];

    c[row*N+col] = sum;
}

Cached & coalesced version:
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Caching – MatMult example – Results

Optimization NVIDIA GeForce 
GTX 280

NVIDIA Quadro 
FX 5600

No optimization 8.8 GBps 0.62 GBps

Coalesced using 
shared memory to 
store a tile of A

14.3 GBps 7.34 GBps

Using shared 
memory to 
eliminate 
redundant reads of 
a tile of B

29.7 GBps 15.5 GBps
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Shared Memory – Banked Architecture

Bank 15

Bank 7

Bank 6

Bank 5

Bank 4

Bank 3

Bank 2

Bank 1

Bank 0

Shared memory is divided into banks
32-bit words assigned to successive banks
Number of banks = 16 for CC 1.x
bank = address % 16

Each bank services one address per cycle
Memory can service as many simultaneous 
accesses as it has banks

Simultaneous accesses to a bank result in a 
bank conflict

Conflicting accesses are serialized
Conflicts can only occur within a half-warp
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Shared Memory – Bank Addressing

No Bank Conflicts
Linear addressing

No Bank Conflicts
Random 1:1 
Permutation

Thread 15

Thread 7

Thread 6

Thread 5

Thread 4

Thread 3

Thread 2

Thread 1

Thread 0

Bank 15

Bank 7

Bank 6

Bank 5

Bank 4

Bank 3

Bank 2

Bank 1

Bank 0

Thread 15

Thread 7

Thread 6

Thread 5

Thread 4

Thread 3

Thread 2

Thread 1

Thread 0

Bank 15

Bank 7

Bank 6

Bank 5

Bank 4

Bank 3

Bank 2

Bank 1

Bank 0
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Thread 15

Thread 7

Thread 6

Thread 5

Thread 4

Thread 3

Thread 2

Thread 1

Thread 0

Shared Memory – Bank Addressing

2-way Bank Conflicts
Linear addressing 
(stride = 2)

8-way Bank Conflicts
Linear addressing 
(stride = 8)

Thread 11

Thread 10

Thread 9

Thread 8

Thread 4

Thread 3

Thread 2

Thread 1

Thread 0

Bank 15

Bank 7

Bank 6

Bank 5

Bank 4

Bank 3

Bank 2

Bank 1

Bank 0

Bank 9

Bank 8

Bank 15

Bank 7

Bank 2

Bank 1

Bank 0
x8

x8
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Shared Memory - Bank conflicts

Shared memory is as fast as registers if there are no 
bank conflicts

The fast case:
All threads of halfwarp access different banks → no bank conflict

All threads of halfwarp read identical address → no bank conflict

The slow case:
multiple threads in the halfwarp access same bank → bank conflict

Must serialize the accesses

Cost = max # of simultaneous accesses to a single bank

Use the bank checker macro in the SDK to check for 
conflicts

A 2nd order effect compared to GMEM coalescing
No benefit if it costs more instructions to avoid it
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Avoiding un-coalesced float3 access

__global__ void calc_float3(float3* in, float3* out)
{
    int i = blockIdx.x * blockDim.x + threadIdx.x;
    
    float3 v = in[i];
    
    v.x += 2;
    v.y += 2;
    v.z += 2;

    out[i] = v;
}
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Avoiding un-coalesced float3 access

float3 is 12 bytes
Each thread ends up executing 3 reads

sizeof(float3) ≠ 4, 8, or 16
Halfwarp reads three 64B non-contiguous regions

t0 t1 t2 t3

First read

float3 float3 float3
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Avoiding un-coalesced float3 access

t255t2t1t0

GMEM

SMEM

SMEM

t2t1t0

…

… …

S
te

p
 2

S
te

p
 1

…

…

…

Similarly, Step3 starting at offset 512
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Avoiding un-coalesced float3 access

Use shared memory to allow coalescing
Need sizeof(float3)*(threads/block) bytes of 
SMEM
Each thread reads 3 scalar floats:

Offsets: 0, (threads/block), 2*(threads/block)

These will likely be processed by other threads, so sync

Processing
Each thread retrieves its float3 from SMEM array

Cast the SMEM pointer to (float3*)

Use thread ID as index

Rest of the compute code does not change!
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Avoiding un-coalesced float3 access

__global__ void calc_float3_smem(float *in, float *out)
{
    int i = blockIdx.x * blockDim.x + threadIdx.x;

    __shared__ float smem[256 * 3];
    smem[threadIdx.x + 0]   = in[i + 0];
    smem[threadIdx.x + 256] = in[i + 256];
    smem[threadIdx.x + 512] = in[i + 512];
    __syncthreads();
    float3 v = ((float3*)smem)[threadIdx.x];

    v.x += 2;
    v.y += 2;
    v.z += 2;

    ((float3*)smem)[threadIdx.x] = v;
    __syncthreads();
    out[i + 0]   = smem[threadIdx.x + 0];
    out[i + 256] = smem[threadIdx.x + 256];
    out[i + 512] = smem[threadIdx.x + 512];
}

Compute code
is not changed

Read the input
through SMEM

Write the result
through SMEM
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Avoiding un-coalesced float3 access

Experiment: 
Kernel: read a float, increment, write back
3M floats (12MB)
Times averaged over 10K runs

12K blocks x 256 threads:
   356µs – coalesced
   357µs – coalesced, some threads don’t participate
3,494µs – permuted/misaligned thread access (G80)

4K blocks x 256 threads:
3,302µs – float3 uncoalesced
   359µs – float3 coalesced through shared memory
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Texture and Constant Memory 
Performance

Texture partition is cached
Uses the texture cache also used for graphics
Optimized for 2D spatial locality
Best performance when threads of a warp read locations 
that are close together in 2D

Constant memory is cached
4 cycles per address read within a single warp

Total cost 4 cycles if all threads in a warp read same address

Total cost 64 cycles if all threads read different addresses
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Texture overview

Texture is an object for reading data
Benefits:

Data is cached (optimized for 2D locality)
Helpful when coalescing is a problem

Filtering
Linear / bilinear / trilinear 

dedicated hardware

Wrap modes (for “out-of-bounds” addresses)
Clamp to edge / repeat

Addressable in 1D, 2D, or 3D
Using integer or normalized coordinates

Usage:
CPU code binds data to a texture object
Kernel reads data by calling a fetch function
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Textures – Misaligned Accesses

__global__ void shiftCopy(float* odata, 
                          float* idata,
                          int offset)
{  
    int i = blockIdx.x*blockDim.x+threadIdx.x;

    odata[i] = idata[i + offset];
}

texture<float> tex_ref;

__global__ void texShiftCopy(float* odata, 
                             float* idata, 
                             int offset)
{
    int i = blockIdx.x*blockDim.x+threadIdx.x;

    odata[i] = tex1Dfetch(tex_ref, i + offset);
}

Texture fetch read
Coalesced write
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Instruction Performance

Instruction cycles (per warp) = sum of
Operand read cycles
Instruction execution cycles
Result update cycles

Therefore instruction throughput depends on
Nominal instruction throughput
Memory latency
Memory bandwidth

“Cycle” refers to the multiprocessor clock rate
1.35 GHz on the Tesla C870, for example
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Instruction Throughput

In SIMT architecture,
T = number of operations per cycle
SM instruction throughput = one instruction every 
(warpSize / T) cycle

Maximizing throughput
using smaller number of cycles to get the job done
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Arithmetic Instruction Throughput

integer & float: add,shift,min,max

float: mul,mad
T = 8 ops per cycle, 32 / 8 = 4 cycles per warp
Integer multiply defaults to 32-bit

Requires multiple cycles / warp

Use __mul24() / __umul24() intrinsics for 4-cycle 24-bit integer 
multiply

Integer divide and modulo are more expensive
Compiler will convert literal power-of-2 divides to shifts

But we have seen it miss some cases

Be explicit in cases where compiler can’t tell that divisor is a power 
of 2!

Useful trick: foo%n == foo&(n-1) if n is a power of 2
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Runtime Math Library

Two types of runtime math operations
__func()

direct mapping to native hardware ISA

Fast (16 cycles) but lower accuracy (see prog. guide for details)

Examples: 

– __sin(x), __exp(x), __pow(x,y)

func()
compile to multiple instructions, e.g. sqrt(x) == x * rsqrt(x) 
(20 cycles per warp)

Slower but higher accuracy (5 ulp or less)

Examples: 

– sin(x), exp(x), pow(x,y)

trigonometric funcs

– WARNING: 

– slower path x > 48039.0f and x > 2147483648.0

– uses LMEM for intermediate values
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Runtime Math Library – OpenCL

Two types of runtime math operations
native_func()

direct mapping to native hardware ISA

Examples: 

– native_sin(x), native_exp(x), native_divide(x,y)

func()
Examples: 

– sin(x), exp(x), pow(x,y)
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Compile time optimization

CUDA-C
-use_fast_math 

coerces all func() calls to compile as __func()

OpenCL
-cl-fast-relaxed-math

-cl-mad-enable permits use of FMADS
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Conversion instructions

chars and shorts will likely need to be converted to 
int when used in functions

Newer hardware has double precision support
Double precision has additional cost
Be float-safe to avoid using double precision where it is 
not needed

Add ‘f’ specifier on float literals:

foo = bar * 0.123;   // double assumed 

foo = bar * 0.123f;  // float explicit

Use float version of standard library functions:

foo = sin(bar);   // double assumed 

foo = sinf(bar);  // float explicit
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Divergence – Control Flow

Main performance concern with branching is 
divergence

If threads within a single warp take different paths, 
different execution paths must be serialized

Avoid divergence when branch condition is a 
function of thread ID

Example with divergence: 
if (threadIdx.x > 2) {…}

– Branch granularity < warp size

Example without divergence:
if (threadIdx.x / WARP_SIZE > 2) {…}

– Branch granularity is a whole multiple of warp size
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Divergence – Instruction Predication

Comparison instructions set condition codes (CC)
Instructions can be predicated to write results only when 
CC meets criterion (CC != 0, CC >= 0, etc.)
Compiler tries to predict if a branch condition is likely to 
produce many divergent warps

If guaranteed not to diverge: only predicates if < 4 instructions
If not guaranteed: only predicates if < 7 instructions

May replace branches with instruction predication
ALL predicated instructions take execution cycles

Those with false conditions don’t write their output
Or invoke memory loads and stores

Saves branch instructions, so can be cheaper than serializing 
divergent paths
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Divergence – Compiler hints

The compiler unrolls small loops with known trip 
count
For more control use: #pragma unroll <n>

Up to the programmer to ensure efficiency

Example:
The loop below is unrolled 5 times

#pragma unroll 5
for (int i=0; i<n; ++i)
{
   …
}
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The Art of Performance Optimization

GPU can achieve great performance on data-parallel 
computations if you follow a few simple guidelines:

Minimize, speed up, or hide host-
transfer

Use parallelism efficiently

Keep memory aligned, access it 
coalesced, explore other memory 
spaces

Maximize instruction throughput
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CUDA Visual Profiler

Uses a special operation mode of the GPU to log 
important signals
Best to isolate kernels in a simple application
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Visual Profiler

Profiler facilitates analysis and optimization of CUDA 
programs by

Reporting hardware counter values:
Number of various bus transactions

Branches

Effective Parallelism

Etc.

Computing per kernel statistics:
Effective instruction throughput

Effective memory throughput

Visually displaying time spent in various GPU calls
Requires no instrumentation of the source code

Works with OpenCL too...
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Visual Profiler – Signals

Events are tracked with hardware counters on signals 
in the chip:

– timestamp

– gld_incoherent

– gld_coherent

– gst_incoherent

– gst_coherent

– local_load

– local_store

– branch

– divergent_branch

– instructions – instruction count

– warp_serialize – thread warps that serialize on address conflicts to   
            shared or constant memory

– cta_launched – executed thread blocks

Global memory loads/stores are coalesced 
(coherent) or 
non-coalesced (incoherent)

Total branches and divergent branches taken by 
threads

Local loads/stores
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Profiling on the command line

Text file output
Environment variables:

CUDA_PROFILE=1

– Tells CUDA to calculate and output profiling data

CUDA_PROFILE_CSV=1

– data is exported as csv for loading into spreadsheet or VisualProfiler

# CUDA_PROFILE_LOG_VERSION 1.5
# CUDA_DEVICE 1 Quadro CX
# CUDA_PROFILE_CSV 1
# TIMESTAMPFACTOR fb085cc80547cc8
method,gputime,cputime,occupancy,gld_coherent,gld_incoherent,gst_coherent,gst_
incoherent
_Z18integrate_GPU_SMEMP6float3S0_,10.208,42.000,0.500,0,0,0,0
_Z18integrate_GPU_SMEMP6float3S0_,10.048,560.000,0.500,0,0,0,0
_Z18integrate_GPU_SMEMP6float3S0_,10.080,1468.000,0.500,0,0,0,0
...
_Z18integrate_GPU_SMEMP6float3S0_,9.472,893.000,0.500,192,0,1152,0
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Interpreting profiler counters

Values represent events within a thread warp

Only targets one multiprocessor
Values will not correspond to the total number of warps 
launched for a particular kernel.
Launch enough thread blocks to ensure that the target 
multiprocessor is given a consistent percentage of the total 
work.

Values are best used to identify relative performance 
differences between unoptimized and optimized code

e.g., make the number of non-coalesced loads go from some 
non-zero value to zero
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Questions?

>100 Million CUDA GPUs

Oil & Gas Finance Medical Biophysics Numerics Audio Video Imaging

Heterogeneous Computing

CPUCPU
>100K CUDA Developers

www.nvidia.com/CUDA 

GPUGPU
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