
The CUDA architecture
The Art of performance optimization

wbraithwaite@nvidia.com

NVIDIA Confidential

Overall optimization strategies

Maximize parallel execution
Exposing data parallelism in algorithms
Overlap memory access with computation
Keep the hardware busy

Maximize memory bandwidth
Access data efficiently

Maximize instruction throughput
Use as few clock cycles as possible

NVIDIA Confidential

The Art of Performance Optimization

Exploiting parallelism
Sending data to the device
CUDA architecture refresher
Execution configuration
Speeding up memory access
Instruction optimization

NVIDIA Confidential

Amdahl's Law – Example

S =

ParallelSerialParallel Serial

P = parallel proportion
N = number of procs

Assume N → infinity
Only ¾ of program can be parallelized
S = 4

The maximum speedup can only be 4x

Unoptimized:

Optimized:

NVIDIA Confidential

Theoretical Bandwidth

Memory
clock (Hz)

Memory
interface
(bytes)

DDR

Device Bandwidth of GTX 280

1107 * 106 * (512 / 8) * 2 / 109 = 141.6 GB/s

Some specs report 132 GB/s
They use 10243 B/GB conversion rather than 109

NVIDIA Confidential

Effective Bandwidth

Effective Bandwidth (GB/s) =
((B

R
 + B

W
) / 109) / time

Example of copying array of N floats

N*sizeof(float) / 109 * 2 / num_seconds = GB/s

Our goal is to make effective bandwidth as close to
theoretical bandwidth as possible

Array size
 (bytes)

Read and
write

NVIDIA Confidential

Host ↔ Device – Overview

NVIDIA GPUs have dedicated memory
nearly 10X the bandwidth of CPU memory, this is a
tremendous advantage
141 GB/s peak (GTX 280) vs. 6 GB/s peak (PCI-e x16 Gen2)

Developers may be discouraged by the overhead of
transferring data between Host and Device

Some ways to fix this:
Avoid it...
Make it faster...
Hide it...

NVIDIA Confidential

Host ↔ Device – Minimize transfers

Intermediate data structures can be allocated,
operated on, and deallocated without ever copying
them to host memory

Sometimes it’s better to recompute than to cache

Even low-parallelism computations can sometimes
be faster than transferring back and forth

Use graphics interoperability...

NVIDIA Confidential

Graphics Interop – Overview

OpenGL buffer objects can be mapped into the
device's address-space

Direct3D9 Vertex objects can also be mapped (see
programming guide for details)
Data is accessed like global memory in the kernel
Can remove host ↔ device transfer entirely
Automatic DMA from Tesla to Quadro (currently via host)

Image data can be displayed from PBOs
using glDrawPixels / glTexImage2D

Requires high-speed copy in video memory
See SDK!

postProcessGL
simpleGL...

NVIDIA Confidential

Graphics Interop – Details

Register a buffer object with CUDA-C
cudaGLRegisterBufferObject(GLuint buffObj)

Map a registered buffer object to device memory
cudaGLMapBufferObject(void** devPtr,GLuint buffObj)

Returns an address in global memory

Use returned memory address in your kernel
Unmap the buffer object prior to use by OpenGL

cudaGLUnmapBufferObject(GLuint buffObj)

Unregister the buffer object
cudaGLUnregisterBufferObject(GLuint buffObj)

Only needed if the buffer is a render-target

Use the buffer object in your OpenGL code...

NVIDIA Confidential

Graphics Interop – Example

// setup code:
cudaGLRegisterBufferObject(pbo);

// CUDA texture generation code:
unsigned char *d_buffer;
cudaGLMapBufferObject((void**)&d_buffer, pbo);
prep_texture_kernel<<<...>>>(d_buffer);
cudaGLUnmapBufferObject(pbo);

// OpenGL rendering code:
glBindBuffer(GL_PIXEL_UNPACK_BUFFER_ARB, pbo);
glBindTexture(GL_TEXTURE_2D, tex);
glTexSubImage2D(GL_TEXTURE_2D,0,0,0,256,256,GL_BGRA,GL_UNSIGNED_BYTE,0);

Dynamic CUDA-generated texture:

NVIDIA Confidential

Graphics Interop – Example

// OpenGL rendering code:
// ...

// CUDA post-processing code:

unsigned char *d_buffer;

cudaGLRegisterBufferObject(pbo);

cudaGLMapBufferObject((void**)&d_buffer, pbo);

post_process_kernel<<<...>>>(d_buffer);

cudaGLUnmapBufferObject(pbo);

cudaGLUnRegisterBufferObject(pbo);

Frame Post-processing by CUDA:

NVIDIA Confidential

Graphics Interop – VBO example

GLuint vbo_pos;

glGenBuffers(1, vbo_pos);

glBindBuffer(GL_ARRAY_BUFFER, &vbo_pos);

glBufferData(GL_ARRAY_BUFFER, N_POINTS*4*sizeof(float), 0, GL_DYNAMIC_DRAW);

glBindBuffer(GL_ARRAY_BUFFER, 0);
cudaGLRegisterBufferObject(vbo_pos);

// LOOP:

float4 *d_pos;

cudaGLMapBufferObject((void**)&d_pos, vbo_pos);

move_points_kernel<<<N_POINTS/256, 256>>>(d_pos);

cudaGLUnmapBufferObject(vbo_pos);

glBindBuffer(GL_ARRAY_BUFFER, &vbo_pos);

glVertexPointer(4, GL_FLOAT, 0, 0);

glEnableClientState(GL_VERTEX_ARRAY);

glDrawArrays(GL_POINTS, 0, N_POINTS);

glDisableClientState(GL_VERTEX_ARRAY);

NVIDIA Confidential

Host ↔ Device – Making it faster!

Group transfers
One large transfer much better than many small ones

Use Page-locked memory...

NVIDIA Confidential

Host ↔ Device – Page-locked memory

Prevents OS from paging host memory
Allows PCI-e DMA to run at full speed
≈ 3 GB/s (PCI-e x16 Gen1) or 6 GB/s (PCI-e x16 Gen2)

WARNING:
Allocating too much page-locked
memory can reduce system performance

CUDA-C:
Instead of malloc(…), use cudaHostAlloc(…)

OpenCL:
Use CL_MEM_ALLOC_HOST_PTR in clCreateBuffer

See SDK!
bandwidthTest

NVIDIA Confidential

Host ↔ Device – Performance

NVIDIA Confidential

Host ↔ Device – Write-combining

CUDA-C has option of Write-Combining

memory is not snooped which can improve
performance by up to 40%

WARNING:
Not cached = FAST write, but SLOW host read

cudaHostAlloc((void**)&h_data,
 num_bytes,
 cudaHostAllocWriteCombined
);

NVIDIA Confidential

Host ↔ Device – Hiding it

Asynchronous API

Data Acquisition example

CUDA Streams

Zero Copy

NVIDIA Confidential

Run CUDA
Kernel(s)

Copy Data from
CPU Memory to
GPU Memory

Copy Data from
GPU memory to

CPU Memory

Typical Approach

PCIe
(5 GB/s)

5–10
GB/s

CPU

GPU

GPU
Memory

CPU
Memory

Chipset

60-80
GB/s

NVIDIA Confidential

Synchronous Functions

Standard CUDA C functions are Synchronous
Trade-off between CPU cycles and response speed
cudaDeviceSetFlags(...)

cudaDeviceScheduleSpin,
cudaDeviceScheduleYield,
cudaDeviceBlockingSync

Runtime API: Kernel launches are Asynchronous

Synchronous functions block on any prior
asynchronous kernel launches

Doesn’t return until copy is complete

Returns immediately

Waits for kernel to complete,
then starts copying. Doesn’t return
until copy is complete.

cudaMemcpy(…);
kernel<<<grid,block>>>(…);
cudaMemcpy(…);

NVIDIA Confidential

Asynchronous API

All memory operations can also be asynchronous,
and return immediately

Copies & Kernels are queued up in the GPU

Any launch overhead is overlapped

NVIDIA Confidential

Asynchronous API – Caveats

Memory must be allocated as page-locked using
cudaHostAlloc()

Synchronous calls should be done outside critical
sections ─ some of these are expensive!

Initialization
Memory allocations
Stream / Event creation
Interop resource registration

PINNED memory allows direct
DMA transfers by the GPU to and
from system memory. It’s locked
to a physical address

NVIDIA Confidential

Asynchronous API – Example

cudaMemcpyAsync(…);
myKernel<<<grid,block>>>(…);
cudaMemcpyAsync(…);

// cpu does work here...

cudaThreadSynchronize();

More on streams soon,
for now assume
stream = 0

Returns immediately

Returns immediately

Returns immediately

Waits for everything on the
GPU to finish, then returns

cudaMemcpyAsync(void* dst,
 void* src,
 size_t count,
 enum cudaMemcpyKind kind,
 cudaStream_t stream)

NVIDIA Confidential

Using Events – Example

cudaEvent_t HtoDdone;
cudaEventCreate(&HtoDdone,0);
cudaMemcpyAsync(d_dest,h_source,bytes,cudaMemcpyHostToDevice,0);
cudaEventRecord(HtoDdone);

myKernel<<<grid,block>>>(…);

cudaMemcpyAsync(d_dest,h_source,bytes,cudaMemcpyDeviceToHost,0);

// cpu can do stuff here

cudaEventSynchronize(HtoDdone);

// The first memory copy is done,
// so the memory at source could be
// used again by the CPU

cudaThreadSynchronize();

Waits just for everything before
cudaEventRecord(HtoDdone)
to complete, then returns

Waits for everything on the
GPU to finish, then returns

NVIDIA Confidential

Acquiring Data From an Input Device

CPU

GPU

CPU
Memory

GPU
Memory

Chipset

No Overlap:
Acquire,
Transfer,
& Compute frame[i]

Acquire Transfer Compute

NVIDIA Confidential

CPU

GPU

GPU
Memory

Chipset

Overlap Acquisition With Transfer

1 2

2-way Overlap:
Acquire frame[i]
Transfer & compute frame[i-1]

NVIDIA Confidential

Overlap Acquisition With Transfer

Use 2 pinned CPU buffers, ping-pong between them

int buf = 0;
void* d_framebuf;
void* h_framebuf[2];
// Allocate buffers...

while (!done)
{
 cudaMemcpyAsync(d_framebuf, h_framebuf[(buf+1)%2],size,
 cudaMemcpyHostToDevice, 0);

 myKernel1<<<...>>>(d_framebuf);
 // … other GPU stuff, all asynchronous

 AcquireFrame(h_framebuf[buf]);
 // … other CPU stuff

 cudaThreadSynchronize();
 buf++; buf%=2;
}

NVIDIA Confidential

CUDA Streams

NVIDIA GPUs with Compute
Capability >= 1.1 have a
dedicated DMA engine
DMA transfers over PCIe can be
concurrent with CUDA kernel
execution*
Streams allows independent
concurrent in-order queues of
execution

cudaStream_t, cudaStreamCreate()

Multiple streams exist within a
single context, they share
memory and other resources

Memory Controller

GPU Memory

Copy Compute

*1D Copies only! cudaMemcpy2DAsync cannot overlap.

GPU

NVIDIA Confidential

Stream Parameter

All Async function varieties have a stream parameter

Runtime Kernel Launch
<<<GridSize, BlockSize, SMEM Size, Stream>>>

Copies & Kernel launches with the same stream
parameter execute in-order

NVIDIA Confidential

KERNEL A1

KERNEL A2

KERNEL A3

KERNEL B1

KERNEL A1

KERNEL A2

KERNEL B1

KERNEL A3

COPY A1

COPY B1

COPY B2

COPY A2

COPY B3

COPY B4

COPY A1

COPY A2

COPY B1

COPY B4

COPY B2

COPY B3

CUDA Streams

TASK A TASK B

Copy
Engine

Compute
Engine

Independent Tasks:

Scheduling on GPU:

Time

NVIDIA Confidential

Avoid Serialization!

• Engine queues are filled in
the order code is executed

WRONG WAY!

CudaMemcpyAsync(A1…,StreamA);

KernelA1<<<…,StreamA>>>();
KernelA2<<<…,StreamA>>>();
KernelA3<<<…,StreamA>>>();
CudaMemcpyAsync(A2…,StreamA);

CudaMemcpyAsync(B1…,StreamB);
CudaMemcpyAsync(B2…,StreamB);
KernelB1<<<…,StreamB>>>();
CudaMemcpyAsync(B3…,StreamB);
CudaMemcpyAsync(B4…,StreamB);

KERNEL A1

KERNEL A2

KERNEL A3

KERNEL B1

COPY A1

COPY A2

COPY B1

COPY B4

COPY B2

COPY B3

STREAM A

STREAM B

KERNEL A1

COPY A2

Copy Engine Compute
Engine

COPY A1

KERNEL A2

KERNEL A3

COPY B1

COPY B2

KERNEL B1

COPY B3

COPY B4

NVIDIA Confidential

Stream Code Order

KERNEL A1

COPY A1

KERNEL A2

KERNEL A3

COPY B1

COPY B2

KERNEL B1COPY A2

COPY B3

COPY B4

CORRECT WAY!

CudaMemcpyAsync(A1…,StreamA);

KernelA1<<<…,StreamA>>>();
KernelA2<<<…,StreamA>>>();
KernelA3<<<…,StreamA>>>();

CudaMemcpyAsync(B1…,StreamB);
CudaMemcpyAsync(B2…,StreamB);
KernelB1<<<…,StreamB>>>();

CudaMemcpyAsync(A2…,StreamA);

CudaMemcpyAsync(B2…,StreamB);
CudaMemcpyAsync(B2…,StreamB);

Copy Engine Compute
Engine

KERNEL A1

KERNEL A2

KERNEL A3

KERNEL B1

COPY A1

COPY A2

COPY B1

COPY B4

COPY B2

COPY B3

STREAM A

STREAM B

NVIDIA Confidential

CPU

GPUChipset

Revisit Our Data I/O Example

1 2 1 2

3-way Overlap:
Acquire frame[i]
Transfer frame[i-1]
Compute frame[i-2]

NVIDIA Confidential

3-Way Overlap

As before, allocate two host buffers
Also allocate two device buffers

int buf = 0; // current buffer
void* h_framebuf[2];
void* d_framebuf[2];
cudaStream_t copyStream; // stream for copy
cudaStream_t compStream; // stream for compute

// Allocate Buffers
cudaHostAlloc(&(h_framebuf[0]),size,0);
cudaHostAlloc(&(h_framebuf[1]),size,0);

cudaMalloc(&(d_framebuf[0]),size,0);
cudaMalloc(&(d_framebuf[1]),size,0);

// Create Streams
cudaStreamCreate(©Stream,0);
cudaStreamCreate(&compStream,0);

NVIDIA Confidential

while (!done)
{
 cudaMemcpyAsync(d_framebuf[buf],
 h_framebuf[(buf+1)%2],size,
 cudaMemcpyHostToDevice,
 copyStream);

 myKernel1<<<grid,block,0,compStream>>>(d_framebuf[(buf+1)%2]);
 myKernel2<<<grid,block,0,compStream>>>(d_framebuf[(buf+1)%2]);
 // … other GPU stuff, all asynchronous

 AcquireFrame(h_framebuf[buf]);
 // … other CPU stuff

 cudaThreadSynchronize();
 buf++; buf%=2;
}

3-Way Overlap (Cont.)

NVIDIA Confidential

What About Readback?

1 2 3 1 2 3

CPU

GPUChipset

3-way Overlap:
Acquire frame[i]
Transfer frame[i-1]
Readback frame[i-3]
Compute frame[i-2]

NVIDIA Confidential

Readback

while (!done)
{
 cudaMemcpyAsync(d_framebuf[buf],h_framebuf[(buf+1)%3],size,
 cudaMemcpyHostToDevice,copyStream);

 cudaMemcpyAsync(d_framebuf[buf+2],h_framebuf[(buf+2)%3],size,
 cudaMemcpyDeviceToHost,copyStream);

 kernel1<<<grid,block,0,compStream>>>(d_framebuf[(buf+1)%3]…);
 kernel2<<<grid,block,0,compStream>>>(d_framebuf[(buf+1)%3]…);
 // … other GPU stuff, all asynchronous

 AcquireFrame(h_framebuf[buf]);
 // … other CPU stuff

 cudaThreadSynchronize();
 buf++; buf%=3;
}

NVIDIA Confidential

…

cudaMemcpyAsync(d_framebuf[buf],h_framebuf[(buf+1)%3],size,
 cudaMemcpyHostToDevice,uploadStream);

cudaMemcpyAsync(d_framebuf[buf+2],h_framebuf[(buf+2)%3],size,
 cudaMemcpyDeviceToHost,downloadStream);
…

4-Way Overlap?

FUTURE hardware adds a 2nd copy engine!
Simultaneous upload and downloading
Simply add another stream

still works with prior hardware, just serialized

NVIDIA Confidential

Host Memory Mapping – Zero-Copy

The easy way to achieve copy/compute overlap!
Access host memory directly from device code

Transfers implicitly performed as needed by device code
Introduced in CUDA 2.2
Check canMapHostMemory field of cudaDeviceProp
variable

All setup is done on host using mapped memory

cudaSetDeviceFlags(cudaDeviceMapHost);
...
cudaHostAlloc((void**)&a_h, nBytes, cudaHostAllocMapped);
cudaHostGetDevicePointer((void**)&a_d, (void *)a_h, 0);
for (i=0; i<N; i++)
 a_h[i] = i;
increment<<<grid, block>>>(a_d, N);

See SDK
samples!

NVIDIA Confidential

Zero Copy guidelines

Easier and faster alternative to using Async API
Data is transferred over the PCIe bus automatically,
but it’s slow

Use when data is only read/written once
Use for small amounts of data (new variables, CPU/GPU
communication)
Use when compute/memory ratio is very high and
occupancy is high, so latency over PCIe is hidden
Coalescing is critically important

Zero copy will be a win for integrated devices
you can check this using the
integrated property in
cudaDeviceProp Note: For Ion™ and other Unified

Memory Architecture (UMA) GPUs
zero-copy eliminates data transfer
altogether!

NVIDIA Confidential

GPU Memory architecture

Host memory
6 GB/s peak (PCIe x16 Gen2)

Global / Local device memory
4GB
high latency, 141 GB/s peak

Constant memory
64 KB read-only
cached

Texture memory
read-only
spatially cached

Shared memory GLOBAL MEMORY

CONSTANT MEMORY

H
O

S
T

 M
E

M
O

R
Y

LOCAL

thread[0]

REG

SMEM

LOCAL

thread[1]

REG

block[0]

LOCAL

thread[0]

REG

SMEM

LOCAL

thread[1]

REG

block[1]

TEXTURE MEMORY

grid

NVIDIA Confidential

Hierarchical thread structure

Individual THREADS operate
on data elements.

The unit of parallelism.

Negligible cost for creation,
switching, and overhead.

Threads are grouped into
BLOCKS, which can
synchronize and cooperate.

A GRID contains multiple
blocks and covers the entire
data set.

NVIDIA Confidential

Execution Model

Programming
model:

Hardware:

THREAD Scalar Processor

BLOCK Streaming Multiprocessor

GRID Device

Threads are executed by
scalar processors

BLOCKS are executed on
multiprocessors

BLOCKS do not migrate
Several concurrent BLOCKS
can reside on one SM.

This is limited by SM resources

A kernel is launched as a
GRID of BLOCKS

Only one kernel can execute
on a device at one time

NVIDIA Confidential

Warps

BLOCK

32 Threads

32 Threads

32 Threads

...

WARPS

→
→
→

BLOCKS divide into groups of
threads called WARPS

The unit of scheduling
All threads in warp perform
same instruction (SIMT)
Using many warps can hide
memory latency
warpSize = 32 threads

warp 8: instruction 11

SM warp scheduler

warp 1: instruction 42

warp 3: instruction 95

warp 8: instruction 12

...

warp 3: instruction 96

time

NVIDIA Confidential

Latency hiding – single-threaded

C M C M C M C

C M C M C M C

M

M

Time

Warps

Time

Warps

M

C

= Memory latency

= Computation time

Time saved

The time saved from maths performance increase is
small because memory latency is the limiting factor

STALL AVAILABLE

NVIDIA Confidential

Latency hiding – multi-threaded

C M

C M

C M

Time

Warps

M

C

= Memory latency

= Computation time

We must try to ensure that the processor is always
doing work

C M

C M

C M

C M

C M

C M

stall

NVIDIA Confidential

Latency hiding – multi-threaded

C M

C M

C M

Time

Warps

M

C

= Memory latency

= Computation time

To hide latency we can increase the amount of warps

C M

C M

C M

C M

C M

C M

C M

C M

C M

C M

C M

C M

NVIDIA Confidential

Latency hiding – Example

Instructions are executed sequentially, so executing
other warps is the only way to hide latencies and
keep the hardware busy

How many warps to hide global memory access?

We need 100 (400/4) arithmetic instructions to hide the
latency
e.g. Assume the code has 8 instructions (8*4 cycles) for
each global memory access (~400 cycles)
100 / 8 ≈ 13 warps

NVIDIA Confidential

add.f32 $f3, $f1, $f2
add.f32 $f5, $f3, $f4

x = y + 5;
z = x + 3;

ld.shared.f32 $f3, [$r31+0]
add.f32 $f3, $f3, $f4

s_data[0] += 3;

Read-after-write register dependency
Instruction’s result can be read ~24 cycles later

To completely hide the latency:
We need at least 6 warps (24 / 4) per multiprocessor

Latency hiding – Example

KERNEL CODE: PTX CODE:

NVIDIA Confidential

Occupancy

Occupancy =
Number of warps running concurrently on a
multiprocessor divided by hardware-limit of max possible
number of simultaneous warps

Max warps = 32
(24 on older hardware, CC <= 1.1)

To hide GMEM latency on CC 1.2, we need at least:
13 / 32 = 40% occupancy

To hide register dependency on CC 1.1, we need:
6 / 24 = 18.75% occupancy

NVIDIA Confidential

Occupancy – Considerations

Increase occupancy to achieve latency hiding

Occupancy is limited by SM resource usage:

Registers = 64KB = 16384
(32K on older hardware = 8192 registers)

Shared memory = 16KB

Scheduling hardware
max running warps per SM = 32

max blocks per SM = 8

NVIDIA Confidential

Occupancy – Register pressure

Increase warps by running more threads per SM
Get as many threads (and blocks) able to run as possible

Limiting Factors:
Number of registers per kernel

64KB per SM, partitioned among concurrent threads

Amount of shared memory
16KB per SM, partitioned among concurrent blocks

kernel parameters go in Shared Memory – consider using constant
memory instead

R = registers required by kernel

R
max
 = maximum registers per SM (16384)

actual required registers = ceil(R * ceil(BLOCK_SIZE, 32), R
max
 / 32)

NVIDIA Confidential

Occupancy – Resource limit example

SM partitions registers and local memory for all
active blocks:

If every thread uses 10 registers and every block has 256
threads:

Each block uses 256*10 = 2560 registers.

8192 / 2560 = 3.2 → 3 blocks

(256*3 = 768) / 32 → 24 warps can run

(24 / 24) →100% occupancy can be achieved

However, if every thread uses 17 registers:
8192 / (256*17) = 1.9 → 1 block

(256*1 = 256) / 32 → 8 warps can run

So occupancy is reduced to (8 / 24 =) 33%

But, if block has 128 threads:
since 8192 / (128*17 = 2176) = 3.8 → 3 blocks (of 128 threads)

occupancy can be ((384/32) / 24) → 50%

NVIDIA Confidential

Determining resource usage

Compile the kernel with the -cubin flag
Open the .cubin file with a text editor:

Or compile with –ptxas-options=-v

architecture {sm_10}
abiversion {0}
modname {cubin}
code {
 name = MyKernel
 lmem = 0
 smem = 68
 reg = 20
 bar = 0
 bincode {
 0xa0004205 0x04200780 0x40024c09 0x00200780
 …

per thread local memory

per thread block shared memory

per thread registers

NVIDIA Confidential

PTX – GPU assembly

Compile with –keep or -ptx

Interleaved code: --opencc-options -LIST:source=on

Useful to check

NVIDIA Confidential

Minimizing register pressure

To maximize occupancy compiler will minimize
register usage
Use compiler option: -maxrregcount=<N>

N = desired maximum registers / kernel

WARNING:
At some point, “spilling” into Local memory may occur
LMEM is located in slow device memory
Large arrays & structures are stored in LMEM
Check .cubin file for LMEM usage

By default nvcc forces all device code to be inline
Use __noline__ function qualifier as compiler hint

NVIDIA Confidential

Grid Size Heuristics

of blocks > # of multiprocessors
So all multiprocessors have at least one block to execute

of blocks / # of multiprocessors > 2
Multiple blocks can run concurrently in a multiprocessor
Blocks that aren’t waiting at a __syncthreads() keep the
hardware busy

of blocks > 100 to scale to future devices
Blocks executed in pipeline fashion
1000 blocks per grid will scale across multiple generations

NVIDIA Confidential

Block Size Heuristics

More threads per block = fewer registers per thread
Kernel invocations can fail if too many registers are used

Use occupancy heuristic
More threads per block = better memory latency hiding

Choose threads per block as a multiple of warp size
Avoid wasting computation on under-populated warps

Help hardware thread scheduler minimize register bank
conflicts

Use multiple of 64 threads for best efficiency

Heuristics
Minimum of 64 threads per block (allows 2 warps)
192 or 256 threads is a better choice

Usually still enough registers to compile and invoke successfully

NVIDIA Confidential

Occupancy – Conclusions

After some point (e.g. 50%), further increase in
occupancy won’t lead to performance increase

So occupancy calculation in realistic case is
complicated, thus…

NVIDIA Confidential

CUDA Occupancy Calculator

NVIDIA Confidential

Execution Configuration – Summary

Use optimal number of threads per block
More warps per block, deeper pipeline

hides latency, gives better SM occupancy

at least 192 hides read after write dependency

Limited by available resources

Maximize concurrent blocks on SM
Multiple blocks keep SM busy when waiting for
synchronization
Can be a trade-off for shared memory usage

Less than 8KB shared memory per block allows more than one block
to run

NVIDIA Confidential

Occupancy != Performance

Increasing occupancy does not necessarily increase
performance

BUT…

Low-occupancy multiprocessors cannot adequately
hide latency on memory-bound kernels

It all comes down to arithmetic intensity and available
parallelism

NVIDIA Confidential

Optimize Memory Access – Outline

Optimize Global Memory access

Using Shared Memory

Using Texture & Constant Memory

NVIDIA Confidential

Global Memory

Global memory is not cached

Highest latency instructions
400-600 clock cycles
Launching more threads can help hide this latency

Likely to be a bottleneck
Optimizations can greatly increase performance

Important to minimize accesses
Use 64 / 128-bit load/store instructions...
Coalesce global memory accesses...

NVIDIA Confidential

Global Memory – Load & store

Variables must have a size of 4, 8, or 16 bytes, and
must be aligned to a multiple of their size

Use -ptx flag of nvcc to inspect instructions:

ld.global.f32 $f1, [$rd4+0];
st.global.f32 [$rd4+0], $f2;
…
ld.global.v2.f32 {$f3,$f5}, [$rd7+0];
st.global.v2.f32 [$rd7+0], {$f4,$f6};
…
ld.global.v4.f32 {$f7,$f9,$f11,$f13}, [$rd10+0];
st.global.v4.f32 [$rd10+0], {$f8,$f10,$f12,$f14};

4 byte load and store:

8 byte load and store:

16 byte load and store:

NVIDIA Confidential

Coalescing (CC <= 1.1)

Coalescing occurs when a half warp (16 threads)
accesses contiguous region of GMEM

16 data elements loaded in one instruction
int, float: 64 bytes (fastest)

int2, float2: 128 bytes

int4, float4: 256 bytes (2 transactions)

If un-coalesced, hardware issues 16 sequential loads

Global memory can be viewed as composing aligned segments of 16 and 32 words.

NVIDIA Confidential

Coalescing in CC 1.0 and 1.1

kth thread in halfwarp must access kth word in segment
not all threads need to participate
Start address of region must be multiple of region size

Permuted – 16 transactions:

Misaligned – 16 transactions:

……

……

……

Coalesces – 1 transaction: ☻
Halfwarp →

NVIDIA Confidential

Coalescing (CC >= 1.2)

Much improved coalescing capabilities in 10-series
architecture

Hardware combines addresses within a half-warp
into one or more aligned segments

32, 64, or 128 bytes

All threads with addresses within a segment are
serviced with a single memory transaction

Regardless of ordering or alignment within the segment

NVIDIA Confidential

Coalescing in CC 1.2 & 1.3

Any pattern of access that fits into an aligned
segment size
of transactions = # of accessed segments

☻

☻

☻

32-byte segment

64-byte segment

128-byte segment

NVIDIA Confidential

Coalescing – Examples

Effective bandwidth of small kernels that copy data
Effects of offset and stride on performance

Two GPUs
GTX 280

Compute Capability 1.3

Peak bandwidth of 141 GB/s

FX 5600
Compute Capability 1.0

Peak bandwidth of 77 GB/s

NVIDIA Confidential

Coalescing – Misaligned Accesses

__global__ void offsetCopy(float* out,
 float* in,
 int offset)
{
 int i = threadIdx.x + blockIdx.x * blockDim.x;
 out[i + offset] = in[i + offset];
}

Memory access of halfwarp when offset = 1

GTX-280 (compute capability 1.3) drops by a
factor of 1.7

FX-5600 (compute capability 1.0) drops by a
factor of 8. This is because 32 bytes
(minimum transaction size) are fetched for
each thread, and we only need 4 bytes.
4 / 32 = 1 / 8 performance

NVIDIA Confidential

Coalescing – Strided Accesses

__global__ void strideCopy(float* out,
 float* in,
 int stride)
{
 int i = threadIdx.x + blockIdx.x * blockDim.x;
 out[i * stride] = in[i * stride];
}

Memory access of halfwarp when stride = 2

Large strides often arise in applications.
However, strides can be avoided using
shared memory.

NVIDIA Confidential

Coalescing structs of size_t ≠ 4,8,16

Use a “Structure of Arrays” (SoA) instead of “Array
of Structures” (AoS)

If SoA is not viable then...
Force structure alignment

__align__(X) where X = 4, 8, or 16

Point structure:

AoS:

SoA: x x x x y y y y z z z z

x y z

x y zx y zx y z x y z

Aligned: x y zx y zx y z x y z

struct __align__(16)
{
 float a;
 float b;
 float c;
};

See SDK!
 alignedTypes

NVIDIA Confidential

Coalescing – Summary

Coalescing greatly improves throughput
Critical for memory-bound kernels

Reading structs of size other than 4, 8, or 16 bytes
breaks coalescing

Prefer “Structures of Arrays” over AoS
Pad using: __align__(X)

Strided memory access is inherent in many
multidimensional problems

Stride is generally large (>> 18)
But strided access to global memory can be avoided using
SMEM...

NVIDIA Confidential

Shared Memory

~Hundred times faster than global memory

Cache data to reduce global memory accesses

Threads can cooperate via shared memory
Use one or more threads to load / compute data shared by
all threads

Use it to avoid non-coalesced access
Stage loads and stores in shared memory to re-order non-
coalesceable addressing

See SDK!
matrixTranspose

NVIDIA Confidential

Memory Bandwidth

Effective bandwidth depends on access patterns
Minimize device memory accesses

Much lower bandwidth than on-chip shared memory

Common CUDA kernel structure:
1. Load data from global memory to shared memory
2. __syncthreads()
3. Process the data in shared memory with many threads
4. __syncthreads() (if needed)
5. Store results from shared memory to global memory

Notes:
Steps 2 to 4 may be repeated, looped, etc.
Step 4 is not necessary if there is no dependence of
stored data on other threads

NVIDIA Confidential

Caching – MatMult example (C=AxB)

__global__ void simpleMultiply(float* a,
 float* b,
 float* c,
 int N)
{
int col = threadIdx.x+blockIdx.x*blockDim.x;
int row = threadIdx.y+blockIdx.y*blockDim.y;

float sum = 0.f;
for (int i = 0; i < TILE_DIM; i++)
 sum += a[row*TILE_DIM+i] * b[i*N+col];

c[row*N+col] = sum;
}

Uncached version:

Every thread corresponds to one entry in C.

NVIDIA Confidential

Caching – MatMult example (C=AxB)

__global__ void simpleMultiply(float* a,
 float* b,
 float* c,
 int N)
{
int col = threadIdx.x+blockIdx.x*blockDim.x;
int row = threadIdx.y+blockIdx.y*blockDim.y;

float sum = 0.f;
for (int i = 0; i < TILE_DIM; i++)
 sum += a[row*TILE_DIM+i] * b[i*N+col];

c[row*N+col] = sum;
}

Uncached version:

Every thread corresponds to one entry in C.

Consider a warp:
When calculating a row of C,
lots of repeated access to the same row of A.
Un-coalesced in CC <= 1.1.

NVIDIA Confidential

Caching – MatMult example – Results

Optimization NVIDIA GeForce
GTX 280

NVIDIA Quadro
FX 5600

No optimization 8.8 GBps 0.62 GBps

Coalesced using
shared memory to
store a tile of A

14.3 GBps 7.34 GBps

Using shared
memory to
eliminate
redundant reads of
a tile of B

29.7 GBps 15.5 GBps

NVIDIA Confidential

Caching – MatMult example (C=AxB)

__global__ void coalescedMultiply(float* a,
 float* b,
 float* c,
 int N)
{
__shared__ float aTile[TILE_DIM][TILE_DIM]);
int col = threadIdx.x+blockIdx.x*blockDim.x;
int row = threadIdx.y+blockIdx.y*blockDim.y;

// coalesced load of tile into smem
int x = threadIdx.x;
int y = threadIdx.y;
aTile[y][x] = a[row*TILE_DIM+x];

// no synchronization required

float sum = 0.f;
for (int i = 0; i < TILE_DIM; i++)
 sum += aTile[y][i] * b[i*N+col];

c[row*N+col] = sum;
}

Cached & coalesced version:

NVIDIA Confidential

Caching – MatMult example – Results

Optimization NVIDIA GeForce
GTX 280

NVIDIA Quadro
FX 5600

No optimization 8.8 GBps 0.62 GBps

Coalesced using
shared memory to
store a tile of A

14.3 GBps 7.34 GBps

Using shared
memory to
eliminate
redundant reads of
a tile of B

29.7 GBps 15.5 GBps

NVIDIA Confidential

Caching – MatMult example (C=AxB)

__global__ void coalescedMultiply(float* a,
 float* b,
 float* c,
 int N)
{
__shared__ float aTile[TILE_DIM][TILE_DIM]);
int col = threadIdx.x+blockIdx.x*blockDim.x;
int row = threadIdx.y+blockIdx.y*blockDim.y;

// coalesced load of tile into smem
int x = threadIdx.x;
int y = threadIdx.y;
aTile[y][x] = a[row*TILE_DIM+x];

// no synchronization required

float sum = 0.f;
for (int i = 0; i < TILE_DIM; i++)
 sum += aTile[y][i] * b[i*N+col];

c[row*N+col] = sum;
}

Cached & coalesced version:

Consider a warp:
When calculating a row of C,
the entire tile of B is read

NVIDIA Confidential

Caching – MatMult example

__kernel void sharedABMultiply(__global float* a, __global float* b, __global float*
c, int N)
{
 __shared__ float aTile[TILE_DIM][TILE_DIM]);
 __shared__ float bTile[TILE_DIM][TILE_DIM]);
 int col = threadIdx.x+blockIdx.x*blockDim.x;
 int row = threadIdx.y+blockIdx.y*blockDim.y;

 // coalesced load of tile into smem
 int x = threadIdx.x;
 int y = threadIdx.y;
 aTile[y][x] = a[row * TILE_DIM + x];
 bTile[y][x] = b[y * N + col];
 // we need to sync block because we are reading from different columns of bTile
 barrier(CLK_LOCAL_MEM_FENCE);

 float sum = 0.f;
 for (int i = 0; i < TILE_DIM; i++)
 sum += aTile[y][i] * bTile[i][x];

 c[row*N+col] = sum;
}

Cached & coalesced version:

NVIDIA Confidential

Caching – MatMult example – Results

Optimization NVIDIA GeForce
GTX 280

NVIDIA Quadro
FX 5600

No optimization 8.8 GBps 0.62 GBps

Coalesced using
shared memory to
store a tile of A

14.3 GBps 7.34 GBps

Using shared
memory to
eliminate
redundant reads of
a tile of B

29.7 GBps 15.5 GBps

NVIDIA Confidential

Shared Memory – Banked Architecture

Bank 15

Bank 7

Bank 6

Bank 5

Bank 4

Bank 3

Bank 2

Bank 1

Bank 0

Shared memory is divided into banks
32-bit words assigned to successive banks
Number of banks = 16 for CC 1.x
bank = address % 16

Each bank services one address per cycle
Memory can service as many simultaneous
accesses as it has banks

Simultaneous accesses to a bank result in a
bank conflict

Conflicting accesses are serialized
Conflicts can only occur within a half-warp

NVIDIA Confidential

Shared Memory – Bank Addressing

No Bank Conflicts
Linear addressing

No Bank Conflicts
Random 1:1
Permutation

Thread 15

Thread 7

Thread 6

Thread 5

Thread 4

Thread 3

Thread 2

Thread 1

Thread 0

Bank 15

Bank 7

Bank 6

Bank 5

Bank 4

Bank 3

Bank 2

Bank 1

Bank 0

Thread 15

Thread 7

Thread 6

Thread 5

Thread 4

Thread 3

Thread 2

Thread 1

Thread 0

Bank 15

Bank 7

Bank 6

Bank 5

Bank 4

Bank 3

Bank 2

Bank 1

Bank 0

NVIDIA Confidential

Thread 15

Thread 7

Thread 6

Thread 5

Thread 4

Thread 3

Thread 2

Thread 1

Thread 0

Shared Memory – Bank Addressing

2-way Bank Conflicts
Linear addressing
(stride = 2)

8-way Bank Conflicts
Linear addressing
(stride = 8)

Thread 11

Thread 10

Thread 9

Thread 8

Thread 4

Thread 3

Thread 2

Thread 1

Thread 0

Bank 15

Bank 7

Bank 6

Bank 5

Bank 4

Bank 3

Bank 2

Bank 1

Bank 0

Bank 9

Bank 8

Bank 15

Bank 7

Bank 2

Bank 1

Bank 0
x8

x8

NVIDIA Confidential

Shared Memory - Bank conflicts

Shared memory is as fast as registers if there are no
bank conflicts

The fast case:
All threads of halfwarp access different banks → no bank conflict

All threads of halfwarp read identical address → no bank conflict

The slow case:
multiple threads in the halfwarp access same bank → bank conflict

Must serialize the accesses

Cost = max # of simultaneous accesses to a single bank

Use the bank checker macro in the SDK to check for
conflicts

A 2nd order effect compared to GMEM coalescing
No benefit if it costs more instructions to avoid it

NVIDIA Confidential

Avoiding un-coalesced float3 access

__global__ void calc_float3(float3* in, float3* out)
{
 int i = blockIdx.x * blockDim.x + threadIdx.x;

 float3 v = in[i];

 v.x += 2;
 v.y += 2;
 v.z += 2;

 out[i] = v;
}

NVIDIA Confidential

Avoiding un-coalesced float3 access

float3 is 12 bytes
Each thread ends up executing 3 reads

sizeof(float3) ≠ 4, 8, or 16
Halfwarp reads three 64B non-contiguous regions

t0 t1 t2 t3

First read

float3 float3 float3

NVIDIA Confidential

Avoiding un-coalesced float3 access

t255t2t1t0

GMEM

SMEM

SMEM

t2t1t0

…

… …

S
te

p
 2

S
te

p
 1

…

…

…

Similarly, Step3 starting at offset 512

NVIDIA Confidential

Avoiding un-coalesced float3 access

Use shared memory to allow coalescing
Need sizeof(float3)*(threads/block) bytes of
SMEM
Each thread reads 3 scalar floats:

Offsets: 0, (threads/block), 2*(threads/block)

These will likely be processed by other threads, so sync

Processing
Each thread retrieves its float3 from SMEM array

Cast the SMEM pointer to (float3*)

Use thread ID as index

Rest of the compute code does not change!

NVIDIA Confidential

Avoiding un-coalesced float3 access

__global__ void calc_float3_smem(float *in, float *out)
{
 int i = blockIdx.x * blockDim.x + threadIdx.x;

 __shared__ float smem[256 * 3];
 smem[threadIdx.x + 0] = in[i + 0];
 smem[threadIdx.x + 256] = in[i + 256];
 smem[threadIdx.x + 512] = in[i + 512];
 __syncthreads();
 float3 v = ((float3*)smem)[threadIdx.x];

 v.x += 2;
 v.y += 2;
 v.z += 2;

 ((float3*)smem)[threadIdx.x] = v;
 __syncthreads();
 out[i + 0] = smem[threadIdx.x + 0];
 out[i + 256] = smem[threadIdx.x + 256];
 out[i + 512] = smem[threadIdx.x + 512];
}

Compute code
is not changed

Read the input
through SMEM

Write the result
through SMEM

NVIDIA Confidential

Avoiding un-coalesced float3 access

Experiment:
Kernel: read a float, increment, write back
3M floats (12MB)
Times averaged over 10K runs

12K blocks x 256 threads:
 356µs – coalesced
 357µs – coalesced, some threads don’t participate
3,494µs – permuted/misaligned thread access (G80)

4K blocks x 256 threads:
3,302µs – float3 uncoalesced
 359µs – float3 coalesced through shared memory

NVIDIA Confidential

Texture and Constant Memory
Performance

Texture partition is cached
Uses the texture cache also used for graphics
Optimized for 2D spatial locality
Best performance when threads of a warp read locations
that are close together in 2D

Constant memory is cached
4 cycles per address read within a single warp

Total cost 4 cycles if all threads in a warp read same address

Total cost 64 cycles if all threads read different addresses

NVIDIA Confidential

Texture overview

Texture is an object for reading data
Benefits:

Data is cached (optimized for 2D locality)
Helpful when coalescing is a problem

Filtering
Linear / bilinear / trilinear

dedicated hardware

Wrap modes (for “out-of-bounds” addresses)
Clamp to edge / repeat

Addressable in 1D, 2D, or 3D
Using integer or normalized coordinates

Usage:
CPU code binds data to a texture object
Kernel reads data by calling a fetch function

NVIDIA Confidential

Textures – Misaligned Accesses

__global__ void shiftCopy(float* odata,
 float* idata,
 int offset)
{
 int i = blockIdx.x*blockDim.x+threadIdx.x;

 odata[i] = idata[i + offset];
}

texture<float> tex_ref;

__global__ void texShiftCopy(float* odata,
 float* idata,
 int offset)
{
 int i = blockIdx.x*blockDim.x+threadIdx.x;

 odata[i] = tex1Dfetch(tex_ref, i + offset);
}

Texture fetch read
Coalesced write

NVIDIA Confidential

Instruction Performance

Instruction cycles (per warp) = sum of
Operand read cycles
Instruction execution cycles
Result update cycles

Therefore instruction throughput depends on
Nominal instruction throughput
Memory latency
Memory bandwidth

“Cycle” refers to the multiprocessor clock rate
1.35 GHz on the Tesla C870, for example

NVIDIA Confidential

Instruction Throughput

In SIMT architecture,
T = number of operations per cycle
SM instruction throughput = one instruction every
(warpSize / T) cycle

Maximizing throughput
using smaller number of cycles to get the job done

NVIDIA Confidential

Arithmetic Instruction Throughput

integer & float: add,shift,min,max

float: mul,mad
T = 8 ops per cycle, 32 / 8 = 4 cycles per warp
Integer multiply defaults to 32-bit

Requires multiple cycles / warp

Use __mul24() / __umul24() intrinsics for 4-cycle 24-bit integer
multiply

Integer divide and modulo are more expensive
Compiler will convert literal power-of-2 divides to shifts

But we have seen it miss some cases

Be explicit in cases where compiler can’t tell that divisor is a power
of 2!

Useful trick: foo%n == foo&(n-1) if n is a power of 2

NVIDIA Confidential

Runtime Math Library

Two types of runtime math operations
__func()

direct mapping to native hardware ISA

Fast (16 cycles) but lower accuracy (see prog. guide for details)

Examples:

– __sin(x), __exp(x), __pow(x,y)

func()
compile to multiple instructions, e.g. sqrt(x) == x * rsqrt(x)
(20 cycles per warp)

Slower but higher accuracy (5 ulp or less)

Examples:

– sin(x), exp(x), pow(x,y)

trigonometric funcs

– WARNING:

– slower path x > 48039.0f and x > 2147483648.0

– uses LMEM for intermediate values

NVIDIA Confidential

Runtime Math Library – OpenCL

Two types of runtime math operations
native_func()

direct mapping to native hardware ISA

Examples:

– native_sin(x), native_exp(x), native_divide(x,y)

func()
Examples:

– sin(x), exp(x), pow(x,y)

NVIDIA Confidential

Compile time optimization

CUDA-C
-use_fast_math

coerces all func() calls to compile as __func()

OpenCL
-cl-fast-relaxed-math

-cl-mad-enable permits use of FMADS

NVIDIA Confidential

Conversion instructions

chars and shorts will likely need to be converted to
int when used in functions

Newer hardware has double precision support
Double precision has additional cost
Be float-safe to avoid using double precision where it is
not needed

Add ‘f’ specifier on float literals:

foo = bar * 0.123; // double assumed

foo = bar * 0.123f; // float explicit

Use float version of standard library functions:

foo = sin(bar); // double assumed

foo = sinf(bar); // float explicit

NVIDIA Confidential

Divergence – Control Flow

Main performance concern with branching is
divergence

If threads within a single warp take different paths,
different execution paths must be serialized

Avoid divergence when branch condition is a
function of thread ID

Example with divergence:
if (threadIdx.x > 2) {…}

– Branch granularity < warp size

Example without divergence:
if (threadIdx.x / WARP_SIZE > 2) {…}

– Branch granularity is a whole multiple of warp size

NVIDIA Confidential

Divergence – Instruction Predication

Comparison instructions set condition codes (CC)
Instructions can be predicated to write results only when
CC meets criterion (CC != 0, CC >= 0, etc.)
Compiler tries to predict if a branch condition is likely to
produce many divergent warps

If guaranteed not to diverge: only predicates if < 4 instructions
If not guaranteed: only predicates if < 7 instructions

May replace branches with instruction predication
ALL predicated instructions take execution cycles

Those with false conditions don’t write their output
Or invoke memory loads and stores

Saves branch instructions, so can be cheaper than serializing
divergent paths

NVIDIA Confidential

Divergence – Compiler hints

The compiler unrolls small loops with known trip
count
For more control use: #pragma unroll <n>

Up to the programmer to ensure efficiency

Example:
The loop below is unrolled 5 times

#pragma unroll 5
for (int i=0; i<n; ++i)
{
 …
}

NVIDIA Confidential

The Art of Performance Optimization

GPU can achieve great performance on data-parallel
computations if you follow a few simple guidelines:

Minimize, speed up, or hide host-
transfer

Use parallelism efficiently

Keep memory aligned, access it
coalesced, explore other memory
spaces

Maximize instruction throughput

NVIDIA Confidential

CUDA Visual Profiler

Uses a special operation mode of the GPU to log
important signals
Best to isolate kernels in a simple application

NVIDIA Confidential

Visual Profiler

Profiler facilitates analysis and optimization of CUDA
programs by

Reporting hardware counter values:
Number of various bus transactions

Branches

Effective Parallelism

Etc.

Computing per kernel statistics:
Effective instruction throughput

Effective memory throughput

Visually displaying time spent in various GPU calls
Requires no instrumentation of the source code

Works with OpenCL too...

NVIDIA Confidential

Visual Profiler – Signals

Events are tracked with hardware counters on signals
in the chip:

– timestamp

– gld_incoherent

– gld_coherent

– gst_incoherent

– gst_coherent

– local_load

– local_store

– branch

– divergent_branch

– instructions – instruction count

– warp_serialize – thread warps that serialize on address conflicts to
 shared or constant memory

– cta_launched – executed thread blocks

Global memory loads/stores are coalesced
(coherent) or
non-coalesced (incoherent)

Total branches and divergent branches taken by
threads

Local loads/stores

NVIDIA Confidential

Profiling on the command line

Text file output
Environment variables:

CUDA_PROFILE=1

– Tells CUDA to calculate and output profiling data

CUDA_PROFILE_CSV=1

– data is exported as csv for loading into spreadsheet or VisualProfiler

CUDA_PROFILE_LOG_VERSION 1.5
CUDA_DEVICE 1 Quadro CX
CUDA_PROFILE_CSV 1
TIMESTAMPFACTOR fb085cc80547cc8
method,gputime,cputime,occupancy,gld_coherent,gld_incoherent,gst_coherent,gst_
incoherent
_Z18integrate_GPU_SMEMP6float3S0_,10.208,42.000,0.500,0,0,0,0
_Z18integrate_GPU_SMEMP6float3S0_,10.048,560.000,0.500,0,0,0,0
_Z18integrate_GPU_SMEMP6float3S0_,10.080,1468.000,0.500,0,0,0,0
...
_Z18integrate_GPU_SMEMP6float3S0_,9.472,893.000,0.500,192,0,1152,0

NVIDIA Confidential

Interpreting profiler counters

Values represent events within a thread warp

Only targets one multiprocessor
Values will not correspond to the total number of warps
launched for a particular kernel.
Launch enough thread blocks to ensure that the target
multiprocessor is given a consistent percentage of the total
work.

Values are best used to identify relative performance
differences between unoptimized and optimized code

e.g., make the number of non-coalesced loads go from some
non-zero value to zero

NVIDIA Confidential

Questions?

>100 Million CUDA GPUs

Oil & Gas Finance Medical Biophysics Numerics Audio Video Imaging

Heterogeneous Computing

CPUCPU
>100K CUDA Developers

www.nvidia.com/CUDA

GPUGPU

	Slide 1
	Overall Optimization Strategies
	Outline
	Slide 4
	Theoretical Bandwidth
	Effective Bandwidth
	Slide 7
	Slide 8
	Slide 9
	OpenGL Interoperability
	Slide 11
	Slide 12
	Slide 13
	Host-Device Data Transfers
	Page-Locked Data Transfers
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Execution Model
	Warp and SIMT
	Slide 45
	Slide 46
	Slide 47
	Global Memory Latency Hiding
	Slide 49
	Slide 50
	Occupancy Considerations
	Slide 52
	Resource Limitation on Occupancy
	Slide 54
	PTX – GPU assembly
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Optimize Memory Access
	Global Memory Reads/Writes
	Loading and storing global memory
	Slide 66
	Coalescing in Compute Capability 1.0 and 1.1
	Coalescing (Compute 1.2+ GPUs)
	Coalescing in Compute Capability 1.2 and 1.3
	Slide 70
	Example of Misaligned Accesses
	Slide 72
	Coalescing: Structures of size ≠ 4, 8, or 16 Bytes
	Coalescing: Summary
	Shared Memory
	Memory Bandwidth
	Caching Example 1: Matrix Multiplication
	Slide 78
	Matrix Multiplication (cont.)
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Example: Avoiding Non-Coalesced float3 Memory Accesses
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Texture and Constant Memory
	Textures in CUDA
	Slide 97
	CUDA Instruction Performance
	Slide 99
	Arithmetic Instruction Throughput
	Runtime Math Library
	Slide 102
	Slide 103
	Make your program float-safe!
	Control Flow Instructions
	Instruction Predication
	Slide 107
	Summary
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Questions?

